This commit is contained in:
Hongji Zhu 2025-01-22 11:47:49 +08:00
parent 583218859c
commit 8995e34672

View File

@ -377,6 +377,8 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
else:
vllm_embedding = self.llm.model.embed_tokens(data["input_ids"])
new_vllm_embedding = vllm_embedding.clone()
vision_hidden_states = [
i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i for i in vision_hidden_states
]
@ -392,15 +394,16 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
).to(vllm_embedding.device)
cur_vllm_emb.scatter_(
new_vllm_embedding[i] = cur_vllm_emb.scatter(
0,
image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]),
)
elif self.training:
cur_vllm_emb += cur_vs_hs[0].mean() * 0
return vllm_embedding, vision_hidden_states
elif self.training:
new_vllm_embedding[i] += cur_vs_hs[0].mean() * 0
return new_vllm_embedding, vision_hidden_states
def get_audio_embedding_streaming(self, data):
r"""
@ -463,7 +466,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
else:
return []
def get_audio_embedding(self, data, chunk_length=-1):
def get_audio_embedding(self, data, chunk_length=-1, dummy=True):
r"""
Extract full audio embeddings with optional chunk-based attention.
@ -481,6 +484,8 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
Returns:
List[List[torch.Tensor]]: audio embeddings
"""
dtype = self.apm.embed_positions.weight.dtype
device = self.apm.embed_positions.weight.device
wavforms = data.get("audio_features", []) # (bs, 80, frames) or [], multi audios need filled in advance
audio_feature_lens_raw = data.get("audio_feature_lens", []) # list, [[x1, x2], [y1], [z1]]
@ -541,6 +546,17 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
idx += 1
final_audio_embeds.append(target_audio_embeds)
return final_audio_embeds
elif self.training and dummy:
dummy_wavs = torch.zeros((1, 80, 100), device=device, dtype=dtype)
audio_states = self.apm(dummy_wavs, output_hidden_states=True).hidden_states[self.audio_encoder_layer]
audio_embeds = self.audio_projection_layer(audio_states)
audio_embeds = audio_embeds.transpose(1, 2)
audio_embeds = self.audio_avg_pooler(audio_embeds)
audio_embeds = audio_embeds.transpose(1, 2)
return [audio_embeds]
else:
return []
@ -573,7 +589,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
audio_start_pos = 0
for bound in audio_bounds[i]:
audio_len = bound[1] - bound[0]
input_embeddings[0, bound[0] : bound[1]] = audio_embs[
input_embeddings[i, bound[0] : bound[1]] = audio_embs[
audio_start_pos : audio_start_pos + audio_len, :
]
audio_start_pos += audio_len
@ -595,7 +611,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
elif self.training:
for i in range(bs):
# dummy audio_embeddings
input_embeddings += audio_embeddings[0].mean() * 0
input_embeddings = input_embeddings + audio_embeddings[0].mean() * 0
return input_embeddings
@ -751,7 +767,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
input_ids=None,
pixel_values=None,
tgt_sizes=None,
audio_features=None,
audio_features=[],
audio_feature_lens=None,
image_bound=None,
audio_bounds=None,
@ -2982,7 +2998,7 @@ class ConditionalChatTTS(PreTrainedModel):
inputs_embeds = torch.stack(code_emb, 3).sum(3)
position_ids = torch.tensor(
[past_key_values[0][0].shape[2] + 1], dtype=torch.long, device=self.device
[past_key_values[0][0].shape[2]], dtype=torch.long, device=self.device
).unsqueeze(0)
cache_position = position_ids.clone()