input size and readme

This commit is contained in:
Nathan Qin 2020-05-16 14:29:20 -06:00
parent e48b3309de
commit 2467db76f7

View File

@ -18,7 +18,7 @@ __Contact__: xuebin[at]ualberta[dot]ca
**(2020-May-16)** We fixed the upsampling issue of the network. Now, the model should be able to handle **arbitrary input size**. (Tips: This modification is to facilitate the retraining of U^2-Net on your own datasets. When using our pre-trained model on SOD datasets, please keep the input size as 320x32 to guarantee the performance.)
**(2020-May-16)** We highly appreciate **Cyril Diagne** for building this fantastic AR project: [**AR Copy and Paste**](https://github.com/cyrildiagne/ar-cutpaste) using our **U^2-Net** (Qin *et al*, PR 2020) and [**BASNet**](https://github.com/NathanUA/BASNet)(Qin *et al*, CVPR 2019). The [**demo video**](https://twitter.com/cyrildiagne/status/1256916982764646402) in twitter has achieved over **5M** views, which is phenomenal and shows us more probabilities of SOD.
**(2020-May-16)** We highly appreciate **Cyril Diagne** for building this fantastic AR project: [**AR Copy and Paste**](https://github.com/cyrildiagne/ar-cutpaste) using our **U^2-Net** (Qin *et al*, PR 2020) and [**BASNet**](https://github.com/NathanUA/BASNet)(Qin *et al*, CVPR 2019). The [**demo video**](https://twitter.com/cyrildiagne/status/1256916982764646402) in twitter has achieved over **5M** views, which is phenomenal and shows us more application probabilities of SOD.
## U^2-Net Results (173.6 MB)