new
35
README.md
@ -1,29 +1,52 @@
|
||||
## U^2-Net
|
||||
The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection, [Xuebin Qin](https://webdocs.cs.ualberta.ca/~xuebin/), [Zichen Zhang](https://webdocs.cs.ualberta.ca/~zichen2/), [Chenyang Huang](https://chenyangh.com/), [Masood Dehghan](https://sites.google.com/view/masooddehghan), [Osmar R. Zaiane](http://webdocs.cs.ualberta.ca/~zaiane/) and [Martin Jagersand](https://webdocs.cs.ualberta.ca/~jag/)."
|
||||
|
||||
## (2020-May-04) The code will be released soon (before 2020-May-10)!
|
||||
## U^2-Net Results
|
||||
|
||||

|
||||
|
||||
__Contact__: xuebin[at]ualberta[dot]ca
|
||||
|
||||
|
||||
## Our previous work: [BASNet (CVPR 2019)](https://github.com/NathanUA/BASNet)
|
||||
|
||||
## Required libraries
|
||||
|
||||
Python 3.6
|
||||
numpy 1.15.2
|
||||
scikit-image 0.14.0
|
||||
PIL 5.2.0
|
||||
PyTorch 0.4.0
|
||||
torchvision 0.2.1
|
||||
glob
|
||||
|
||||
## Usage
|
||||
1. Clone this repo
|
||||
```
|
||||
git clone https://github.com/NathanUA/U-2-Net.git
|
||||
```
|
||||
2. Download the pre-trained model [u2net.pth 173.6 MB](https://drive.google.com/file/d/1ao1ovG1Qtx4b7EoskHXmi2E9rp5CHLcZ/view?usp=sharing) or [u2netp.pth 4.7 MB](https://drive.google.com/file/d/1rbSTGKAE-MTxBYHd-51l2hMOQPT_7EPy/view?usp=sharing) and put it into the dirctory './saved_models/u2net/' and './saved_models/u2netp/'
|
||||
|
||||
3. Cd to the directory 'U-2-Net', run the train or inference process by command: ```python u2net_train.py```
|
||||
or ```python u2net_test.py``` respectively. The 'model_name' in both files can be changed to 'u2net' or 'u2netp' for using different models.
|
||||
|
||||
We also provide the predicted saliency maps ([u2net results](https://drive.google.com/file/d/1mZFWlS4WygWh1eVI8vK2Ad9LrPq4Hp5v/view?usp=sharing),[u2netp results](https://drive.google.com/file/d/1j2pU7vyhOO30C2S_FJuRdmAmMt3-xmjD/view?usp=sharing)) for datasets SOD, ECSSD, DUT-OMRON, PASCAL-S, HKU-IS and DUTS-TE.
|
||||
|
||||
|
||||
## U^2-Net Architecture
|
||||
|
||||

|
||||

|
||||
|
||||
|
||||
## Quantitative Comparison
|
||||
|
||||

|
||||

|
||||
|
||||

|
||||

|
||||
|
||||
|
||||
## Qualitative Comparison
|
||||
|
||||

|
||||

|
||||
|
||||
|
||||
## Citation
|
||||
|
259
data_loader.py
Normal file
@ -0,0 +1,259 @@
|
||||
# data loader
|
||||
from __future__ import print_function, division
|
||||
import glob
|
||||
import torch
|
||||
from skimage import io, transform, color
|
||||
import numpy as np
|
||||
import random
|
||||
import math
|
||||
import matplotlib.pyplot as plt
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from torchvision import transforms, utils
|
||||
from PIL import Image
|
||||
#==========================dataset load==========================
|
||||
class RescaleT(object):
|
||||
|
||||
def __init__(self,output_size):
|
||||
assert isinstance(output_size,(int,tuple))
|
||||
self.output_size = output_size
|
||||
|
||||
def __call__(self,sample):
|
||||
imidx, image, label = sample['imidx'], sample['image'],sample['label']
|
||||
|
||||
h, w = image.shape[:2]
|
||||
|
||||
if isinstance(self.output_size,int):
|
||||
if h > w:
|
||||
new_h, new_w = self.output_size*h/w,self.output_size
|
||||
else:
|
||||
new_h, new_w = self.output_size,self.output_size*w/h
|
||||
else:
|
||||
new_h, new_w = self.output_size
|
||||
|
||||
new_h, new_w = int(new_h), int(new_w)
|
||||
|
||||
# #resize the image to new_h x new_w and convert image from range [0,255] to [0,1]
|
||||
# img = transform.resize(image,(new_h,new_w),mode='constant')
|
||||
# lbl = transform.resize(label,(new_h,new_w),mode='constant', order=0, preserve_range=True)
|
||||
|
||||
img = transform.resize(image,(self.output_size,self.output_size),mode='constant')
|
||||
lbl = transform.resize(label,(self.output_size,self.output_size),mode='constant', order=0, preserve_range=True)
|
||||
|
||||
return {'imidx':imidx, 'image':img,'label':lbl}
|
||||
|
||||
class Rescale(object):
|
||||
|
||||
def __init__(self,output_size):
|
||||
assert isinstance(output_size,(int,tuple))
|
||||
self.output_size = output_size
|
||||
|
||||
def __call__(self,sample):
|
||||
imidx, image, label = sample['imidx'], sample['image'],sample['label']
|
||||
|
||||
h, w = image.shape[:2]
|
||||
|
||||
if isinstance(self.output_size,int):
|
||||
if h > w:
|
||||
new_h, new_w = self.output_size*h/w,self.output_size
|
||||
else:
|
||||
new_h, new_w = self.output_size,self.output_size*w/h
|
||||
else:
|
||||
new_h, new_w = self.output_size
|
||||
|
||||
new_h, new_w = int(new_h), int(new_w)
|
||||
|
||||
# #resize the image to new_h x new_w and convert image from range [0,255] to [0,1]
|
||||
img = transform.resize(image,(new_h,new_w),mode='constant')
|
||||
lbl = transform.resize(label,(new_h,new_w),mode='constant', order=0, preserve_range=True)
|
||||
|
||||
return {'imidx':imidx, 'image':img,'label':lbl}
|
||||
|
||||
class RandomCrop(object):
|
||||
|
||||
def __init__(self,output_size):
|
||||
assert isinstance(output_size, (int, tuple))
|
||||
if isinstance(output_size, int):
|
||||
self.output_size = (output_size, output_size)
|
||||
else:
|
||||
assert len(output_size) == 2
|
||||
self.output_size = output_size
|
||||
def __call__(self,sample):
|
||||
imidx, image, label = sample['imidx'], sample['image'], sample['label']
|
||||
|
||||
h, w = image.shape[:2]
|
||||
new_h, new_w = self.output_size
|
||||
|
||||
top = np.random.randint(0, h - new_h)
|
||||
left = np.random.randint(0, w - new_w)
|
||||
|
||||
image = image[top: top + new_h, left: left + new_w]
|
||||
label = label[top: top + new_h, left: left + new_w]
|
||||
|
||||
return {'imidx':imidx,'image':image, 'label':label}
|
||||
|
||||
class ToTensor(object):
|
||||
"""Convert ndarrays in sample to Tensors."""
|
||||
|
||||
def __call__(self, sample):
|
||||
|
||||
imidx, image, label = sample['imidx'], sample['image'], sample['label']
|
||||
|
||||
tmpImg = np.zeros((image.shape[0],image.shape[1],3))
|
||||
tmpLbl = np.zeros(label.shape)
|
||||
|
||||
image = image/np.max(image)
|
||||
if(np.max(label)<1e-6):
|
||||
label = label
|
||||
else:
|
||||
label = label/np.max(label)
|
||||
|
||||
if image.shape[2]==1:
|
||||
tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
|
||||
tmpImg[:,:,1] = (image[:,:,0]-0.485)/0.229
|
||||
tmpImg[:,:,2] = (image[:,:,0]-0.485)/0.229
|
||||
else:
|
||||
tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
|
||||
tmpImg[:,:,1] = (image[:,:,1]-0.456)/0.224
|
||||
tmpImg[:,:,2] = (image[:,:,2]-0.406)/0.225
|
||||
|
||||
tmpLbl[:,:,0] = label[:,:,0]
|
||||
|
||||
# change the r,g,b to b,r,g from [0,255] to [0,1]
|
||||
#transforms.Normalize(mean = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225))
|
||||
tmpImg = tmpImg.transpose((2, 0, 1))
|
||||
tmpLbl = label.transpose((2, 0, 1))
|
||||
|
||||
return {'imidx':torch.from_numpy(imidx), 'image': torch.from_numpy(tmpImg), 'label': torch.from_numpy(tmpLbl)}
|
||||
|
||||
class ToTensorLab(object):
|
||||
"""Convert ndarrays in sample to Tensors."""
|
||||
def __init__(self,flag=0):
|
||||
self.flag = flag
|
||||
|
||||
def __call__(self, sample):
|
||||
|
||||
imidx, image, label =sample['imidx'], sample['image'], sample['label']
|
||||
|
||||
tmpLbl = np.zeros(label.shape)
|
||||
|
||||
if(np.max(label)<1e-6):
|
||||
label = label
|
||||
else:
|
||||
label = label/np.max(label)
|
||||
|
||||
# change the color space
|
||||
if self.flag == 2: # with rgb and Lab colors
|
||||
tmpImg = np.zeros((image.shape[0],image.shape[1],6))
|
||||
tmpImgt = np.zeros((image.shape[0],image.shape[1],3))
|
||||
if image.shape[2]==1:
|
||||
tmpImgt[:,:,0] = image[:,:,0]
|
||||
tmpImgt[:,:,1] = image[:,:,0]
|
||||
tmpImgt[:,:,2] = image[:,:,0]
|
||||
else:
|
||||
tmpImgt = image
|
||||
tmpImgtl = color.rgb2lab(tmpImgt)
|
||||
|
||||
# nomalize image to range [0,1]
|
||||
tmpImg[:,:,0] = (tmpImgt[:,:,0]-np.min(tmpImgt[:,:,0]))/(np.max(tmpImgt[:,:,0])-np.min(tmpImgt[:,:,0]))
|
||||
tmpImg[:,:,1] = (tmpImgt[:,:,1]-np.min(tmpImgt[:,:,1]))/(np.max(tmpImgt[:,:,1])-np.min(tmpImgt[:,:,1]))
|
||||
tmpImg[:,:,2] = (tmpImgt[:,:,2]-np.min(tmpImgt[:,:,2]))/(np.max(tmpImgt[:,:,2])-np.min(tmpImgt[:,:,2]))
|
||||
tmpImg[:,:,3] = (tmpImgtl[:,:,0]-np.min(tmpImgtl[:,:,0]))/(np.max(tmpImgtl[:,:,0])-np.min(tmpImgtl[:,:,0]))
|
||||
tmpImg[:,:,4] = (tmpImgtl[:,:,1]-np.min(tmpImgtl[:,:,1]))/(np.max(tmpImgtl[:,:,1])-np.min(tmpImgtl[:,:,1]))
|
||||
tmpImg[:,:,5] = (tmpImgtl[:,:,2]-np.min(tmpImgtl[:,:,2]))/(np.max(tmpImgtl[:,:,2])-np.min(tmpImgtl[:,:,2]))
|
||||
|
||||
# tmpImg = tmpImg/(np.max(tmpImg)-np.min(tmpImg))
|
||||
|
||||
tmpImg[:,:,0] = (tmpImg[:,:,0]-np.mean(tmpImg[:,:,0]))/np.std(tmpImg[:,:,0])
|
||||
tmpImg[:,:,1] = (tmpImg[:,:,1]-np.mean(tmpImg[:,:,1]))/np.std(tmpImg[:,:,1])
|
||||
tmpImg[:,:,2] = (tmpImg[:,:,2]-np.mean(tmpImg[:,:,2]))/np.std(tmpImg[:,:,2])
|
||||
tmpImg[:,:,3] = (tmpImg[:,:,3]-np.mean(tmpImg[:,:,3]))/np.std(tmpImg[:,:,3])
|
||||
tmpImg[:,:,4] = (tmpImg[:,:,4]-np.mean(tmpImg[:,:,4]))/np.std(tmpImg[:,:,4])
|
||||
tmpImg[:,:,5] = (tmpImg[:,:,5]-np.mean(tmpImg[:,:,5]))/np.std(tmpImg[:,:,5])
|
||||
|
||||
elif self.flag == 1: #with Lab color
|
||||
tmpImg = np.zeros((image.shape[0],image.shape[1],3))
|
||||
|
||||
if image.shape[2]==1:
|
||||
tmpImg[:,:,0] = image[:,:,0]
|
||||
tmpImg[:,:,1] = image[:,:,0]
|
||||
tmpImg[:,:,2] = image[:,:,0]
|
||||
else:
|
||||
tmpImg = image
|
||||
|
||||
tmpImg = color.rgb2lab(tmpImg)
|
||||
|
||||
# tmpImg = tmpImg/(np.max(tmpImg)-np.min(tmpImg))
|
||||
|
||||
tmpImg[:,:,0] = (tmpImg[:,:,0]-np.min(tmpImg[:,:,0]))/(np.max(tmpImg[:,:,0])-np.min(tmpImg[:,:,0]))
|
||||
tmpImg[:,:,1] = (tmpImg[:,:,1]-np.min(tmpImg[:,:,1]))/(np.max(tmpImg[:,:,1])-np.min(tmpImg[:,:,1]))
|
||||
tmpImg[:,:,2] = (tmpImg[:,:,2]-np.min(tmpImg[:,:,2]))/(np.max(tmpImg[:,:,2])-np.min(tmpImg[:,:,2]))
|
||||
|
||||
tmpImg[:,:,0] = (tmpImg[:,:,0]-np.mean(tmpImg[:,:,0]))/np.std(tmpImg[:,:,0])
|
||||
tmpImg[:,:,1] = (tmpImg[:,:,1]-np.mean(tmpImg[:,:,1]))/np.std(tmpImg[:,:,1])
|
||||
tmpImg[:,:,2] = (tmpImg[:,:,2]-np.mean(tmpImg[:,:,2]))/np.std(tmpImg[:,:,2])
|
||||
|
||||
else: # with rgb color
|
||||
tmpImg = np.zeros((image.shape[0],image.shape[1],3))
|
||||
image = image/np.max(image)
|
||||
if image.shape[2]==1:
|
||||
tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
|
||||
tmpImg[:,:,1] = (image[:,:,0]-0.485)/0.229
|
||||
tmpImg[:,:,2] = (image[:,:,0]-0.485)/0.229
|
||||
else:
|
||||
tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
|
||||
tmpImg[:,:,1] = (image[:,:,1]-0.456)/0.224
|
||||
tmpImg[:,:,2] = (image[:,:,2]-0.406)/0.225
|
||||
|
||||
tmpLbl[:,:,0] = label[:,:,0]
|
||||
|
||||
# change the r,g,b to b,r,g from [0,255] to [0,1]
|
||||
#transforms.Normalize(mean = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225))
|
||||
tmpImg = tmpImg.transpose((2, 0, 1))
|
||||
tmpLbl = label.transpose((2, 0, 1))
|
||||
|
||||
return {'imidx':torch.from_numpy(imidx), 'image': torch.from_numpy(tmpImg), 'label': torch.from_numpy(tmpLbl)}
|
||||
|
||||
class SalObjDataset(Dataset):
|
||||
def __init__(self,img_name_list,lbl_name_list,transform=None):
|
||||
# self.root_dir = root_dir
|
||||
# self.image_name_list = glob.glob(image_dir+'*.png')
|
||||
# self.label_name_list = glob.glob(label_dir+'*.png')
|
||||
self.image_name_list = img_name_list
|
||||
self.label_name_list = lbl_name_list
|
||||
self.transform = transform
|
||||
|
||||
def __len__(self):
|
||||
return len(self.image_name_list)
|
||||
|
||||
def __getitem__(self,idx):
|
||||
|
||||
# image = Image.open(self.image_name_list[idx])#io.imread(self.image_name_list[idx])
|
||||
# label = Image.open(self.label_name_list[idx])#io.imread(self.label_name_list[idx])
|
||||
|
||||
image = io.imread(self.image_name_list[idx])
|
||||
imname = self.image_name_list[idx]
|
||||
imidx = np.array([idx])
|
||||
|
||||
if(0==len(self.label_name_list)):
|
||||
label_3 = np.zeros(image.shape)
|
||||
else:
|
||||
label_3 = io.imread(self.label_name_list[idx])
|
||||
|
||||
label = np.zeros(label_3.shape[0:2])
|
||||
if(3==len(label_3.shape)):
|
||||
label = label_3[:,:,0]
|
||||
elif(2==len(label_3.shape)):
|
||||
label = label_3
|
||||
|
||||
if(3==len(image.shape) and 2==len(label.shape)):
|
||||
label = label[:,:,np.newaxis]
|
||||
elif(2==len(image.shape) and 2==len(label.shape)):
|
||||
image = image[:,:,np.newaxis]
|
||||
label = label[:,:,np.newaxis]
|
||||
|
||||
sample = {'imidx':imidx, 'image':image, 'label':label}
|
||||
|
||||
if self.transform:
|
||||
sample = self.transform(sample)
|
||||
|
||||
return sample
|
Before Width: | Height: | Size: 826 KiB After Width: | Height: | Size: 826 KiB |
Before Width: | Height: | Size: 474 KiB After Width: | Height: | Size: 474 KiB |
Before Width: | Height: | Size: 316 KiB After Width: | Height: | Size: 316 KiB |
Before Width: | Height: | Size: 320 KiB After Width: | Height: | Size: 320 KiB |
BIN
figures/u2netqual.png
Normal file
After Width: | Height: | Size: 697 KiB |
2
model/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
from .u2net import U2NET
|
||||
from .u2net import U2NETP
|
BIN
model/__pycache__/__init__.cpython-36.pyc
Normal file
BIN
model/__pycache__/u2net.cpython-36.pyc
Normal file
541
model/u2net.py
Normal file
@ -0,0 +1,541 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torchvision import models
|
||||
import torch.nn.functional as F
|
||||
|
||||
class REBNCONV(nn.Module):
|
||||
def __init__(self,in_ch=3,out_ch=3,dirate=1):
|
||||
super(REBNCONV,self).__init__()
|
||||
|
||||
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate)
|
||||
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
||||
self.relu_s1 = nn.ReLU(inplace=True)
|
||||
|
||||
def forward(self,x):
|
||||
|
||||
hx = x
|
||||
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
||||
|
||||
return xout
|
||||
|
||||
### RSU-7 ###
|
||||
class RSU7(nn.Module):#UNet07DRES(nn.Module):
|
||||
|
||||
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
||||
super(RSU7,self).__init__()
|
||||
|
||||
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
||||
|
||||
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
||||
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
||||
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
||||
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
||||
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
||||
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
||||
|
||||
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
||||
|
||||
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
||||
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
||||
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
||||
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
||||
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
||||
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
||||
|
||||
self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear')
|
||||
|
||||
def forward(self,x):
|
||||
|
||||
hx = x
|
||||
hxin = self.rebnconvin(hx)
|
||||
|
||||
hx1 = self.rebnconv1(hxin)
|
||||
hx = self.pool1(hx1)
|
||||
|
||||
hx2 = self.rebnconv2(hx)
|
||||
hx = self.pool2(hx2)
|
||||
|
||||
hx3 = self.rebnconv3(hx)
|
||||
hx = self.pool3(hx3)
|
||||
|
||||
hx4 = self.rebnconv4(hx)
|
||||
hx = self.pool4(hx4)
|
||||
|
||||
hx5 = self.rebnconv5(hx)
|
||||
hx = self.pool5(hx5)
|
||||
|
||||
hx6 = self.rebnconv6(hx)
|
||||
|
||||
hx7 = self.rebnconv7(hx6)
|
||||
|
||||
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
|
||||
hx6up = self.upscore2(hx6d)
|
||||
# print(hx6up.shape,hx5.shape)
|
||||
hx5d = self.rebnconv5d(torch.cat((hx6up,hx5),1))
|
||||
hx5dup = self.upscore2(hx5d)
|
||||
|
||||
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
||||
hx4dup = self.upscore2(hx4d)
|
||||
|
||||
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
||||
hx3dup = self.upscore2(hx3d)
|
||||
|
||||
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
||||
hx2dup = self.upscore2(hx2d)
|
||||
|
||||
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
||||
|
||||
return hx1d + hxin
|
||||
|
||||
### RSU-6 ###
|
||||
class RSU6(nn.Module):#UNet06DRES(nn.Module):
|
||||
|
||||
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
||||
super(RSU6,self).__init__()
|
||||
|
||||
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
||||
|
||||
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
||||
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
||||
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
||||
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
||||
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
||||
|
||||
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
||||
|
||||
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
||||
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
||||
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
||||
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
||||
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
||||
|
||||
self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear')
|
||||
|
||||
def forward(self,x):
|
||||
|
||||
hx = x
|
||||
|
||||
hxin = self.rebnconvin(hx)
|
||||
|
||||
hx1 = self.rebnconv1(hxin)
|
||||
hx = self.pool1(hx1)
|
||||
|
||||
hx2 = self.rebnconv2(hx)
|
||||
hx = self.pool2(hx2)
|
||||
|
||||
hx3 = self.rebnconv3(hx)
|
||||
hx = self.pool3(hx3)
|
||||
|
||||
hx4 = self.rebnconv4(hx)
|
||||
hx = self.pool4(hx4)
|
||||
|
||||
hx5 = self.rebnconv5(hx)
|
||||
|
||||
hx6 = self.rebnconv6(hx5)
|
||||
|
||||
|
||||
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
|
||||
hx5dup = self.upscore2(hx5d)
|
||||
|
||||
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
||||
hx4dup = self.upscore2(hx4d)
|
||||
|
||||
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
||||
hx3dup = self.upscore2(hx3d)
|
||||
|
||||
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
||||
hx2dup = self.upscore2(hx2d)
|
||||
|
||||
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
||||
|
||||
return hx1d + hxin
|
||||
|
||||
### RSU-5 ###
|
||||
class RSU5(nn.Module):#UNet05DRES(nn.Module):
|
||||
|
||||
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
||||
super(RSU5,self).__init__()
|
||||
|
||||
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
||||
|
||||
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
||||
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
||||
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
||||
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
||||
|
||||
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
||||
|
||||
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
||||
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
||||
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
||||
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
||||
|
||||
self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear')
|
||||
|
||||
def forward(self,x):
|
||||
|
||||
hx = x
|
||||
|
||||
hxin = self.rebnconvin(hx)
|
||||
|
||||
hx1 = self.rebnconv1(hxin)
|
||||
hx = self.pool1(hx1)
|
||||
|
||||
hx2 = self.rebnconv2(hx)
|
||||
hx = self.pool2(hx2)
|
||||
|
||||
hx3 = self.rebnconv3(hx)
|
||||
hx = self.pool3(hx3)
|
||||
|
||||
hx4 = self.rebnconv4(hx)
|
||||
|
||||
hx5 = self.rebnconv5(hx4)
|
||||
|
||||
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
|
||||
hx4dup = self.upscore2(hx4d)
|
||||
|
||||
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
||||
hx3dup = self.upscore2(hx3d)
|
||||
|
||||
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
||||
hx2dup = self.upscore2(hx2d)
|
||||
|
||||
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
||||
|
||||
return hx1d + hxin
|
||||
|
||||
### RSU-4 ###
|
||||
class RSU4(nn.Module):#UNet04DRES(nn.Module):
|
||||
|
||||
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
||||
super(RSU4,self).__init__()
|
||||
|
||||
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
||||
|
||||
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
||||
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
||||
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
||||
|
||||
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
||||
|
||||
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
||||
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
||||
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
||||
|
||||
self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear')
|
||||
|
||||
def forward(self,x):
|
||||
|
||||
hx = x
|
||||
|
||||
hxin = self.rebnconvin(hx)
|
||||
|
||||
hx1 = self.rebnconv1(hxin)
|
||||
hx = self.pool1(hx1)
|
||||
|
||||
hx2 = self.rebnconv2(hx)
|
||||
hx = self.pool2(hx2)
|
||||
|
||||
hx3 = self.rebnconv3(hx)
|
||||
|
||||
hx4 = self.rebnconv4(hx3)
|
||||
|
||||
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
||||
hx3dup = self.upscore2(hx3d)
|
||||
|
||||
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
||||
hx2dup = self.upscore2(hx2d)
|
||||
|
||||
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
||||
|
||||
return hx1d + hxin
|
||||
|
||||
### RSU-4F ###
|
||||
class RSU4F(nn.Module):#UNet04FRES(nn.Module):
|
||||
|
||||
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
||||
super(RSU4F,self).__init__()
|
||||
|
||||
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
||||
|
||||
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
||||
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
||||
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
|
||||
|
||||
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
|
||||
|
||||
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
|
||||
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
|
||||
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
||||
|
||||
def forward(self,x):
|
||||
|
||||
hx = x
|
||||
|
||||
hxin = self.rebnconvin(hx)
|
||||
|
||||
hx1 = self.rebnconv1(hxin)
|
||||
hx2 = self.rebnconv2(hx1)
|
||||
hx3 = self.rebnconv3(hx2)
|
||||
|
||||
hx4 = self.rebnconv4(hx3)
|
||||
|
||||
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
||||
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
|
||||
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
|
||||
|
||||
return hx1d + hxin
|
||||
|
||||
|
||||
##### U^2-Net ####
|
||||
class U2NET(nn.Module):
|
||||
|
||||
def __init__(self,in_ch=3,out_ch=1):
|
||||
super(U2NET,self).__init__()
|
||||
|
||||
self.stage1 = RSU7(in_ch,32,64)
|
||||
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.stage2 = RSU6(64,32,128)
|
||||
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.stage3 = RSU5(128,64,256)
|
||||
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.stage4 = RSU4(256,128,512)
|
||||
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.stage5 = RSU4F(512,256,512)
|
||||
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.stage6 = RSU4F(512,256,512)
|
||||
|
||||
# decoder
|
||||
self.stage5d = RSU4F(1024,256,512)
|
||||
self.stage4d = RSU4(1024,128,256)
|
||||
self.stage3d = RSU5(512,64,128)
|
||||
self.stage2d = RSU6(256,32,64)
|
||||
self.stage1d = RSU7(128,16,64)
|
||||
|
||||
self.side1 = nn.Conv2d(64,1,3,padding=1)
|
||||
self.side2 = nn.Conv2d(64,1,3,padding=1)
|
||||
self.side3 = nn.Conv2d(128,1,3,padding=1)
|
||||
self.side4 = nn.Conv2d(256,1,3,padding=1)
|
||||
self.side5 = nn.Conv2d(512,1,3,padding=1)
|
||||
self.side6 = nn.Conv2d(512,1,3,padding=1)
|
||||
|
||||
self.upscore6 = nn.Upsample(scale_factor=32,mode='bilinear')
|
||||
self.upscore5 = nn.Upsample(scale_factor=16,mode='bilinear')
|
||||
self.upscore4 = nn.Upsample(scale_factor=8,mode='bilinear')
|
||||
self.upscore3 = nn.Upsample(scale_factor=4,mode='bilinear')
|
||||
self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear')
|
||||
|
||||
self.outconv = nn.Conv2d(6,1,1)
|
||||
|
||||
def forward(self,x):
|
||||
|
||||
hx = x
|
||||
|
||||
#stage 1
|
||||
hx1 = self.stage1(hx)
|
||||
hx = self.pool12(hx1)
|
||||
|
||||
#stage 2
|
||||
hx2 = self.stage2(hx)
|
||||
hx = self.pool23(hx2)
|
||||
|
||||
|
||||
|
||||
#stage 3
|
||||
hx3 = self.stage3(hx)
|
||||
hx = self.pool34(hx3)
|
||||
|
||||
#stage 4
|
||||
hx4 = self.stage4(hx)
|
||||
hx = self.pool45(hx4)
|
||||
|
||||
#stage 5
|
||||
hx5 = self.stage5(hx)
|
||||
hx = self.pool56(hx5)
|
||||
|
||||
#stage 6
|
||||
hx6 = self.stage6(hx)
|
||||
hx6up = self.upscore2(hx6)
|
||||
|
||||
#-------------------- decoder --------------------
|
||||
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
||||
hx5dup = self.upscore2(hx5d)
|
||||
|
||||
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
||||
hx4dup = self.upscore2(hx4d)
|
||||
|
||||
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
||||
hx3dup = self.upscore2(hx3d)
|
||||
|
||||
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
||||
hx2dup = self.upscore2(hx2d)
|
||||
|
||||
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
||||
|
||||
|
||||
#side output
|
||||
d1 = self.side1(hx1d)
|
||||
|
||||
d2 = self.side2(hx2d)
|
||||
d2 = self.upscore2(d2)
|
||||
|
||||
d3 = self.side3(hx3d)
|
||||
d3 = self.upscore3(d3)
|
||||
|
||||
d4 = self.side4(hx4d)
|
||||
d4 = self.upscore4(d4)
|
||||
|
||||
d5 = self.side5(hx5d)
|
||||
d5 = self.upscore5(d5)
|
||||
|
||||
d6 = self.side6(hx6)
|
||||
d6 = self.upscore6(d6)
|
||||
|
||||
d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
||||
|
||||
return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)
|
||||
|
||||
### U^2-Net small ###
|
||||
class U2NETP(nn.Module):
|
||||
|
||||
def __init__(self,in_ch=3,out_ch=1):
|
||||
super(U2NETP,self).__init__()
|
||||
|
||||
self.stage1 = RSU7(in_ch,16,64)
|
||||
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.stage2 = RSU6(64,16,64)
|
||||
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.stage3 = RSU5(64,16,64)
|
||||
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.stage4 = RSU4(64,16,64)
|
||||
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.stage5 = RSU4F(64,16,64)
|
||||
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
||||
|
||||
self.stage6 = RSU4F(64,16,64)
|
||||
|
||||
# decoder
|
||||
self.stage5d = RSU4F(128,16,64)
|
||||
self.stage4d = RSU4(128,16,64)
|
||||
self.stage3d = RSU5(128,16,64)
|
||||
self.stage2d = RSU6(128,16,64)
|
||||
self.stage1d = RSU7(128,16,64)
|
||||
|
||||
self.side1 = nn.Conv2d(64,1,3,padding=1)
|
||||
self.side2 = nn.Conv2d(64,1,3,padding=1)
|
||||
self.side3 = nn.Conv2d(64,1,3,padding=1)
|
||||
self.side4 = nn.Conv2d(64,1,3,padding=1)
|
||||
self.side5 = nn.Conv2d(64,1,3,padding=1)
|
||||
self.side6 = nn.Conv2d(64,1,3,padding=1)
|
||||
|
||||
self.upscore6 = nn.Upsample(scale_factor=32,mode='bilinear')
|
||||
self.upscore5 = nn.Upsample(scale_factor=16,mode='bilinear')
|
||||
self.upscore4 = nn.Upsample(scale_factor=8,mode='bilinear')
|
||||
self.upscore3 = nn.Upsample(scale_factor=4,mode='bilinear')
|
||||
self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear')
|
||||
|
||||
self.outconv = nn.Conv2d(6,1,1)
|
||||
|
||||
def forward(self,x):
|
||||
|
||||
hx = x
|
||||
|
||||
#stage 1
|
||||
hx1 = self.stage1(hx)
|
||||
hx = self.pool12(hx1)
|
||||
|
||||
#stage 2
|
||||
hx2 = self.stage2(hx)
|
||||
hx = self.pool23(hx2)
|
||||
|
||||
#stage 3
|
||||
hx3 = self.stage3(hx)
|
||||
hx = self.pool34(hx3)
|
||||
|
||||
#stage 4
|
||||
hx4 = self.stage4(hx)
|
||||
hx = self.pool45(hx4)
|
||||
|
||||
#stage 5
|
||||
hx5 = self.stage5(hx)
|
||||
hx = self.pool56(hx5)
|
||||
|
||||
#stage 6
|
||||
hx6 = self.stage6(hx)
|
||||
hx6up = self.upscore2(hx6)
|
||||
|
||||
#decoder
|
||||
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
||||
hx5dup = self.upscore2(hx5d)
|
||||
|
||||
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
||||
hx4dup = self.upscore2(hx4d)
|
||||
|
||||
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
||||
hx3dup = self.upscore2(hx3d)
|
||||
|
||||
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
||||
hx2dup = self.upscore2(hx2d)
|
||||
|
||||
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
||||
|
||||
|
||||
#side output
|
||||
d1 = self.side1(hx1d)
|
||||
|
||||
d2 = self.side2(hx2d)
|
||||
d2 = self.upscore2(d2)
|
||||
|
||||
d3 = self.side3(hx3d)
|
||||
d3 = self.upscore3(d3)
|
||||
|
||||
d4 = self.side4(hx4d)
|
||||
d4 = self.upscore4(d4)
|
||||
|
||||
d5 = self.side5(hx5d)
|
||||
d5 = self.upscore5(d5)
|
||||
|
||||
d6 = self.side6(hx6)
|
||||
d6 = self.upscore6(d6)
|
||||
|
||||
d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
||||
# d00 = d0 + self.refconv(d0)
|
||||
|
||||
return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)
|
BIN
test_data/test_images/0002-01.jpg
Normal file
After Width: | Height: | Size: 325 KiB |
BIN
test_data/test_images/0003.jpg
Normal file
After Width: | Height: | Size: 59 KiB |
BIN
test_data/test_images/bike.jpg
Normal file
After Width: | Height: | Size: 832 KiB |
BIN
test_data/test_images/boat.jpg
Normal file
After Width: | Height: | Size: 152 KiB |
BIN
test_data/test_images/girl.png
Normal file
After Width: | Height: | Size: 229 KiB |
BIN
test_data/test_images/hockey.png
Normal file
After Width: | Height: | Size: 99 KiB |
BIN
test_data/test_images/horse.jpg
Normal file
After Width: | Height: | Size: 58 KiB |
BIN
test_data/test_images/im_01.png
Normal file
After Width: | Height: | Size: 83 KiB |
BIN
test_data/test_images/im_14.png
Normal file
After Width: | Height: | Size: 199 KiB |
BIN
test_data/test_images/im_21.png
Normal file
After Width: | Height: | Size: 168 KiB |
BIN
test_data/test_images/im_27.png
Normal file
After Width: | Height: | Size: 135 KiB |
BIN
test_data/test_images/lamp2_meitu_1.jpg
Normal file
After Width: | Height: | Size: 134 KiB |
BIN
test_data/test_images/long.jpg
Normal file
After Width: | Height: | Size: 33 KiB |
BIN
test_data/test_images/rifle1.jpg
Normal file
After Width: | Height: | Size: 267 KiB |
BIN
test_data/test_images/rifle2.jpeg
Normal file
After Width: | Height: | Size: 11 KiB |
BIN
test_data/test_images/sailboat3.jpg
Normal file
After Width: | Height: | Size: 140 KiB |
BIN
test_data/test_images/vangogh.jpeg
Normal file
After Width: | Height: | Size: 46 KiB |
BIN
test_data/test_images/whisk.png
Normal file
After Width: | Height: | Size: 219 KiB |
BIN
test_data/u2net_results/0002-01.png
Normal file
After Width: | Height: | Size: 62 KiB |
BIN
test_data/u2net_results/0003.png
Normal file
After Width: | Height: | Size: 39 KiB |
BIN
test_data/u2net_results/bike.png
Normal file
After Width: | Height: | Size: 456 KiB |
BIN
test_data/u2net_results/boat.png
Normal file
After Width: | Height: | Size: 88 KiB |
BIN
test_data/u2net_results/girl.png
Normal file
After Width: | Height: | Size: 29 KiB |
BIN
test_data/u2net_results/hockey.png
Normal file
After Width: | Height: | Size: 23 KiB |
BIN
test_data/u2net_results/horse.png
Normal file
After Width: | Height: | Size: 56 KiB |
BIN
test_data/u2net_results/im_01.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
test_data/u2net_results/im_14.png
Normal file
After Width: | Height: | Size: 26 KiB |
BIN
test_data/u2net_results/im_21.png
Normal file
After Width: | Height: | Size: 27 KiB |
BIN
test_data/u2net_results/im_27.png
Normal file
After Width: | Height: | Size: 8.6 KiB |
BIN
test_data/u2net_results/lamp2_meitu_1.png
Normal file
After Width: | Height: | Size: 39 KiB |
BIN
test_data/u2net_results/long.png
Normal file
After Width: | Height: | Size: 44 KiB |
BIN
test_data/u2net_results/rifle1.png
Normal file
After Width: | Height: | Size: 61 KiB |
BIN
test_data/u2net_results/rifle2.png
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
test_data/u2net_results/sailboat3.png
Normal file
After Width: | Height: | Size: 31 KiB |
BIN
test_data/u2net_results/vangogh.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
test_data/u2net_results/whisk.png
Normal file
After Width: | Height: | Size: 20 KiB |
BIN
test_data/u2netp_results/0002-01.png
Normal file
After Width: | Height: | Size: 75 KiB |
BIN
test_data/u2netp_results/0003.png
Normal file
After Width: | Height: | Size: 39 KiB |
BIN
test_data/u2netp_results/bike.png
Normal file
After Width: | Height: | Size: 572 KiB |
BIN
test_data/u2netp_results/boat.png
Normal file
After Width: | Height: | Size: 131 KiB |
BIN
test_data/u2netp_results/girl.png
Normal file
After Width: | Height: | Size: 31 KiB |
BIN
test_data/u2netp_results/hockey.png
Normal file
After Width: | Height: | Size: 33 KiB |
BIN
test_data/u2netp_results/horse.png
Normal file
After Width: | Height: | Size: 56 KiB |
BIN
test_data/u2netp_results/im_01.png
Normal file
After Width: | Height: | Size: 32 KiB |
BIN
test_data/u2netp_results/im_14.png
Normal file
After Width: | Height: | Size: 30 KiB |
BIN
test_data/u2netp_results/im_21.png
Normal file
After Width: | Height: | Size: 26 KiB |
BIN
test_data/u2netp_results/im_27.png
Normal file
After Width: | Height: | Size: 8.7 KiB |
BIN
test_data/u2netp_results/lamp2_meitu_1.png
Normal file
After Width: | Height: | Size: 44 KiB |
BIN
test_data/u2netp_results/long.png
Normal file
After Width: | Height: | Size: 45 KiB |
BIN
test_data/u2netp_results/rifle1.png
Normal file
After Width: | Height: | Size: 74 KiB |
BIN
test_data/u2netp_results/rifle2.png
Normal file
After Width: | Height: | Size: 15 KiB |
BIN
test_data/u2netp_results/sailboat3.png
Normal file
After Width: | Height: | Size: 34 KiB |
BIN
test_data/u2netp_results/vangogh.png
Normal file
After Width: | Height: | Size: 35 KiB |
BIN
test_data/u2netp_results/whisk.png
Normal file
After Width: | Height: | Size: 17 KiB |
116
u2net_test.py
Normal file
@ -0,0 +1,116 @@
|
||||
import os
|
||||
from skimage import io, transform
|
||||
import torch
|
||||
import torchvision
|
||||
from torch.autograd import Variable
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from torchvision import transforms#, utils
|
||||
# import torch.optim as optim
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import glob
|
||||
|
||||
from data_loader import RescaleT
|
||||
from data_loader import ToTensor
|
||||
from data_loader import ToTensorLab
|
||||
from data_loader import SalObjDataset
|
||||
|
||||
from model import U2NET # full size version 173.6 MB
|
||||
from model import U2NETP # small version u2net 4.7 MB
|
||||
|
||||
# normalize the predicted SOD probability map
|
||||
def normPRED(d):
|
||||
ma = torch.max(d)
|
||||
mi = torch.min(d)
|
||||
|
||||
dn = (d-mi)/(ma-mi)
|
||||
|
||||
return dn
|
||||
|
||||
def save_output(image_name,pred,d_dir):
|
||||
|
||||
predict = pred
|
||||
predict = predict.squeeze()
|
||||
predict_np = predict.cpu().data.numpy()
|
||||
|
||||
im = Image.fromarray(predict_np*255).convert('RGB')
|
||||
img_name = image_name.split("/")[-1]
|
||||
image = io.imread(image_name)
|
||||
imo = im.resize((image.shape[1],image.shape[0]),resample=Image.BILINEAR)
|
||||
|
||||
pb_np = np.array(imo)
|
||||
|
||||
aaa = img_name.split(".")
|
||||
bbb = aaa[0:-1]
|
||||
imidx = bbb[0]
|
||||
for i in range(1,len(bbb)):
|
||||
imidx = imidx + "." + bbb[i]
|
||||
|
||||
imo.save(d_dir+imidx+'.png')
|
||||
|
||||
def main():
|
||||
|
||||
# --------- 1. get image path and name ---------
|
||||
model_name='u2net'#u2netp
|
||||
|
||||
|
||||
image_dir = './test_data/test_images/'
|
||||
prediction_dir = './test_data/' + model_name + '_results/'
|
||||
model_dir = './saved_models/'+ model_name + '/' + model_name + '.pth'
|
||||
|
||||
img_name_list = glob.glob(image_dir + '*')
|
||||
print(img_name_list)
|
||||
|
||||
# --------- 2. dataloader ---------
|
||||
#1. dataloader
|
||||
test_salobj_dataset = SalObjDataset(img_name_list = img_name_list,
|
||||
lbl_name_list = [],
|
||||
transform=transforms.Compose([RescaleT(320),
|
||||
ToTensorLab(flag=0)])
|
||||
)
|
||||
test_salobj_dataloader = DataLoader(test_salobj_dataset,
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
num_workers=1)
|
||||
|
||||
# --------- 3. model define ---------
|
||||
if(model_name=='u2net'):
|
||||
print("...load U2NET---173.6 MB")
|
||||
net = U2NET(3,1)
|
||||
elif(model_name=='u2netp'):
|
||||
print("...load U2NEP---4.7 MB")
|
||||
net = U2NETP(3,1)
|
||||
net.load_state_dict(torch.load(model_dir))
|
||||
if torch.cuda.is_available():
|
||||
net.cuda()
|
||||
net.eval()
|
||||
|
||||
# --------- 4. inference for each image ---------
|
||||
for i_test, data_test in enumerate(test_salobj_dataloader):
|
||||
|
||||
print("inferencing:",img_name_list[i_test].split("/")[-1])
|
||||
|
||||
inputs_test = data_test['image']
|
||||
inputs_test = inputs_test.type(torch.FloatTensor)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
inputs_test = Variable(inputs_test.cuda())
|
||||
else:
|
||||
inputs_test = Variable(inputs_test)
|
||||
|
||||
d1,d2,d3,d4,d5,d6,d7= net(inputs_test)
|
||||
|
||||
# normalization
|
||||
pred = d1[:,0,:,:]
|
||||
pred = normPRED(pred)
|
||||
|
||||
# save results to test_results folder
|
||||
save_output(img_name_list[i_test],pred,prediction_dir)
|
||||
|
||||
del d1,d2,d3,d4,d5,d6,d7
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
164
u2net_train.py
Normal file
@ -0,0 +1,164 @@
|
||||
import torch
|
||||
import torchvision
|
||||
from torch.autograd import Variable
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from torchvision import transforms, utils
|
||||
import torch.optim as optim
|
||||
import torchvision.transforms as standard_transforms
|
||||
|
||||
import numpy as np
|
||||
import glob
|
||||
|
||||
from data_loader import Rescale
|
||||
from data_loader import RescaleT
|
||||
from data_loader import RandomCrop
|
||||
from data_loader import ToTensor
|
||||
from data_loader import ToTensorLab
|
||||
from data_loader import SalObjDataset
|
||||
|
||||
from model import U2NET
|
||||
from model import U2NETP
|
||||
|
||||
# ------- 1. define loss function --------
|
||||
|
||||
bce_loss = nn.BCELoss(size_average=True)
|
||||
|
||||
def muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, labels_v):
|
||||
|
||||
loss0 = bce_loss(d0,labels_v)
|
||||
loss1 = bce_loss(d1,labels_v)
|
||||
loss2 = bce_loss(d2,labels_v)
|
||||
loss3 = bce_loss(d3,labels_v)
|
||||
loss4 = bce_loss(d4,labels_v)
|
||||
loss5 = bce_loss(d5,labels_v)
|
||||
loss6 = bce_loss(d6,labels_v)
|
||||
|
||||
loss = loss0 + loss1 + loss2 + loss3 + loss4 + loss5 + loss6
|
||||
print("l0: %3f, l1: %3f, l2: %3f, l3: %3f, l4: %3f, l5: %3f, l6: %3f\n"%(loss0.data[0],loss1.data[0],loss2.data[0],loss3.data[0],loss4.data[0],loss5.data[0],loss6.data[0]))
|
||||
|
||||
return loss0, loss
|
||||
|
||||
|
||||
# ------- 2. set the directory of training dataset --------
|
||||
|
||||
model_name = 'u2net' #'u2netp'
|
||||
|
||||
data_dir = './train_data/'
|
||||
tra_image_dir = 'DUTS/DUTS-TR/DUTS-TR/im_aug/'
|
||||
tra_label_dir = 'DUTS/DUTS-TR/DUTS-TR/gt_aug/'
|
||||
|
||||
image_ext = '.jpg'
|
||||
label_ext = '.png'
|
||||
|
||||
model_dir = './saved_models/' + model_name +'/'
|
||||
|
||||
epoch_num = 100000
|
||||
batch_size_train = 12
|
||||
batch_size_val = 1
|
||||
train_num = 0
|
||||
val_num = 0
|
||||
|
||||
tra_img_name_list = glob.glob(data_dir + tra_image_dir + '*' + image_ext)
|
||||
|
||||
tra_lbl_name_list = []
|
||||
for img_path in tra_img_name_list:
|
||||
img_name = img_path.split("/")[-1]
|
||||
|
||||
aaa = img_name.split(".")
|
||||
bbb = aaa[0:-1]
|
||||
imidx = bbb[0]
|
||||
for i in range(1,len(bbb)):
|
||||
imidx = imidx + "." + bbb[i]
|
||||
|
||||
tra_lbl_name_list.append(data_dir + tra_label_dir + imidx + label_ext)
|
||||
|
||||
print("---")
|
||||
print("train images: ", len(tra_img_name_list))
|
||||
print("train labels: ", len(tra_lbl_name_list))
|
||||
print("---")
|
||||
|
||||
train_num = len(tra_img_name_list)
|
||||
|
||||
salobj_dataset = SalObjDataset(
|
||||
img_name_list=tra_img_name_list,
|
||||
lbl_name_list=tra_lbl_name_list,
|
||||
transform=transforms.Compose([
|
||||
RescaleT(320),
|
||||
RandomCrop(288),
|
||||
ToTensorLab(flag=0)]))
|
||||
salobj_dataloader = DataLoader(salobj_dataset, batch_size=batch_size_train, shuffle=True, num_workers=1)
|
||||
|
||||
# ------- 3. define model --------
|
||||
# define the net
|
||||
if(model_name=='u2net'):
|
||||
net = U2NET(3, 1)
|
||||
elif(model_name=='u2netp'):
|
||||
net = U2NETP(3,1)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
net.cuda()
|
||||
|
||||
# ------- 4. define optimizer --------
|
||||
print("---define optimizer...")
|
||||
optimizer = optim.Adam(net.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
|
||||
|
||||
# ------- 5. training process --------
|
||||
print("---start training...")
|
||||
ite_num = 0
|
||||
running_loss = 0.0
|
||||
running_tar_loss = 0.0
|
||||
ite_num4val = 0
|
||||
save_frq = 10 # save the model every 2000 iterations
|
||||
|
||||
for epoch in range(0, epoch_num):
|
||||
net.train()
|
||||
|
||||
for i, data in enumerate(salobj_dataloader):
|
||||
ite_num = ite_num + 1
|
||||
ite_num4val = ite_num4val + 1
|
||||
|
||||
inputs, labels = data['image'], data['label']
|
||||
|
||||
inputs = inputs.type(torch.FloatTensor)
|
||||
labels = labels.type(torch.FloatTensor)
|
||||
|
||||
# wrap them in Variable
|
||||
if torch.cuda.is_available():
|
||||
inputs_v, labels_v = Variable(inputs.cuda(), requires_grad=False), Variable(labels.cuda(),
|
||||
requires_grad=False)
|
||||
else:
|
||||
inputs_v, labels_v = Variable(inputs, requires_grad=False), Variable(labels, requires_grad=False)
|
||||
|
||||
# y zero the parameter gradients
|
||||
optimizer.zero_grad()
|
||||
|
||||
# forward + backward + optimize
|
||||
d0, d1, d2, d3, d4, d5, d6 = net(inputs_v)
|
||||
loss2, loss = muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, labels_v)
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# # print statistics
|
||||
running_loss += loss.data[0]
|
||||
running_tar_loss += loss2.data[0]
|
||||
|
||||
# del temporary outputs and loss
|
||||
del d0, d1, d2, d3, d4, d5, d6, loss2, loss
|
||||
|
||||
print("[epoch: %3d/%3d, batch: %5d/%5d, ite: %d] train loss: %3f, tar: %3f " % (
|
||||
epoch + 1, epoch_num, (i + 1) * batch_size_train, train_num, ite_num, running_loss / ite_num4val, running_tar_loss / ite_num4val))
|
||||
|
||||
if ite_num % save_frq == 0:
|
||||
|
||||
torch.save(net.state_dict(), model_dir + model_name+"_bce_itr_%d_train_%3f_tar_%3f.pth" % (ite_num, running_loss / ite_num4val, running_tar_loss / ite_num4val))
|
||||
running_loss = 0.0
|
||||
running_tar_loss = 0.0
|
||||
net.train() # resume train
|
||||
ite_num4val = 0
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|