mirror of
https://git.mirrors.martin98.com/https://github.com/xuebinqin/U-2-Net
synced 2025-08-01 08:52:03 +08:00
169 lines
6.0 KiB
Python
169 lines
6.0 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
|
|
import math
|
|
|
|
__all__ = ['U2NET_full', 'U2NET_lite']
|
|
|
|
|
|
def _upsample_like(x, size):
|
|
return nn.Upsample(size=size, mode='bilinear', align_corners=False)(x)
|
|
|
|
|
|
def _size_map(x, height):
|
|
# {height: size} for Upsample
|
|
size = list(x.shape[-2:])
|
|
sizes = {}
|
|
for h in range(1, height):
|
|
sizes[h] = size
|
|
size = [math.ceil(w / 2) for w in size]
|
|
return sizes
|
|
|
|
|
|
class REBNCONV(nn.Module):
|
|
def __init__(self, in_ch=3, out_ch=3, dilate=1):
|
|
super(REBNCONV, self).__init__()
|
|
|
|
self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1 * dilate, dilation=1 * dilate)
|
|
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
|
self.relu_s1 = nn.ReLU(inplace=True)
|
|
|
|
def forward(self, x):
|
|
return self.relu_s1(self.bn_s1(self.conv_s1(x)))
|
|
|
|
|
|
class RSU(nn.Module):
|
|
def __init__(self, name, height, in_ch, mid_ch, out_ch, dilated=False):
|
|
super(RSU, self).__init__()
|
|
self.name = name
|
|
self.height = height
|
|
self.dilated = dilated
|
|
self._make_layers(height, in_ch, mid_ch, out_ch, dilated)
|
|
|
|
def forward(self, x):
|
|
sizes = _size_map(x, self.height)
|
|
x = self.rebnconvin(x)
|
|
|
|
# U-Net like symmetric encoder-decoder structure
|
|
def unet(x, height=1):
|
|
if height < self.height:
|
|
x1 = getattr(self, f'rebnconv{height}')(x)
|
|
if not self.dilated and height < self.height - 1:
|
|
x2 = unet(getattr(self, 'downsample')(x1), height + 1)
|
|
else:
|
|
x2 = unet(x1, height + 1)
|
|
|
|
x = getattr(self, f'rebnconv{height}d')(torch.cat((x2, x1), 1))
|
|
return _upsample_like(x, sizes[height - 1]) if not self.dilated and height > 1 else x
|
|
else:
|
|
return getattr(self, f'rebnconv{height}')(x)
|
|
|
|
return x + unet(x)
|
|
|
|
def _make_layers(self, height, in_ch, mid_ch, out_ch, dilated=False):
|
|
self.add_module('rebnconvin', REBNCONV(in_ch, out_ch))
|
|
self.add_module('downsample', nn.MaxPool2d(2, stride=2, ceil_mode=True))
|
|
|
|
self.add_module(f'rebnconv1', REBNCONV(out_ch, mid_ch))
|
|
self.add_module(f'rebnconv1d', REBNCONV(mid_ch * 2, out_ch))
|
|
|
|
for i in range(2, height):
|
|
dilate = 1 if not dilated else 2 ** (i - 1)
|
|
self.add_module(f'rebnconv{i}', REBNCONV(mid_ch, mid_ch, dilate=dilate))
|
|
self.add_module(f'rebnconv{i}d', REBNCONV(mid_ch * 2, mid_ch, dilate=dilate))
|
|
|
|
dilate = 2 if not dilated else 2 ** (height - 1)
|
|
self.add_module(f'rebnconv{height}', REBNCONV(mid_ch, mid_ch, dilate=dilate))
|
|
|
|
|
|
class U2NET(nn.Module):
|
|
def __init__(self, cfgs, out_ch):
|
|
super(U2NET, self).__init__()
|
|
self.out_ch = out_ch
|
|
self._make_layers(cfgs)
|
|
|
|
def forward(self, x):
|
|
sizes = _size_map(x, self.height)
|
|
maps = [] # storage for maps
|
|
|
|
# side saliency map
|
|
def unet(x, height=1):
|
|
if height < 6:
|
|
x1 = getattr(self, f'stage{height}')(x)
|
|
x2 = unet(getattr(self, 'downsample')(x1), height + 1)
|
|
x = getattr(self, f'stage{height}d')(torch.cat((x2, x1), 1))
|
|
side(x, height)
|
|
return _upsample_like(x, sizes[height - 1]) if height > 1 else x
|
|
else:
|
|
x = getattr(self, f'stage{height}')(x)
|
|
side(x, height)
|
|
return _upsample_like(x, sizes[height - 1])
|
|
|
|
def side(x, h):
|
|
# side output saliency map (before sigmoid)
|
|
x = getattr(self, f'side{h}')(x)
|
|
x = _upsample_like(x, sizes[1])
|
|
maps.append(x)
|
|
|
|
def fuse():
|
|
# fuse saliency probability maps
|
|
maps.reverse()
|
|
x = torch.cat(maps, 1)
|
|
x = getattr(self, 'outconv')(x)
|
|
maps.insert(0, x)
|
|
return [torch.sigmoid(x) for x in maps]
|
|
|
|
unet(x)
|
|
maps = fuse()
|
|
return maps
|
|
|
|
def _make_layers(self, cfgs):
|
|
self.height = int((len(cfgs) + 1) / 2)
|
|
self.add_module('downsample', nn.MaxPool2d(2, stride=2, ceil_mode=True))
|
|
for k, v in cfgs.items():
|
|
# build rsu block
|
|
self.add_module(k, RSU(v[0], *v[1]))
|
|
if v[2] > 0:
|
|
# build side layer
|
|
self.add_module(f'side{v[0][-1]}', nn.Conv2d(v[2], self.out_ch, 3, padding=1))
|
|
# build fuse layer
|
|
self.add_module('outconv', nn.Conv2d(int(self.height * self.out_ch), self.out_ch, 1))
|
|
|
|
|
|
def U2NET_full():
|
|
full = {
|
|
# cfgs for building RSUs and sides
|
|
# {stage : [name, (height(L), in_ch, mid_ch, out_ch, dilated), side]}
|
|
'stage1': ['En_1', (7, 3, 32, 64), -1],
|
|
'stage2': ['En_2', (6, 64, 32, 128), -1],
|
|
'stage3': ['En_3', (5, 128, 64, 256), -1],
|
|
'stage4': ['En_4', (4, 256, 128, 512), -1],
|
|
'stage5': ['En_5', (4, 512, 256, 512, True), -1],
|
|
'stage6': ['En_6', (4, 512, 256, 512, True), 512],
|
|
'stage5d': ['De_5', (4, 1024, 256, 512, True), 512],
|
|
'stage4d': ['De_4', (4, 1024, 128, 256), 256],
|
|
'stage3d': ['De_3', (5, 512, 64, 128), 128],
|
|
'stage2d': ['De_2', (6, 256, 32, 64), 64],
|
|
'stage1d': ['De_1', (7, 128, 16, 64), 64],
|
|
}
|
|
return U2NET(cfgs=full, out_ch=1)
|
|
|
|
|
|
def U2NET_lite():
|
|
lite = {
|
|
# cfgs for building RSUs and sides
|
|
# {stage : [name, (height(L), in_ch, mid_ch, out_ch, dilated), side]}
|
|
'stage1': ['En_1', (7, 3, 16, 64), -1],
|
|
'stage2': ['En_2', (6, 64, 16, 64), -1],
|
|
'stage3': ['En_3', (5, 64, 16, 64), -1],
|
|
'stage4': ['En_4', (4, 64, 16, 64), -1],
|
|
'stage5': ['En_5', (4, 64, 16, 64, True), -1],
|
|
'stage6': ['En_6', (4, 64, 16, 64, True), 64],
|
|
'stage5d': ['De_5', (4, 128, 16, 64, True), 64],
|
|
'stage4d': ['De_4', (4, 128, 16, 64), 64],
|
|
'stage3d': ['De_3', (5, 128, 16, 64), 64],
|
|
'stage2d': ['De_2', (6, 128, 16, 64), 64],
|
|
'stage1d': ['De_1', (7, 128, 16, 64), 64],
|
|
}
|
|
return U2NET(cfgs=lite, out_ch=1)
|