mirror of
https://git.mirrors.martin98.com/https://github.com/xuebinqin/U-2-Net
synced 2025-08-04 05:00:41 +08:00
28 lines
1.1 KiB
Python
28 lines
1.1 KiB
Python
import cv2
|
|
import paddlehub as hub
|
|
import gradio as gr
|
|
|
|
model = hub.Module(name='U2Net')
|
|
|
|
def infer(img):
|
|
result = model.Segmentation(
|
|
images=[cv2.imread(img.name)],
|
|
paths=None,
|
|
batch_size=1,
|
|
input_size=320,
|
|
output_dir='output',
|
|
visualization=True)
|
|
return result[0]['front'][:,:,::-1], result[0]['mask']
|
|
|
|
inputs = gr.inputs.Image(type='file', label="Original Image")
|
|
outputs = [
|
|
gr.outputs.Image(type="numpy",label="Front"),
|
|
gr.outputs.Image(type="numpy",label="Mask")
|
|
]
|
|
|
|
title = "Artline"
|
|
description = "demo for OpenAI's CLIP. To use it, simply upload your image, or click one of the examples to load them and optionally add a text label seperated by commas to help clip classify the image better. Read more at the links below."
|
|
article = "<p style='text-align: center'><a href='https://openai.com/blog/clip/'>CLIP: Connecting Text and Images</a> | <a href='https://github.com/openai/CLIP'>Github Repo</a></p>"
|
|
|
|
|
|
gr.Interface(infer, inputs, outputs, title=title, description=description, article=article).launch(debug=True) |