Feat/vdb migrate command (#2562)

Co-authored-by: jyong <jyong@dify.ai>
This commit is contained in:
Jyong 2024-02-26 19:47:29 +08:00 committed by GitHub
parent d93288f711
commit 0620fa3094
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 134 additions and 57 deletions

View File

@ -1,20 +1,21 @@
import base64
import json
import secrets
from typing import cast
import click
from flask import current_app
from werkzeug.exceptions import NotFound
from core.embedding.cached_embedding import CacheEmbedding
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.rag.datasource.vdb.vector_factory import Vector
from core.rag.models.document import Document
from extensions.ext_database import db
from libs.helper import email as email_validate
from libs.password import hash_password, password_pattern, valid_password
from libs.rsa import generate_key_pair
from models.account import Tenant
from models.dataset import Dataset
from models.dataset import Dataset, DatasetCollectionBinding, DocumentSegment
from models.dataset import Document as DatasetDocument
from models.model import Account
from models.provider import Provider, ProviderModel
@ -124,14 +125,15 @@ def reset_encrypt_key_pair():
'the asymmetric key pair of workspace {} has been reset.'.format(tenant.id), fg='green'))
@click.command('create-qdrant-indexes', help='Create qdrant indexes.')
def create_qdrant_indexes():
@click.command('vdb-migrate', help='migrate vector db.')
def vdb_migrate():
"""
Migrate other vector database datas to Qdrant.
Migrate vector database datas to target vector database .
"""
click.echo(click.style('Start create qdrant indexes.', fg='green'))
click.echo(click.style('Start migrate vector db.', fg='green'))
create_count = 0
config = cast(dict, current_app.config)
vector_type = config.get('VECTOR_STORE')
page = 1
while True:
try:
@ -140,54 +142,101 @@ def create_qdrant_indexes():
except NotFound:
break
model_manager = ModelManager()
page += 1
for dataset in datasets:
if dataset.index_struct_dict:
if dataset.index_struct_dict['type'] != 'qdrant':
try:
click.echo('Create dataset qdrant index: {}'.format(dataset.id))
try:
embedding_model = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
except Exception:
continue
embeddings = CacheEmbedding(embedding_model)
from core.index.vector_index.qdrant_vector_index import QdrantConfig, QdrantVectorIndex
index = QdrantVectorIndex(
dataset=dataset,
config=QdrantConfig(
endpoint=current_app.config.get('QDRANT_URL'),
api_key=current_app.config.get('QDRANT_API_KEY'),
root_path=current_app.root_path
),
embeddings=embeddings
)
if index:
index.create_qdrant_dataset(dataset)
index_struct = {
"type": 'qdrant',
"vector_store": {
"class_prefix": dataset.index_struct_dict['vector_store']['class_prefix']}
}
dataset.index_struct = json.dumps(index_struct)
db.session.commit()
create_count += 1
else:
click.echo('passed.')
except Exception as e:
click.echo(
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
try:
click.echo('Create dataset vdb index: {}'.format(dataset.id))
if dataset.index_struct_dict:
if dataset.index_struct_dict['type'] == vector_type:
continue
if vector_type == "weaviate":
dataset_id = dataset.id
collection_name = "Vector_index_" + dataset_id.replace("-", "_") + '_Node'
index_struct_dict = {
"type": 'weaviate',
"vector_store": {"class_prefix": collection_name}
}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == "qdrant":
if dataset.collection_binding_id:
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(DatasetCollectionBinding.id == dataset.collection_binding_id). \
one_or_none()
if dataset_collection_binding:
collection_name = dataset_collection_binding.collection_name
else:
raise ValueError('Dataset Collection Bindings is not exist!')
else:
dataset_id = dataset.id
collection_name = "Vector_index_" + dataset_id.replace("-", "_") + '_Node'
index_struct_dict = {
"type": 'qdrant',
"vector_store": {"class_prefix": collection_name}
}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == "milvus":
dataset_id = dataset.id
collection_name = "Vector_index_" + dataset_id.replace("-", "_") + '_Node'
index_struct_dict = {
"type": 'milvus',
"vector_store": {"class_prefix": collection_name}
}
dataset.index_struct = json.dumps(index_struct_dict)
else:
raise ValueError(f"Vector store {config.get('VECTOR_STORE')} is not supported.")
vector = Vector(dataset)
click.echo(f"vdb_migrate {dataset.id}")
try:
vector.delete()
except Exception as e:
raise e
dataset_documents = db.session.query(DatasetDocument).filter(
DatasetDocument.dataset_id == dataset.id,
DatasetDocument.indexing_status == 'completed',
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).all()
documents = []
for dataset_document in dataset_documents:
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.status == 'completed',
DocumentSegment.enabled == True
).all()
for segment in segments:
document = Document(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
)
documents.append(document)
if documents:
try:
vector.create(documents)
except Exception as e:
raise e
click.echo(f"Dataset {dataset.id} create successfully.")
db.session.add(dataset)
db.session.commit()
create_count += 1
except Exception as e:
db.session.rollback()
click.echo(
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
continue
click.echo(click.style('Congratulations! Create {} dataset indexes.'.format(create_count), fg='green'))
@ -196,4 +245,4 @@ def register_commands(app):
app.cli.add_command(reset_password)
app.cli.add_command(reset_email)
app.cli.add_command(reset_encrypt_key_pair)
app.cli.add_command(create_qdrant_indexes)
app.cli.add_command(vdb_migrate)

View File

@ -664,6 +664,7 @@ class IndexingRunner:
)
# load index
index_processor.load(dataset, chunk_documents)
db.session.add(dataset)
document_ids = [document.metadata['doc_id'] for document in chunk_documents]
db.session.query(DocumentSegment).filter(

View File

@ -127,9 +127,15 @@ class MilvusVector(BaseVector):
self._client.delete(collection_name=self._collection_name, pks=doc_ids)
def delete(self) -> None:
alias = uuid4().hex
if self._client_config.secure:
uri = "https://" + str(self._client_config.host) + ":" + str(self._client_config.port)
else:
uri = "http://" + str(self._client_config.host) + ":" + str(self._client_config.port)
connections.connect(alias=alias, uri=uri, user=self._client_config.user, password=self._client_config.password)
from pymilvus import utility
utility.drop_collection(self._collection_name, None)
utility.drop_collection(self._collection_name, None, using=alias)
def text_exists(self, id: str) -> bool:

View File

@ -1,3 +1,4 @@
import json
from typing import Any, cast
from flask import current_app
@ -39,6 +40,11 @@ class Vector:
else:
dataset_id = self._dataset.id
collection_name = "Vector_index_" + dataset_id.replace("-", "_") + '_Node'
index_struct_dict = {
"type": 'weaviate',
"vector_store": {"class_prefix": collection_name}
}
self._dataset.index_struct = json.dumps(index_struct_dict)
return WeaviateVector(
collection_name=collection_name,
config=WeaviateConfig(
@ -66,6 +72,13 @@ class Vector:
dataset_id = self._dataset.id
collection_name = "Vector_index_" + dataset_id.replace("-", "_") + '_Node'
if not self._dataset.index_struct_dict:
index_struct_dict = {
"type": 'qdrant',
"vector_store": {"class_prefix": collection_name}
}
self._dataset.index_struct = json.dumps(index_struct_dict)
return QdrantVector(
collection_name=collection_name,
group_id=self._dataset.id,
@ -84,6 +97,11 @@ class Vector:
else:
dataset_id = self._dataset.id
collection_name = "Vector_index_" + dataset_id.replace("-", "_") + '_Node'
index_struct_dict = {
"type": 'milvus',
"vector_store": {"class_prefix": collection_name}
}
self._dataset.index_struct = json.dumps(index_struct_dict)
return MilvusVector(
collection_name=collection_name,
config=MilvusConfig(

View File

@ -127,7 +127,10 @@ class WeaviateVector(BaseVector):
)
def delete(self):
self._client.schema.delete_class(self._collection_name)
# check whether the index already exists
schema = self._default_schema(self._collection_name)
if self._client.schema.contains(schema):
self._client.schema.delete_class(self._collection_name)
def text_exists(self, id: str) -> bool:
collection_name = self._collection_name