feat(vdb): add HNSW vector index for TiDB vector store with TiFlash (#12043)

This commit is contained in:
Bowen Liang 2025-02-12 13:53:51 +08:00 committed by GitHub
parent 786550bdc9
commit 0751ad1eeb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 211 additions and 45 deletions

View File

@ -9,6 +9,6 @@ yq eval '.services["pgvecto-rs"].ports += ["5431:5432"]' -i docker/docker-compos
yq eval '.services["elasticsearch"].ports += ["9200:9200"]' -i docker/docker-compose.yaml
yq eval '.services.couchbase-server.ports += ["8091-8096:8091-8096"]' -i docker/docker-compose.yaml
yq eval '.services.couchbase-server.ports += ["11210:11210"]' -i docker/docker-compose.yaml
yq eval '.services.tidb.ports += ["4000:4000"]' -i docker/docker-compose.yaml
yq eval '.services.tidb.ports += ["4000:4000"]' -i docker/tidb/docker-compose.yaml
echo "Ports exposed for sandbox, weaviate, tidb, qdrant, chroma, milvus, pgvector, pgvecto-rs, elasticsearch, couchbase"

View File

@ -54,7 +54,15 @@ jobs:
- name: Expose Service Ports
run: sh .github/workflows/expose_service_ports.sh
- name: Set up Vector Stores (TiDB, Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale, ElasticSearch, Couchbase)
- name: Set up Vector Store (TiDB)
uses: hoverkraft-tech/compose-action@v2.0.2
with:
compose-file: docker/tidb/docker-compose.yaml
services: |
tidb
tiflash
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale, ElasticSearch, Couchbase)
uses: hoverkraft-tech/compose-action@v2.0.2
with:
compose-file: |
@ -70,7 +78,9 @@ jobs:
pgvector
chroma
elasticsearch
tidb
- name: Check TiDB Ready
run: poetry run -P api python api/tests/integration_tests/vdb/tidb_vector/check_tiflash_ready.py
- name: Test Vector Stores
run: poetry run -P api bash dev/pytest/pytest_vdb.sh

1
.gitignore vendored
View File

@ -163,6 +163,7 @@ docker/volumes/db/data/*
docker/volumes/redis/data/*
docker/volumes/weaviate/*
docker/volumes/qdrant/*
docker/tidb/volumes/*
docker/volumes/etcd/*
docker/volumes/minio/*
docker/volumes/milvus/*

View File

@ -9,6 +9,7 @@ from sqlalchemy import text as sql_text
from sqlalchemy.orm import Session, declarative_base
from configs import dify_config
from core.rag.datasource.vdb.field import Field
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
@ -54,14 +55,13 @@ class TiDBVector(BaseVector):
return Table(
self._collection_name,
self._orm_base.metadata,
Column("id", String(36), primary_key=True, nullable=False),
Column(Field.PRIMARY_KEY.value, String(36), primary_key=True, nullable=False),
Column(
"vector",
Field.VECTOR.value,
VectorType(dim),
nullable=False,
comment="" if self._distance_func is None else f"hnsw(distance={self._distance_func})",
),
Column("text", TEXT, nullable=False),
Column(Field.TEXT_KEY.value, TEXT, nullable=False),
Column("meta", JSON, nullable=False),
Column("create_time", DateTime, server_default=sqlalchemy.text("CURRENT_TIMESTAMP")),
Column(
@ -96,6 +96,7 @@ class TiDBVector(BaseVector):
collection_exist_cache_key = "vector_indexing_{}".format(self._collection_name)
if redis_client.get(collection_exist_cache_key):
return
tidb_dist_func = self._get_distance_func()
with Session(self._engine) as session:
session.begin()
create_statement = sql_text(f"""
@ -104,14 +105,14 @@ class TiDBVector(BaseVector):
text TEXT NOT NULL,
meta JSON NOT NULL,
doc_id VARCHAR(64) AS (JSON_UNQUOTE(JSON_EXTRACT(meta, '$.doc_id'))) STORED,
KEY (doc_id),
vector VECTOR<FLOAT>({dimension}) NOT NULL COMMENT "hnsw(distance={self._distance_func})",
vector VECTOR<FLOAT>({dimension}) NOT NULL,
create_time DATETIME DEFAULT CURRENT_TIMESTAMP,
update_time DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
update_time DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
KEY (doc_id),
VECTOR INDEX idx_vector (({tidb_dist_func}(vector))) USING HNSW
);
""")
session.execute(create_statement)
# tidb vector not support 'CREATE/ADD INDEX' now
session.commit()
redis_client.set(collection_exist_cache_key, 1, ex=3600)
@ -194,23 +195,30 @@ class TiDBVector(BaseVector):
)
docs = []
if self._distance_func == "l2":
tidb_func = "Vec_l2_distance"
elif self._distance_func == "cosine":
tidb_func = "Vec_Cosine_distance"
else:
tidb_func = "Vec_Cosine_distance"
tidb_dist_func = self._get_distance_func()
with Session(self._engine) as session:
select_statement = sql_text(
f"""SELECT meta, text, distance FROM (
SELECT meta, text, {tidb_func}(vector, "{query_vector_str}") as distance
select_statement = sql_text(f"""
SELECT meta, text, distance
FROM (
SELECT
meta,
text,
{tidb_dist_func}(vector, :query_vector_str) AS distance
FROM {self._collection_name}
ORDER BY distance
LIMIT {top_k}
) t WHERE distance < {distance};"""
ORDER BY distance ASC
LIMIT :top_k
) t
WHERE distance <= :distance
""")
res = session.execute(
select_statement,
params={
"query_vector_str": query_vector_str,
"distance": distance,
"top_k": top_k,
},
)
res = session.execute(select_statement)
results = [(row[0], row[1], row[2]) for row in res]
for meta, text, distance in results:
metadata = json.loads(meta)
@ -227,6 +235,16 @@ class TiDBVector(BaseVector):
session.execute(sql_text(f"""DROP TABLE IF EXISTS {self._collection_name};"""))
session.commit()
def _get_distance_func(self) -> str:
match self._distance_func:
case "l2":
tidb_dist_func = "VEC_L2_DISTANCE"
case "cosine":
tidb_dist_func = "VEC_COSINE_DISTANCE"
case _:
tidb_dist_func = "VEC_COSINE_DISTANCE"
return tidb_dist_func
class TiDBVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> TiDBVector:

View File

@ -0,0 +1,59 @@
import time
import pymysql
def check_tiflash_ready() -> bool:
try:
connection = pymysql.connect(
host="localhost",
port=4000,
user="root",
password="",
)
with connection.cursor() as cursor:
# Doc reference:
# https://docs.pingcap.com/zh/tidb/stable/information-schema-cluster-hardware
select_tiflash_query = """
SELECT * FROM information_schema.cluster_hardware
WHERE TYPE='tiflash'
LIMIT 1;
"""
cursor.execute(select_tiflash_query)
result = cursor.fetchall()
return result is not None and len(result) > 0
except Exception as e:
print(f"TiFlash is not ready. Exception: {e}")
return False
finally:
if connection:
connection.close()
def main():
max_attempts = 30
retry_interval_seconds = 2
is_tiflash_ready = False
for attempt in range(max_attempts):
try:
is_tiflash_ready = check_tiflash_ready()
except Exception as e:
print(f"TiFlash is not ready. Exception: {e}")
is_tiflash_ready = False
if is_tiflash_ready:
break
else:
print(f"Attempt {attempt + 1} failedretry in {retry_interval_seconds} seconds...")
time.sleep(retry_interval_seconds)
if is_tiflash_ready:
print("TiFlash is ready in TiDB.")
else:
print(f"TiFlash is not ready in TiDB after {max_attempts} attempting checks.")
exit(1)
if __name__ == "__main__":
main()

View File

@ -199,16 +199,6 @@ services:
- '${EXPOSE_NGINX_PORT:-80}:${NGINX_PORT:-80}'
- '${EXPOSE_NGINX_SSL_PORT:-443}:${NGINX_SSL_PORT:-443}'
# The TiDB vector store.
# For production use, please refer to https://github.com/pingcap/tidb-docker-compose
tidb:
image: pingcap/tidb:v8.4.0
profiles:
- tidb
command:
- --store=unistore
restart: always
# The Weaviate vector store.
weaviate:
image: semitechnologies/weaviate:1.19.0

View File

@ -594,16 +594,6 @@ services:
- '${EXPOSE_NGINX_PORT:-80}:${NGINX_PORT:-80}'
- '${EXPOSE_NGINX_SSL_PORT:-443}:${NGINX_SSL_PORT:-443}'
# The TiDB vector store.
# For production use, please refer to https://github.com/pingcap/tidb-docker-compose
tidb:
image: pingcap/tidb:v8.4.0
profiles:
- tidb
command:
- --store=unistore
restart: always
# The Weaviate vector store.
weaviate:
image: semitechnologies/weaviate:1.19.0

View File

@ -0,0 +1,4 @@
# PD Configuration File reference:
# https://docs.pingcap.com/tidb/stable/pd-configuration-file#pd-configuration-file
[replication]
max-replicas = 1

View File

@ -0,0 +1,13 @@
# TiFlash tiflash-learner.toml Configuration File reference:
# https://docs.pingcap.com/tidb/stable/tiflash-configuration#configure-the-tiflash-learnertoml-file
log-file = "/logs/tiflash_tikv.log"
[server]
engine-addr = "tiflash:4030"
addr = "0.0.0.0:20280"
advertise-addr = "tiflash:20280"
status-addr = "tiflash:20292"
[storage]
data-dir = "/data/flash"

View File

@ -0,0 +1,19 @@
# TiFlash tiflash.toml Configuration File reference:
# https://docs.pingcap.com/tidb/stable/tiflash-configuration#configure-the-tiflashtoml-file
listen_host = "0.0.0.0"
path = "/data"
[flash]
tidb_status_addr = "tidb:10080"
service_addr = "tiflash:4030"
[flash.proxy]
config = "/tiflash-learner.toml"
[logger]
errorlog = "/logs/tiflash_error.log"
log = "/logs/tiflash.log"
[raft]
pd_addr = "pd0:2379"

View File

@ -0,0 +1,62 @@
services:
pd0:
image: pingcap/pd:v8.5.1
# ports:
# - "2379"
volumes:
- ./config/pd.toml:/pd.toml:ro
- ./volumes/data:/data
- ./volumes/logs:/logs
command:
- --name=pd0
- --client-urls=http://0.0.0.0:2379
- --peer-urls=http://0.0.0.0:2380
- --advertise-client-urls=http://pd0:2379
- --advertise-peer-urls=http://pd0:2380
- --initial-cluster=pd0=http://pd0:2380
- --data-dir=/data/pd
- --config=/pd.toml
- --log-file=/logs/pd.log
restart: on-failure
tikv:
image: pingcap/tikv:v8.5.1
volumes:
- ./volumes/data:/data
- ./volumes/logs:/logs
command:
- --addr=0.0.0.0:20160
- --advertise-addr=tikv:20160
- --status-addr=tikv:20180
- --data-dir=/data/tikv
- --pd=pd0:2379
- --log-file=/logs/tikv.log
depends_on:
- "pd0"
restart: on-failure
tidb:
image: pingcap/tidb:v8.5.1
# ports:
# - "4000:4000"
volumes:
- ./volumes/logs:/logs
command:
- --advertise-address=tidb
- --store=tikv
- --path=pd0:2379
- --log-file=/logs/tidb.log
depends_on:
- "tikv"
restart: on-failure
tiflash:
image: pingcap/tiflash:v8.5.1
volumes:
- ./config/tiflash.toml:/tiflash.toml:ro
- ./config/tiflash-learner.toml:/tiflash-learner.toml:ro
- ./volumes/data:/data
- ./volumes/logs:/logs
command:
- --config=/tiflash.toml
depends_on:
- "tikv"
- "tidb"
restart: on-failure