mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-14 00:45:53 +08:00
feat: hf inference endpoint stream support (#1028)
This commit is contained in:
parent
6c148b223d
commit
0796791de5
@ -75,7 +75,7 @@ class AnthropicModel(BaseLLM):
|
||||
else:
|
||||
return ex
|
||||
|
||||
@classmethod
|
||||
def support_streaming(cls):
|
||||
@property
|
||||
def support_streaming(self):
|
||||
return True
|
||||
|
||||
|
@ -141,6 +141,6 @@ class AzureOpenAIModel(BaseLLM):
|
||||
else:
|
||||
return ex
|
||||
|
||||
@classmethod
|
||||
def support_streaming(cls):
|
||||
@property
|
||||
def support_streaming(self):
|
||||
return True
|
@ -138,7 +138,7 @@ class BaseLLM(BaseProviderModel):
|
||||
result = self._run(
|
||||
messages=messages,
|
||||
stop=stop,
|
||||
callbacks=callbacks if not (self.streaming and not self.support_streaming()) else None,
|
||||
callbacks=callbacks if not (self.streaming and not self.support_streaming) else None,
|
||||
**kwargs
|
||||
)
|
||||
except Exception as ex:
|
||||
@ -149,7 +149,7 @@ class BaseLLM(BaseProviderModel):
|
||||
else:
|
||||
completion_content = result.generations[0][0].text
|
||||
|
||||
if self.streaming and not self.support_streaming():
|
||||
if self.streaming and not self.support_streaming:
|
||||
# use FakeLLM to simulate streaming when current model not support streaming but streaming is True
|
||||
prompts = self._get_prompt_from_messages(messages, ModelMode.CHAT)
|
||||
fake_llm = FakeLLM(
|
||||
@ -298,8 +298,8 @@ class BaseLLM(BaseProviderModel):
|
||||
else:
|
||||
self.client.callbacks.extend(callbacks)
|
||||
|
||||
@classmethod
|
||||
def support_streaming(cls):
|
||||
@property
|
||||
def support_streaming(self):
|
||||
return False
|
||||
|
||||
def get_prompt(self, mode: str,
|
||||
|
@ -61,7 +61,3 @@ class ChatGLMModel(BaseLLM):
|
||||
return LLMBadRequestError(f"ChatGLM: {str(ex)}")
|
||||
else:
|
||||
return ex
|
||||
|
||||
@classmethod
|
||||
def support_streaming(cls):
|
||||
return False
|
||||
|
@ -17,12 +17,18 @@ class HuggingfaceHubModel(BaseLLM):
|
||||
def _init_client(self) -> Any:
|
||||
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
|
||||
if self.credentials['huggingfacehub_api_type'] == 'inference_endpoints':
|
||||
streaming = self.streaming
|
||||
|
||||
if 'baichuan' in self.name.lower():
|
||||
streaming = False
|
||||
|
||||
client = HuggingFaceEndpointLLM(
|
||||
endpoint_url=self.credentials['huggingfacehub_endpoint_url'],
|
||||
task=self.credentials['task_type'],
|
||||
model_kwargs=provider_model_kwargs,
|
||||
huggingfacehub_api_token=self.credentials['huggingfacehub_api_token'],
|
||||
callbacks=self.callbacks
|
||||
callbacks=self.callbacks,
|
||||
streaming=streaming
|
||||
)
|
||||
else:
|
||||
client = HuggingFaceHub(
|
||||
@ -76,7 +82,10 @@ class HuggingfaceHubModel(BaseLLM):
|
||||
def handle_exceptions(self, ex: Exception) -> Exception:
|
||||
return LLMBadRequestError(f"Huggingface Hub: {str(ex)}")
|
||||
|
||||
@classmethod
|
||||
def support_streaming(cls):
|
||||
return False
|
||||
@property
|
||||
def support_streaming(self):
|
||||
if self.credentials['huggingfacehub_api_type'] == 'inference_endpoints':
|
||||
if 'baichuan' in self.name.lower():
|
||||
return False
|
||||
|
||||
return True
|
||||
|
@ -154,8 +154,8 @@ class OpenAIModel(BaseLLM):
|
||||
else:
|
||||
return ex
|
||||
|
||||
@classmethod
|
||||
def support_streaming(cls):
|
||||
@property
|
||||
def support_streaming(self):
|
||||
return True
|
||||
|
||||
# def is_model_valid_or_raise(self):
|
||||
|
@ -63,7 +63,3 @@ class OpenLLMModel(BaseLLM):
|
||||
|
||||
def handle_exceptions(self, ex: Exception) -> Exception:
|
||||
return LLMBadRequestError(f"OpenLLM: {str(ex)}")
|
||||
|
||||
@classmethod
|
||||
def support_streaming(cls):
|
||||
return False
|
||||
|
@ -91,6 +91,6 @@ class ReplicateModel(BaseLLM):
|
||||
else:
|
||||
return ex
|
||||
|
||||
@classmethod
|
||||
def support_streaming(cls):
|
||||
@property
|
||||
def support_streaming(self):
|
||||
return True
|
@ -65,6 +65,6 @@ class SparkModel(BaseLLM):
|
||||
else:
|
||||
return ex
|
||||
|
||||
@classmethod
|
||||
def support_streaming(cls):
|
||||
@property
|
||||
def support_streaming(self):
|
||||
return True
|
@ -69,6 +69,6 @@ class TongyiModel(BaseLLM):
|
||||
else:
|
||||
return ex
|
||||
|
||||
@classmethod
|
||||
def support_streaming(cls):
|
||||
@property
|
||||
def support_streaming(self):
|
||||
return True
|
||||
|
@ -57,7 +57,3 @@ class WenxinModel(BaseLLM):
|
||||
|
||||
def handle_exceptions(self, ex: Exception) -> Exception:
|
||||
return LLMBadRequestError(f"Wenxin: {str(ex)}")
|
||||
|
||||
@classmethod
|
||||
def support_streaming(cls):
|
||||
return False
|
||||
|
@ -74,6 +74,6 @@ class XinferenceModel(BaseLLM):
|
||||
def handle_exceptions(self, ex: Exception) -> Exception:
|
||||
return LLMBadRequestError(f"Xinference: {str(ex)}")
|
||||
|
||||
@classmethod
|
||||
def support_streaming(cls):
|
||||
@property
|
||||
def support_streaming(self):
|
||||
return True
|
||||
|
@ -1,7 +1,11 @@
|
||||
from typing import Dict
|
||||
from typing import Dict, Any, Optional, List, Iterable, Iterator
|
||||
|
||||
from huggingface_hub import InferenceClient
|
||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain.embeddings.huggingface_hub import VALID_TASKS
|
||||
from langchain.llms import HuggingFaceEndpoint
|
||||
from pydantic import Extra, root_validator
|
||||
from langchain.llms.utils import enforce_stop_tokens
|
||||
from pydantic import root_validator
|
||||
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
|
||||
@ -27,6 +31,8 @@ class HuggingFaceEndpointLLM(HuggingFaceEndpoint):
|
||||
huggingfacehub_api_token="my-api-key"
|
||||
)
|
||||
"""
|
||||
client: Any
|
||||
streaming: bool = False
|
||||
|
||||
@root_validator(allow_reuse=True)
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
@ -35,5 +41,88 @@ class HuggingFaceEndpointLLM(HuggingFaceEndpoint):
|
||||
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
|
||||
)
|
||||
|
||||
values['client'] = InferenceClient(values['endpoint_url'], token=huggingfacehub_api_token)
|
||||
|
||||
values["huggingfacehub_api_token"] = huggingfacehub_api_token
|
||||
return values
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Call out to HuggingFace Hub's inference endpoint.
|
||||
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
stop: Optional list of stop words to use when generating.
|
||||
|
||||
Returns:
|
||||
The string generated by the model.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
response = hf("Tell me a joke.")
|
||||
"""
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
|
||||
# payload samples
|
||||
params = {**_model_kwargs, **kwargs}
|
||||
|
||||
# generation parameter
|
||||
gen_kwargs = {
|
||||
**params,
|
||||
'stop_sequences': stop
|
||||
}
|
||||
|
||||
response = self.client.text_generation(prompt, stream=self.streaming, details=True, **gen_kwargs)
|
||||
|
||||
if self.streaming and isinstance(response, Iterable):
|
||||
combined_text_output = ""
|
||||
for token in self._stream_response(response, run_manager):
|
||||
combined_text_output += token
|
||||
completion = combined_text_output
|
||||
else:
|
||||
completion = response.generated_text
|
||||
|
||||
if self.task == "text-generation":
|
||||
text = completion
|
||||
# Remove prompt if included in generated text.
|
||||
if text.startswith(prompt):
|
||||
text = text[len(prompt) :]
|
||||
elif self.task == "text2text-generation":
|
||||
text = completion
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Got invalid task {self.task}, "
|
||||
f"currently only {VALID_TASKS} are supported"
|
||||
)
|
||||
|
||||
if stop is not None:
|
||||
# This is a bit hacky, but I can't figure out a better way to enforce
|
||||
# stop tokens when making calls to huggingface_hub.
|
||||
text = enforce_stop_tokens(text, stop)
|
||||
|
||||
return text
|
||||
|
||||
def _stream_response(
|
||||
self,
|
||||
response: Iterable,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
) -> Iterator[str]:
|
||||
for r in response:
|
||||
# skip special tokens
|
||||
if r.token.special:
|
||||
continue
|
||||
|
||||
token = r.token.text
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(
|
||||
token=token, verbose=self.verbose, log_probs=None
|
||||
)
|
||||
|
||||
# yield the generated token
|
||||
yield token
|
||||
|
@ -63,7 +63,7 @@ def test_hosted_inference_api_is_credentials_valid_or_raise_invalid(mock_model_i
|
||||
|
||||
def test_inference_endpoints_is_credentials_valid_or_raise_valid(mocker):
|
||||
mocker.patch('huggingface_hub.hf_api.HfApi.whoami', return_value=None)
|
||||
mocker.patch('langchain.llms.huggingface_endpoint.HuggingFaceEndpoint._call', return_value="abc")
|
||||
mocker.patch('core.third_party.langchain.llms.huggingface_endpoint_llm.HuggingFaceEndpointLLM._call', return_value="abc")
|
||||
|
||||
MODEL_PROVIDER_CLASS.is_model_credentials_valid_or_raise(
|
||||
model_name='test_model_name',
|
||||
@ -71,8 +71,10 @@ def test_inference_endpoints_is_credentials_valid_or_raise_valid(mocker):
|
||||
credentials=INFERENCE_ENDPOINTS_VALIDATE_CREDENTIAL
|
||||
)
|
||||
|
||||
|
||||
def test_inference_endpoints_is_credentials_valid_or_raise_invalid(mocker):
|
||||
mocker.patch('huggingface_hub.hf_api.HfApi.whoami', return_value=None)
|
||||
mocker.patch('core.third_party.langchain.llms.huggingface_endpoint_llm.HuggingFaceEndpointLLM._call', return_value="abc")
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
MODEL_PROVIDER_CLASS.is_model_credentials_valid_or_raise(
|
||||
|
Loading…
x
Reference in New Issue
Block a user