feat: support vastbase vector database (#16308)

This commit is contained in:
王晓阳 2025-04-24 18:04:57 +08:00 committed by GitHub
parent cd9e6609ad
commit 0babdffe3e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 390 additions and 0 deletions

View File

@ -271,6 +271,7 @@ def migrate_knowledge_vector_database():
upper_collection_vector_types = {
VectorType.MILVUS,
VectorType.PGVECTOR,
VectorType.VASTBASE,
VectorType.RELYT,
VectorType.WEAVIATE,
VectorType.ORACLE,

View File

@ -39,6 +39,7 @@ from .vdb.tencent_vector_config import TencentVectorDBConfig
from .vdb.tidb_on_qdrant_config import TidbOnQdrantConfig
from .vdb.tidb_vector_config import TiDBVectorConfig
from .vdb.upstash_config import UpstashConfig
from .vdb.vastbase_vector_config import VastbaseVectorConfig
from .vdb.vikingdb_config import VikingDBConfig
from .vdb.weaviate_config import WeaviateConfig
@ -270,6 +271,7 @@ class MiddlewareConfig(
OpenSearchConfig,
OracleConfig,
PGVectorConfig,
VastbaseVectorConfig,
PGVectoRSConfig,
QdrantConfig,
RelytConfig,

View File

@ -0,0 +1,45 @@
from typing import Optional
from pydantic import Field, PositiveInt
from pydantic_settings import BaseSettings
class VastbaseVectorConfig(BaseSettings):
"""
Configuration settings for Vector (Vastbase with vector extension)
"""
VASTBASE_HOST: Optional[str] = Field(
description="Hostname or IP address of the Vastbase server with Vector extension (e.g., 'localhost')",
default=None,
)
VASTBASE_PORT: PositiveInt = Field(
description="Port number on which the Vastbase server is listening (default is 5432)",
default=5432,
)
VASTBASE_USER: Optional[str] = Field(
description="Username for authenticating with the Vastbase database",
default=None,
)
VASTBASE_PASSWORD: Optional[str] = Field(
description="Password for authenticating with the Vastbase database",
default=None,
)
VASTBASE_DATABASE: Optional[str] = Field(
description="Name of the Vastbase database to connect to",
default=None,
)
VASTBASE_MIN_CONNECTION: PositiveInt = Field(
description="Min connection of the Vastbase database",
default=1,
)
VASTBASE_MAX_CONNECTION: PositiveInt = Field(
description="Max connection of the Vastbase database",
default=5,
)

View File

@ -657,6 +657,7 @@ class DatasetRetrievalSettingApi(Resource):
| VectorType.ELASTICSEARCH
| VectorType.ELASTICSEARCH_JA
| VectorType.PGVECTOR
| VectorType.VASTBASE
| VectorType.TIDB_ON_QDRANT
| VectorType.LINDORM
| VectorType.COUCHBASE
@ -706,6 +707,7 @@ class DatasetRetrievalSettingMockApi(Resource):
| VectorType.ELASTICSEARCH_JA
| VectorType.COUCHBASE
| VectorType.PGVECTOR
| VectorType.VASTBASE
| VectorType.LINDORM
| VectorType.OPENGAUSS
| VectorType.OCEANBASE

View File

@ -0,0 +1,243 @@
import json
import uuid
from contextlib import contextmanager
from typing import Any
import psycopg2.extras # type: ignore
import psycopg2.pool # type: ignore
from pydantic import BaseModel, model_validator
from configs import dify_config
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.embedding.embedding_base import Embeddings
from core.rag.models.document import Document
from extensions.ext_redis import redis_client
from models.dataset import Dataset
class VastbaseVectorConfig(BaseModel):
host: str
port: int
user: str
password: str
database: str
min_connection: int
max_connection: int
@model_validator(mode="before")
@classmethod
def validate_config(cls, values: dict) -> dict:
if not values["host"]:
raise ValueError("config VASTBASE_HOST is required")
if not values["port"]:
raise ValueError("config VASTBASE_PORT is required")
if not values["user"]:
raise ValueError("config VASTBASE_USER is required")
if not values["password"]:
raise ValueError("config VASTBASE_PASSWORD is required")
if not values["database"]:
raise ValueError("config VASTBASE_DATABASE is required")
if not values["min_connection"]:
raise ValueError("config VASTBASE_MIN_CONNECTION is required")
if not values["max_connection"]:
raise ValueError("config VASTBASE_MAX_CONNECTION is required")
if values["min_connection"] > values["max_connection"]:
raise ValueError("config VASTBASE_MIN_CONNECTION should less than VASTBASE_MAX_CONNECTION")
return values
SQL_CREATE_TABLE = """
CREATE TABLE IF NOT EXISTS {table_name} (
id UUID PRIMARY KEY,
text TEXT NOT NULL,
meta JSONB NOT NULL,
embedding floatvector({dimension}) NOT NULL
);
"""
SQL_CREATE_INDEX = """
CREATE INDEX IF NOT EXISTS embedding_cosine_v1_idx ON {table_name}
USING hnsw (embedding floatvector_cosine_ops) WITH (m = 16, ef_construction = 64);
"""
class VastbaseVector(BaseVector):
def __init__(self, collection_name: str, config: VastbaseVectorConfig):
super().__init__(collection_name)
self.pool = self._create_connection_pool(config)
self.table_name = f"embedding_{collection_name}"
def get_type(self) -> str:
return VectorType.VASTBASE
def _create_connection_pool(self, config: VastbaseVectorConfig):
return psycopg2.pool.SimpleConnectionPool(
config.min_connection,
config.max_connection,
host=config.host,
port=config.port,
user=config.user,
password=config.password,
database=config.database,
)
@contextmanager
def _get_cursor(self):
conn = self.pool.getconn()
cur = conn.cursor()
try:
yield cur
finally:
cur.close()
conn.commit()
self.pool.putconn(conn)
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
dimension = len(embeddings[0])
self._create_collection(dimension)
return self.add_texts(texts, embeddings)
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
values = []
pks = []
for i, doc in enumerate(documents):
if doc.metadata is not None:
doc_id = doc.metadata.get("doc_id", str(uuid.uuid4()))
pks.append(doc_id)
values.append(
(
doc_id,
doc.page_content,
json.dumps(doc.metadata),
embeddings[i],
)
)
with self._get_cursor() as cur:
psycopg2.extras.execute_values(
cur, f"INSERT INTO {self.table_name} (id, text, meta, embedding) VALUES %s", values
)
return pks
def text_exists(self, id: str) -> bool:
with self._get_cursor() as cur:
cur.execute(f"SELECT id FROM {self.table_name} WHERE id = %s", (id,))
return cur.fetchone() is not None
def get_by_ids(self, ids: list[str]) -> list[Document]:
with self._get_cursor() as cur:
cur.execute(f"SELECT meta, text FROM {self.table_name} WHERE id IN %s", (tuple(ids),))
docs = []
for record in cur:
docs.append(Document(page_content=record[1], metadata=record[0]))
return docs
def delete_by_ids(self, ids: list[str]) -> None:
# Avoiding crashes caused by performing delete operations on empty lists in certain scenarios
# Scenario 1: extract a document fails, resulting in a table not being created.
# Then clicking the retry button triggers a delete operation on an empty list.
if not ids:
return
with self._get_cursor() as cur:
cur.execute(f"DELETE FROM {self.table_name} WHERE id IN %s", (tuple(ids),))
def delete_by_metadata_field(self, key: str, value: str) -> None:
with self._get_cursor() as cur:
cur.execute(f"DELETE FROM {self.table_name} WHERE meta->>%s = %s", (key, value))
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
"""
Search the nearest neighbors to a vector.
:param query_vector: The input vector to search for similar items.
:param top_k: The number of nearest neighbors to return, default is 5.
:return: List of Documents that are nearest to the query vector.
"""
top_k = kwargs.get("top_k", 4)
if not isinstance(top_k, int) or top_k <= 0:
raise ValueError("top_k must be a positive integer")
with self._get_cursor() as cur:
cur.execute(
f"SELECT meta, text, embedding <=> %s AS distance FROM {self.table_name}"
f" ORDER BY distance LIMIT {top_k}",
(json.dumps(query_vector),),
)
docs = []
score_threshold = float(kwargs.get("score_threshold") or 0.0)
for record in cur:
metadata, text, distance = record
score = 1 - distance
metadata["score"] = score
if score > score_threshold:
docs.append(Document(page_content=text, metadata=metadata))
return docs
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 5)
if not isinstance(top_k, int) or top_k <= 0:
raise ValueError("top_k must be a positive integer")
with self._get_cursor() as cur:
cur.execute(
f"""SELECT meta, text, ts_rank(to_tsvector(coalesce(text, '')), plainto_tsquery(%s)) AS score
FROM {self.table_name}
WHERE to_tsvector(text) @@ plainto_tsquery(%s)
ORDER BY score DESC
LIMIT {top_k}""",
# f"'{query}'" is required in order to account for whitespace in query
(f"'{query}'", f"'{query}'"),
)
docs = []
for record in cur:
metadata, text, score = record
metadata["score"] = score
docs.append(Document(page_content=text, metadata=metadata))
return docs
def delete(self) -> None:
with self._get_cursor() as cur:
cur.execute(f"DROP TABLE IF EXISTS {self.table_name}")
def _create_collection(self, dimension: int):
cache_key = f"vector_indexing_{self._collection_name}"
lock_name = f"{cache_key}_lock"
with redis_client.lock(lock_name, timeout=20):
collection_exist_cache_key = f"vector_indexing_{self._collection_name}"
if redis_client.get(collection_exist_cache_key):
return
with self._get_cursor() as cur:
cur.execute(SQL_CREATE_TABLE.format(table_name=self.table_name, dimension=dimension))
# Vastbase 支持的向量维度取值范围为 [1,16000]
if dimension <= 16000:
cur.execute(SQL_CREATE_INDEX.format(table_name=self.table_name))
redis_client.set(collection_exist_cache_key, 1, ex=3600)
class VastbaseVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> VastbaseVector:
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict["vector_store"]["class_prefix"]
collection_name = class_prefix
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
dataset.index_struct = json.dumps(self.gen_index_struct_dict(VectorType.VASTBASE, collection_name))
return VastbaseVector(
collection_name=collection_name,
config=VastbaseVectorConfig(
host=dify_config.VASTBASE_HOST or "localhost",
port=dify_config.VASTBASE_PORT,
user=dify_config.VASTBASE_USER or "dify",
password=dify_config.VASTBASE_PASSWORD or "",
database=dify_config.VASTBASE_DATABASE or "dify",
min_connection=dify_config.VASTBASE_MIN_CONNECTION,
max_connection=dify_config.VASTBASE_MAX_CONNECTION,
),
)

View File

@ -74,6 +74,10 @@ class Vector:
from core.rag.datasource.vdb.pgvector.pgvector import PGVectorFactory
return PGVectorFactory
case VectorType.VASTBASE:
from core.rag.datasource.vdb.pyvastbase.vastbase_vector import VastbaseVectorFactory
return VastbaseVectorFactory
case VectorType.PGVECTO_RS:
from core.rag.datasource.vdb.pgvecto_rs.pgvecto_rs import PGVectoRSFactory

View File

@ -7,7 +7,9 @@ class VectorType(StrEnum):
MILVUS = "milvus"
MYSCALE = "myscale"
PGVECTOR = "pgvector"
VASTBASE = "vastbase"
PGVECTO_RS = "pgvecto-rs"
QDRANT = "qdrant"
RELYT = "relyt"
TIDB_VECTOR = "tidb_vector"

View File

@ -0,0 +1,27 @@
from core.rag.datasource.vdb.pyvastbase.vastbase_vector import VastbaseVector, VastbaseVectorConfig
from tests.integration_tests.vdb.test_vector_store import (
AbstractVectorTest,
get_example_text,
setup_mock_redis,
)
class VastbaseVectorTest(AbstractVectorTest):
def __init__(self):
super().__init__()
self.vector = VastbaseVector(
collection_name=self.collection_name,
config=VastbaseVectorConfig(
host="localhost",
port=5434,
user="dify",
password="Difyai123456",
database="dify",
min_connection=1,
max_connection=5,
),
)
def test_vastbase_vector(setup_mock_redis):
VastbaseVectorTest().run_all_tests()

View File

@ -441,6 +441,15 @@ PGVECTOR_MAX_CONNECTION=5
PGVECTOR_PG_BIGM=false
PGVECTOR_PG_BIGM_VERSION=1.2-20240606
# vastbase configurations, only available when VECTOR_STORE is `vastbase`
VASTBASE_HOST=vastbase
VASTBASE_PORT=5432
VASTBASE_USER=dify
VASTBASE_PASSWORD=Difyai123456
VASTBASE_DATABASE=dify
VASTBASE_MIN_CONNECTION=1
VASTBASE_MAX_CONNECTION=5
# pgvecto-rs configurations, only available when VECTOR_STORE is `pgvecto-rs`
PGVECTO_RS_HOST=pgvecto-rs
PGVECTO_RS_PORT=5432

View File

@ -363,6 +363,30 @@ services:
timeout: 3s
retries: 30
# get image from https://www.vastdata.com.cn/
vastbase:
image: vastdata/vastbase-vector
profiles:
- vastbase
restart: always
environment:
- VB_DBCOMPATIBILITY=PG
- VB_DB=dify
- VB_USERNAME=dify
- VB_PASSWORD=Difyai123456
ports:
- '5434:5432'
volumes:
- ./vastbase/lic:/home/vastbase/vastbase/lic
- ./vastbase/data:/home/vastbase/data
- ./vastbase/backup:/home/vastbase/backup
- ./vastbase/backup_log:/home/vastbase/backup_log
healthcheck:
test: [ 'CMD', 'pg_isready' ]
interval: 1s
timeout: 3s
retries: 30
# pgvecto-rs vector store
pgvecto-rs:
image: tensorchord/pgvecto-rs:pg16-v0.3.0

View File

@ -163,6 +163,13 @@ x-shared-env: &shared-api-worker-env
PGVECTOR_MAX_CONNECTION: ${PGVECTOR_MAX_CONNECTION:-5}
PGVECTOR_PG_BIGM: ${PGVECTOR_PG_BIGM:-false}
PGVECTOR_PG_BIGM_VERSION: ${PGVECTOR_PG_BIGM_VERSION:-1.2-20240606}
VASTBASE_HOST: ${VASTBASE_HOST:-vastbase}
VASTBASE_PORT: ${VASTBASE_PORT:-5432}
VASTBASE_USER: ${VASTBASE_USER:-dify}
VASTBASE_PASSWORD: ${VASTBASE_PASSWORD:-Difyai123456}
VASTBASE_DATABASE: ${VASTBASE_DATABASE:-dify}
VASTBASE_MIN_CONNECTION: ${VASTBASE_MIN_CONNECTION:-1}
VASTBASE_MAX_CONNECTION: ${VASTBASE_MAX_CONNECTION:-5}
PGVECTO_RS_HOST: ${PGVECTO_RS_HOST:-pgvecto-rs}
PGVECTO_RS_PORT: ${PGVECTO_RS_PORT:-5432}
PGVECTO_RS_USER: ${PGVECTO_RS_USER:-postgres}
@ -840,6 +847,30 @@ services:
timeout: 3s
retries: 30
# get image from https://www.vastdata.com.cn/
vastbase:
image: vastdata/vastbase-vector
profiles:
- vastbase
restart: always
environment:
- VB_DBCOMPATIBILITY=PG
- VB_DB=dify
- VB_USERNAME=dify
- VB_PASSWORD=Difyai123456
ports:
- '5434:5432'
volumes:
- ./vastbase/lic:/home/vastbase/vastbase/lic
- ./vastbase/data:/home/vastbase/data
- ./vastbase/backup:/home/vastbase/backup
- ./vastbase/backup_log:/home/vastbase/backup_log
healthcheck:
test: [ 'CMD', 'pg_isready' ]
interval: 1s
timeout: 3s
retries: 30
# pgvecto-rs vector store
pgvecto-rs:
image: tensorchord/pgvecto-rs:pg16-v0.3.0