mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-15 21:15:55 +08:00
feat: xinference rerank model support (#1615)
This commit is contained in:
parent
ea35f1dce1
commit
0e627c920f
@ -115,7 +115,7 @@ class ModelProviderModelValidateApi(Resource):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('model_name', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('model_type', type=str, required=True, nullable=False,
|
||||
choices=['text-generation', 'embeddings', 'speech2text'], location='json')
|
||||
choices=['text-generation', 'embeddings', 'speech2text', 'reranking'], location='json')
|
||||
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
@ -155,7 +155,7 @@ class ModelProviderModelUpdateApi(Resource):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('model_name', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('model_type', type=str, required=True, nullable=False,
|
||||
choices=['text-generation', 'embeddings', 'speech2text'], location='json')
|
||||
choices=['text-generation', 'embeddings', 'speech2text', 'reranking'], location='json')
|
||||
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
|
||||
args = parser.parse_args()
|
||||
|
||||
@ -184,7 +184,7 @@ class ModelProviderModelUpdateApi(Resource):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('model_name', type=str, required=True, nullable=False, location='args')
|
||||
parser.add_argument('model_type', type=str, required=True, nullable=False,
|
||||
choices=['text-generation', 'embeddings', 'speech2text'], location='args')
|
||||
choices=['text-generation', 'embeddings', 'speech2text', 'reranking'], location='args')
|
||||
args = parser.parse_args()
|
||||
|
||||
provider_service = ProviderService()
|
||||
|
@ -0,0 +1,58 @@
|
||||
import logging
|
||||
from typing import Optional, List
|
||||
|
||||
from langchain.schema import Document
|
||||
from xinference_client.client.restful.restful_client import Client
|
||||
|
||||
from core.model_providers.error import LLMBadRequestError
|
||||
from core.model_providers.models.reranking.base import BaseReranking
|
||||
from core.model_providers.providers.base import BaseModelProvider
|
||||
|
||||
|
||||
class XinferenceReranking(BaseReranking):
|
||||
|
||||
def __init__(self, model_provider: BaseModelProvider, name: str):
|
||||
self.credentials = model_provider.get_model_credentials(
|
||||
model_name=name,
|
||||
model_type=self.type
|
||||
)
|
||||
|
||||
client = Client(self.credentials['server_url'])
|
||||
|
||||
super().__init__(model_provider, client, name)
|
||||
|
||||
def rerank(self, query: str, documents: List[Document], score_threshold: Optional[float], top_k: Optional[int]) -> Optional[List[Document]]:
|
||||
docs = []
|
||||
doc_id = []
|
||||
for document in documents:
|
||||
if document.metadata['doc_id'] not in doc_id:
|
||||
doc_id.append(document.metadata['doc_id'])
|
||||
docs.append(document.page_content)
|
||||
|
||||
model = self.client.get_model(self.credentials['model_uid'])
|
||||
response = model.rerank(query=query, documents=docs, top_n=top_k)
|
||||
rerank_documents = []
|
||||
|
||||
for idx, result in enumerate(response['results']):
|
||||
# format document
|
||||
index = result['index']
|
||||
rerank_document = Document(
|
||||
page_content=result['document'],
|
||||
metadata={
|
||||
"doc_id": documents[index].metadata['doc_id'],
|
||||
"doc_hash": documents[index].metadata['doc_hash'],
|
||||
"document_id": documents[index].metadata['document_id'],
|
||||
"dataset_id": documents[index].metadata['dataset_id'],
|
||||
'score': result['relevance_score']
|
||||
}
|
||||
)
|
||||
# score threshold check
|
||||
if score_threshold is not None:
|
||||
if result.relevance_score >= score_threshold:
|
||||
rerank_documents.append(rerank_document)
|
||||
else:
|
||||
rerank_documents.append(rerank_document)
|
||||
return rerank_documents
|
||||
|
||||
def handle_exceptions(self, ex: Exception) -> Exception:
|
||||
return LLMBadRequestError(f"Xinference rerank: {str(ex)}")
|
@ -2,11 +2,13 @@ import json
|
||||
from typing import Type
|
||||
|
||||
import requests
|
||||
from xinference_client.client.restful.restful_client import Client
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.embedding.xinference_embedding import XinferenceEmbedding
|
||||
from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType, ModelMode
|
||||
from core.model_providers.models.llm.xinference_model import XinferenceModel
|
||||
from core.model_providers.models.reranking.xinference_reranking import XinferenceReranking
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
@ -40,6 +42,8 @@ class XinferenceProvider(BaseModelProvider):
|
||||
model_class = XinferenceModel
|
||||
elif model_type == ModelType.EMBEDDINGS:
|
||||
model_class = XinferenceEmbedding
|
||||
elif model_type == ModelType.RERANKING:
|
||||
model_class = XinferenceReranking
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
@ -113,6 +117,10 @@ class XinferenceProvider(BaseModelProvider):
|
||||
)
|
||||
|
||||
embedding.embed_query("ping")
|
||||
elif model_type == ModelType.RERANKING:
|
||||
rerank_client = Client(credential_kwargs['server_url'])
|
||||
model = rerank_client.get_model(credential_kwargs['model_uid'])
|
||||
model.rerank(query="ping", documents=["ping", "pong"], top_n=2)
|
||||
except Exception as ex:
|
||||
raise CredentialsValidateFailedError(str(ex))
|
||||
|
||||
|
@ -6,6 +6,7 @@
|
||||
"model_flexibility": "configurable",
|
||||
"supported_model_types": [
|
||||
"text-generation",
|
||||
"embeddings"
|
||||
"embeddings",
|
||||
"reranking"
|
||||
]
|
||||
}
|
@ -48,7 +48,7 @@ huggingface_hub~=0.16.4
|
||||
transformers~=4.31.0
|
||||
stripe~=5.5.0
|
||||
pandas==1.5.3
|
||||
xinference-client~=0.5.4
|
||||
xinference-client~=0.6.4
|
||||
safetensors==0.3.2
|
||||
zhipuai==1.0.7
|
||||
werkzeug==2.3.7
|
||||
|
@ -51,3 +51,6 @@ OPENLLM_SERVER_URL=
|
||||
|
||||
# LocalAI Credentials
|
||||
LOCALAI_SERVER_URL=
|
||||
|
||||
# Cohere Credentials
|
||||
COHERE_API_KEY=
|
@ -0,0 +1,61 @@
|
||||
import json
|
||||
import os
|
||||
from unittest.mock import patch
|
||||
|
||||
from langchain.schema import Document
|
||||
|
||||
from core.model_providers.models.reranking.cohere_reranking import CohereReranking
|
||||
from core.model_providers.providers.cohere_provider import CohereProvider
|
||||
from models.provider import Provider, ProviderType
|
||||
|
||||
|
||||
def get_mock_provider(valid_api_key):
|
||||
return Provider(
|
||||
id='provider_id',
|
||||
tenant_id='tenant_id',
|
||||
provider_name='cohere',
|
||||
provider_type=ProviderType.CUSTOM.value,
|
||||
encrypted_config=json.dumps({'api_key': valid_api_key}),
|
||||
is_valid=True,
|
||||
)
|
||||
|
||||
|
||||
def get_mock_model():
|
||||
valid_api_key = os.environ['COHERE_API_KEY']
|
||||
provider = CohereProvider(provider=get_mock_provider(valid_api_key))
|
||||
return CohereReranking(
|
||||
model_provider=provider,
|
||||
name='rerank-english-v2.0'
|
||||
)
|
||||
|
||||
|
||||
def decrypt_side_effect(tenant_id, encrypted_api_key):
|
||||
return encrypted_api_key
|
||||
|
||||
|
||||
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
|
||||
def test_run(mock_decrypt):
|
||||
model = get_mock_model()
|
||||
|
||||
docs = []
|
||||
docs.append(Document(
|
||||
page_content='bye',
|
||||
metadata={
|
||||
"doc_id": 'a',
|
||||
"doc_hash": 'doc_hash',
|
||||
"document_id": 'document_id',
|
||||
"dataset_id": 'dataset_id',
|
||||
}
|
||||
))
|
||||
docs.append(Document(
|
||||
page_content='hello',
|
||||
metadata={
|
||||
"doc_id": 'b',
|
||||
"doc_hash": 'doc_hash',
|
||||
"document_id": 'document_id',
|
||||
"dataset_id": 'dataset_id',
|
||||
}
|
||||
))
|
||||
rst = model.rerank('hello', docs, None, 2)
|
||||
|
||||
assert rst[0].page_content == 'hello'
|
@ -0,0 +1,78 @@
|
||||
import json
|
||||
import os
|
||||
from unittest.mock import patch, MagicMock
|
||||
|
||||
from langchain.schema import Document
|
||||
|
||||
from core.model_providers.models.entity.model_params import ModelType
|
||||
from core.model_providers.models.reranking.xinference_reranking import XinferenceReranking
|
||||
from core.model_providers.providers.xinference_provider import XinferenceProvider
|
||||
from models.provider import Provider, ProviderType, ProviderModel
|
||||
|
||||
|
||||
def get_mock_provider(valid_server_url, valid_model_uid):
|
||||
return Provider(
|
||||
id='provider_id',
|
||||
tenant_id='tenant_id',
|
||||
provider_name='xinference',
|
||||
provider_type=ProviderType.CUSTOM.value,
|
||||
encrypted_config=json.dumps({'server_url': valid_server_url, 'model_uid': valid_model_uid}),
|
||||
is_valid=True,
|
||||
)
|
||||
|
||||
|
||||
def get_mock_model(mocker):
|
||||
valid_server_url = os.environ['XINFERENCE_SERVER_URL']
|
||||
valid_model_uid = os.environ['XINFERENCE_MODEL_UID']
|
||||
model_name = 'bge-reranker-base'
|
||||
provider = XinferenceProvider(provider=get_mock_provider(valid_server_url, valid_model_uid))
|
||||
|
||||
mock_query = MagicMock()
|
||||
mock_query.filter.return_value.first.return_value = ProviderModel(
|
||||
provider_name='xinference',
|
||||
model_name=model_name,
|
||||
model_type=ModelType.RERANKING.value,
|
||||
encrypted_config=json.dumps({
|
||||
'server_url': valid_server_url,
|
||||
'model_uid': valid_model_uid
|
||||
}),
|
||||
is_valid=True,
|
||||
)
|
||||
mocker.patch('extensions.ext_database.db.session.query', return_value=mock_query)
|
||||
|
||||
return XinferenceReranking(
|
||||
model_provider=provider,
|
||||
name=model_name
|
||||
)
|
||||
|
||||
|
||||
def decrypt_side_effect(tenant_id, encrypted_api_key):
|
||||
return encrypted_api_key
|
||||
|
||||
|
||||
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
|
||||
def test_run(mock_decrypt, mocker):
|
||||
model = get_mock_model(mocker)
|
||||
|
||||
docs = []
|
||||
docs.append(Document(
|
||||
page_content='bye',
|
||||
metadata={
|
||||
"doc_id": 'a',
|
||||
"doc_hash": 'doc_hash',
|
||||
"document_id": 'document_id',
|
||||
"dataset_id": 'dataset_id',
|
||||
}
|
||||
))
|
||||
docs.append(Document(
|
||||
page_content='hello',
|
||||
metadata={
|
||||
"doc_id": 'b',
|
||||
"doc_hash": 'doc_hash',
|
||||
"document_id": 'document_id',
|
||||
"dataset_id": 'dataset_id',
|
||||
}
|
||||
))
|
||||
rst = model.rerank('hello', docs, None, 2)
|
||||
|
||||
assert rst[0].page_content == 'hello'
|
Loading…
x
Reference in New Issue
Block a user