chore(lint): fix quotes for f-string formatting by bumping ruff to 0.9.x (#12702)

This commit is contained in:
Bowen Liang 2025-01-21 10:12:29 +08:00 committed by GitHub
parent 925d69a2ee
commit 166221d784
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
46 changed files with 120 additions and 131 deletions

View File

@ -53,10 +53,12 @@ ignore = [
"FURB152", # math-constant
"UP007", # non-pep604-annotation
"UP032", # f-string
"UP045", # non-pep604-annotation-optional
"B005", # strip-with-multi-characters
"B006", # mutable-argument-default
"B007", # unused-loop-control-variable
"B026", # star-arg-unpacking-after-keyword-arg
"B903", # class-as-data-structure
"B904", # raise-without-from-inside-except
"B905", # zip-without-explicit-strict
"N806", # non-lowercase-variable-in-function

View File

@ -146,7 +146,7 @@ class EndpointConfig(BaseSettings):
)
CONSOLE_WEB_URL: str = Field(
description="Base URL for the console web interface," "used for frontend references and CORS configuration",
description="Base URL for the console web interface,used for frontend references and CORS configuration",
default="",
)

View File

@ -181,7 +181,7 @@ class HostedFetchAppTemplateConfig(BaseSettings):
"""
HOSTED_FETCH_APP_TEMPLATES_MODE: str = Field(
description="Mode for fetching app templates: remote, db, or builtin" " default to remote,",
description="Mode for fetching app templates: remote, db, or builtin default to remote,",
default="remote",
)

View File

@ -56,7 +56,7 @@ class InsertExploreAppListApi(Resource):
app = App.query.filter(App.id == args["app_id"]).first()
if not app:
raise NotFound(f'App \'{args["app_id"]}\' is not found')
raise NotFound(f"App '{args['app_id']}' is not found")
site = app.site
if not site:

View File

@ -457,7 +457,7 @@ class DatasetIndexingEstimateApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider " "in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@ -350,8 +350,7 @@ class DatasetInitApi(Resource):
)
except InvokeAuthorizationError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -526,8 +525,7 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
return response.model_dump(), 200
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@ -168,8 +168,7 @@ class DatasetDocumentSegmentApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -217,8 +216,7 @@ class DatasetDocumentSegmentAddApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -267,8 +265,7 @@ class DatasetDocumentSegmentUpdateApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -437,8 +434,7 @@ class ChildChunkAddApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@ -53,8 +53,7 @@ class SegmentApi(DatasetApiResource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -95,8 +94,7 @@ class SegmentApi(DatasetApiResource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -175,8 +173,7 @@ class DatasetSegmentApi(DatasetApiResource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@ -167,8 +167,7 @@ class AppQueueManager:
else:
if isinstance(data, DeclarativeMeta) or hasattr(data, "_sa_instance_state"):
raise TypeError(
"Critical Error: Passing SQLAlchemy Model instances "
"that cause thread safety issues is not allowed."
"Critical Error: Passing SQLAlchemy Model instances that cause thread safety issues is not allowed."
)

View File

@ -145,7 +145,7 @@ class MessageCycleManage:
# get extension
if "." in message_file.url:
extension = f'.{message_file.url.split(".")[-1]}'
extension = f".{message_file.url.split('.')[-1]}"
if len(extension) > 10:
extension = ".bin"
else:

View File

@ -62,8 +62,9 @@ class ApiExternalDataTool(ExternalDataTool):
if not api_based_extension:
raise ValueError(
"[External data tool] API query failed, variable: {}, "
"error: api_based_extension_id is invalid".format(self.variable)
"[External data tool] API query failed, variable: {}, error: api_based_extension_id is invalid".format(
self.variable
)
)
# decrypt api_key

View File

@ -90,7 +90,7 @@ class File(BaseModel):
def markdown(self) -> str:
url = self.generate_url()
if self.type == FileType.IMAGE:
text = f'![{self.filename or ""}]({url})'
text = f"![{self.filename or ''}]({url})"
else:
text = f"[{self.filename or url}]({url})"

View File

@ -108,7 +108,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
ai_model_entity = self._get_ai_model_entity(base_model_name=base_model_name, model=model)
if not ai_model_entity:
raise CredentialsValidateFailedError(f'Base Model Name {credentials["base_model_name"]} is invalid')
raise CredentialsValidateFailedError(f"Base Model Name {credentials['base_model_name']} is invalid")
try:
client = AzureOpenAI(**self._to_credential_kwargs(credentials))

View File

@ -130,7 +130,7 @@ class AzureOpenAITextEmbeddingModel(_CommonAzureOpenAI, TextEmbeddingModel):
raise CredentialsValidateFailedError("Base Model Name is required")
if not self._get_ai_model_entity(credentials["base_model_name"], model):
raise CredentialsValidateFailedError(f'Base Model Name {credentials["base_model_name"]} is invalid')
raise CredentialsValidateFailedError(f"Base Model Name {credentials['base_model_name']} is invalid")
try:
credentials_kwargs = self._to_credential_kwargs(credentials)

View File

@ -162,9 +162,9 @@ class HuggingfaceHubTextEmbeddingModel(_CommonHuggingfaceHub, TextEmbeddingModel
@staticmethod
def _check_endpoint_url_model_repository_name(credentials: dict, model_name: str):
try:
url = f'{HUGGINGFACE_ENDPOINT_API}{credentials["huggingface_namespace"]}'
url = f"{HUGGINGFACE_ENDPOINT_API}{credentials['huggingface_namespace']}"
headers = {
"Authorization": f'Bearer {credentials["huggingfacehub_api_token"]}',
"Authorization": f"Bearer {credentials['huggingfacehub_api_token']}",
"Content-Type": "application/json",
}

View File

@ -257,8 +257,7 @@ class TongyiLargeLanguageModel(LargeLanguageModel):
for index, response in enumerate(responses):
if response.status_code not in {200, HTTPStatus.OK}:
raise ServiceUnavailableError(
f"Failed to invoke model {model}, status code: {response.status_code}, "
f"message: {response.message}"
f"Failed to invoke model {model}, status code: {response.status_code}, message: {response.message}"
)
resp_finish_reason = response.output.choices[0].finish_reason

View File

@ -146,7 +146,7 @@ class TritonInferenceAILargeLanguageModel(LargeLanguageModel):
elif credentials["completion_type"] == "completion":
completion_type = LLMMode.COMPLETION.value
else:
raise ValueError(f'completion_type {credentials["completion_type"]} is not supported')
raise ValueError(f"completion_type {credentials['completion_type']} is not supported")
entity = AIModelEntity(
model=model,

View File

@ -41,15 +41,15 @@ class BaiduAccessToken:
resp = response.json()
if "error" in resp:
if resp["error"] == "invalid_client":
raise InvalidAPIKeyError(f'Invalid API key or secret key: {resp["error_description"]}')
raise InvalidAPIKeyError(f"Invalid API key or secret key: {resp['error_description']}")
elif resp["error"] == "unknown_error":
raise InternalServerError(f'Internal server error: {resp["error_description"]}')
raise InternalServerError(f"Internal server error: {resp['error_description']}")
elif resp["error"] == "invalid_request":
raise BadRequestError(f'Bad request: {resp["error_description"]}')
raise BadRequestError(f"Bad request: {resp['error_description']}")
elif resp["error"] == "rate_limit_exceeded":
raise RateLimitReachedError(f'Rate limit reached: {resp["error_description"]}')
raise RateLimitReachedError(f"Rate limit reached: {resp['error_description']}")
else:
raise Exception(f'Unknown error: {resp["error_description"]}')
raise Exception(f"Unknown error: {resp['error_description']}")
return resp["access_token"]

View File

@ -406,7 +406,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
elif credentials["completion_type"] == "completion":
completion_type = LLMMode.COMPLETION.value
else:
raise ValueError(f'completion_type {credentials["completion_type"]} is not supported')
raise ValueError(f"completion_type {credentials['completion_type']} is not supported")
else:
extra_args = XinferenceHelper.get_xinference_extra_parameter(
server_url=credentials["server_url"],
@ -472,7 +472,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
api_key = credentials.get("api_key") or "abc"
client = OpenAI(
base_url=f'{credentials["server_url"]}/v1',
base_url=f"{credentials['server_url']}/v1",
api_key=api_key,
max_retries=int(credentials.get("max_retries") or DEFAULT_MAX_RETRIES),
timeout=int(credentials.get("invoke_timeout") or DEFAULT_INVOKE_TIMEOUT),

View File

@ -31,7 +31,7 @@ class FirecrawlApp:
"markdown": data.get("markdown"),
}
else:
raise Exception(f'Failed to scrape URL. Error: {response_data["error"]}')
raise Exception(f"Failed to scrape URL. Error: {response_data['error']}")
elif response.status_code in {402, 409, 500}:
error_message = response.json().get("error", "Unknown error occurred")

View File

@ -358,8 +358,7 @@ class NotionExtractor(BaseExtractor):
if not data_source_binding:
raise Exception(
f"No notion data source binding found for tenant {tenant_id} "
f"and notion workspace {notion_workspace_id}"
f"No notion data source binding found for tenant {tenant_id} and notion workspace {notion_workspace_id}"
)
return cast(str, data_source_binding.access_token)

View File

@ -127,7 +127,7 @@ class AIPPTGenerateToolAdapter:
response = response.json()
if response.get("code") != 0:
raise Exception(f'Failed to create task: {response.get("msg")}')
raise Exception(f"Failed to create task: {response.get('msg')}")
return response.get("data", {}).get("id")
@ -222,7 +222,7 @@ class AIPPTGenerateToolAdapter:
elif model == "wenxin":
response = response.json()
if response.get("code") != 0:
raise Exception(f'Failed to generate content: {response.get("msg")}')
raise Exception(f"Failed to generate content: {response.get('msg')}")
return response.get("data", "")
@ -254,7 +254,7 @@ class AIPPTGenerateToolAdapter:
response = response.json()
if response.get("code") != 0:
raise Exception(f'Failed to generate ppt: {response.get("msg")}')
raise Exception(f"Failed to generate ppt: {response.get('msg')}")
id = response.get("data", {}).get("id")
cover_url = response.get("data", {}).get("cover_url")
@ -270,7 +270,7 @@ class AIPPTGenerateToolAdapter:
response = response.json()
if response.get("code") != 0:
raise Exception(f'Failed to generate ppt: {response.get("msg")}')
raise Exception(f"Failed to generate ppt: {response.get('msg')}")
export_code = response.get("data")
if not export_code:
@ -290,7 +290,7 @@ class AIPPTGenerateToolAdapter:
response = response.json()
if response.get("code") != 0:
raise Exception(f'Failed to generate ppt: {response.get("msg")}')
raise Exception(f"Failed to generate ppt: {response.get('msg')}")
if response.get("msg") == "导出中":
current_iteration += 1
@ -343,7 +343,7 @@ class AIPPTGenerateToolAdapter:
raise Exception(f"Failed to connect to aippt: {response.text}")
response = response.json()
if response.get("code") != 0:
raise Exception(f'Failed to connect to aippt: {response.get("msg")}')
raise Exception(f"Failed to connect to aippt: {response.get('msg')}")
token = response.get("data", {}).get("token")
expire = response.get("data", {}).get("time_expire")
@ -379,7 +379,7 @@ class AIPPTGenerateToolAdapter:
if cls._style_cache[key]["expire"] < now:
del cls._style_cache[key]
key = f'{credentials["aippt_access_key"]}#@#{user_id}'
key = f"{credentials['aippt_access_key']}#@#{user_id}"
if key in cls._style_cache:
return cls._style_cache[key]["colors"], cls._style_cache[key]["styles"]
@ -396,11 +396,11 @@ class AIPPTGenerateToolAdapter:
response = response.json()
if response.get("code") != 0:
raise Exception(f'Failed to connect to aippt: {response.get("msg")}')
raise Exception(f"Failed to connect to aippt: {response.get('msg')}")
colors = [
{
"id": f'id-{item.get("id")}',
"id": f"id-{item.get('id')}",
"name": item.get("name"),
"en_name": item.get("en_name", item.get("name")),
}
@ -408,7 +408,7 @@ class AIPPTGenerateToolAdapter:
]
styles = [
{
"id": f'id-{item.get("id")}',
"id": f"id-{item.get('id')}",
"name": item.get("title"),
}
for item in response.get("data", {}).get("suit_style") or []
@ -454,7 +454,7 @@ class AIPPTGenerateToolAdapter:
response = response.json()
if response.get("code") != 0:
raise Exception(f'Failed to connect to aippt: {response.get("msg")}')
raise Exception(f"Failed to connect to aippt: {response.get('msg')}")
if len(response.get("data", {}).get("list") or []) > 0:
return response.get("data", {}).get("list")[0].get("id")

View File

@ -229,8 +229,7 @@ class NovaReelTool(BuiltinTool):
if async_mode:
return self.create_text_message(
f"Video generation started.\nInvocation ARN: {invocation_arn}\n"
f"Video will be available at: {video_uri}"
f"Video generation started.\nInvocation ARN: {invocation_arn}\nVideo will be available at: {video_uri}"
)
return self._wait_for_completion(bedrock, s3_client, invocation_arn)

View File

@ -65,7 +65,7 @@ class BaiduFieldTranslateTool(BuiltinTool, BaiduTranslateToolBase):
if "trans_result" in result:
result_text = result["trans_result"][0]["dst"]
else:
result_text = f'{result["error_code"]}: {result["error_msg"]}'
result_text = f"{result['error_code']}: {result['error_msg']}"
return self.create_text_message(str(result_text))
except requests.RequestException as e:

View File

@ -52,7 +52,7 @@ class BaiduLanguageTool(BuiltinTool, BaiduTranslateToolBase):
result_text = ""
if result["error_code"] != 0:
result_text = f'{result["error_code"]}: {result["error_msg"]}'
result_text = f"{result['error_code']}: {result['error_msg']}"
else:
result_text = result["data"]["src"]
result_text = self.mapping_result(description_language, result_text)

View File

@ -58,7 +58,7 @@ class BaiduTranslateTool(BuiltinTool, BaiduTranslateToolBase):
if "trans_result" in result:
result_text = result["trans_result"][0]["dst"]
else:
result_text = f'{result["error_code"]}: {result["error_msg"]}'
result_text = f"{result['error_code']}: {result['error_msg']}"
return self.create_text_message(str(result_text))
except requests.RequestException as e:

View File

@ -30,7 +30,7 @@ class BingSearchTool(BuiltinTool):
headers = {"Ocp-Apim-Subscription-Key": subscription_key, "Accept-Language": accept_language}
query = quote(query)
server_url = f'{server_url}?q={query}&mkt={market_code}&count={limit}&responseFilter={",".join(filters)}'
server_url = f"{server_url}?q={query}&mkt={market_code}&count={limit}&responseFilter={','.join(filters)}"
response = get(server_url, headers=headers)
if response.status_code != 200:
@ -47,23 +47,23 @@ class BingSearchTool(BuiltinTool):
results = []
if search_results:
for result in search_results:
url = f': {result["url"]}' if "url" in result else ""
results.append(self.create_text_message(text=f'{result["name"]}{url}'))
url = f": {result['url']}" if "url" in result else ""
results.append(self.create_text_message(text=f"{result['name']}{url}"))
if entities:
for entity in entities:
url = f': {entity["url"]}' if "url" in entity else ""
results.append(self.create_text_message(text=f'{entity.get("name", "")}{url}'))
url = f": {entity['url']}" if "url" in entity else ""
results.append(self.create_text_message(text=f"{entity.get('name', '')}{url}"))
if news:
for news_item in news:
url = f': {news_item["url"]}' if "url" in news_item else ""
results.append(self.create_text_message(text=f'{news_item.get("name", "")}{url}'))
url = f": {news_item['url']}" if "url" in news_item else ""
results.append(self.create_text_message(text=f"{news_item.get('name', '')}{url}"))
if related_searches:
for related in related_searches:
url = f': {related["displayText"]}' if "displayText" in related else ""
results.append(self.create_text_message(text=f'{related.get("displayText", "")}{url}'))
url = f": {related['displayText']}" if "displayText" in related else ""
results.append(self.create_text_message(text=f"{related.get('displayText', '')}{url}"))
return results
elif result_type == "json":
@ -106,29 +106,29 @@ class BingSearchTool(BuiltinTool):
text = ""
if search_results:
for i, result in enumerate(search_results):
text += f'{i + 1}: {result.get("name", "")} - {result.get("snippet", "")}\n'
text += f"{i + 1}: {result.get('name', '')} - {result.get('snippet', '')}\n"
if computation and "expression" in computation and "value" in computation:
text += "\nComputation:\n"
text += f'{computation["expression"]} = {computation["value"]}\n'
text += f"{computation['expression']} = {computation['value']}\n"
if entities:
text += "\nEntities:\n"
for entity in entities:
url = f'- {entity["url"]}' if "url" in entity else ""
text += f'{entity.get("name", "")}{url}\n'
url = f"- {entity['url']}" if "url" in entity else ""
text += f"{entity.get('name', '')}{url}\n"
if news:
text += "\nNews:\n"
for news_item in news:
url = f'- {news_item["url"]}' if "url" in news_item else ""
text += f'{news_item.get("name", "")}{url}\n'
url = f"- {news_item['url']}" if "url" in news_item else ""
text += f"{news_item.get('name', '')}{url}\n"
if related_searches:
text += "\n\nRelated Searches:\n"
for related in related_searches:
url = f'- {related["webSearchUrl"]}' if "webSearchUrl" in related else ""
text += f'{related.get("displayText", "")}{url}\n'
url = f"- {related['webSearchUrl']}" if "webSearchUrl" in related else ""
text += f"{related.get('displayText', '')}{url}\n"
return self.create_text_message(text=self.summary(user_id=user_id, content=text))

View File

@ -83,5 +83,5 @@ class DIDApp:
if status["status"] == "done":
return status
elif status["status"] == "error" or status["status"] == "rejected":
raise HTTPError(f'Talks {id} failed: {status["status"]} {status.get("error", {}).get("description")}')
raise HTTPError(f"Talks {id} failed: {status['status']} {status.get('error', {}).get('description')}")
time.sleep(poll_interval)

View File

@ -74,7 +74,7 @@ class FirecrawlApp:
if response is None:
raise HTTPError("Failed to initiate crawl after multiple retries")
elif response.get("success") == False:
raise HTTPError(f'Failed to crawl: {response.get("error")}')
raise HTTPError(f"Failed to crawl: {response.get('error')}")
job_id: str = response["id"]
if wait:
return self._monitor_job_status(job_id=job_id, poll_interval=poll_interval)
@ -100,7 +100,7 @@ class FirecrawlApp:
if status["status"] == "completed":
return status
elif status["status"] == "failed":
raise HTTPError(f'Job {job_id} failed: {status["error"]}')
raise HTTPError(f"Job {job_id} failed: {status['error']}")
time.sleep(poll_interval)

View File

@ -37,8 +37,9 @@ class GaodeRepositoriesTool(BuiltinTool):
CityCode = City_data["districts"][0]["adcode"]
weatherInfo_response = s.request(
method="GET",
url="{url}/weather/weatherInfo?city={citycode}&extensions=all&key={apikey}&output=json"
"".format(url=api_domain, citycode=CityCode, apikey=self.runtime.credentials.get("api_key")),
url="{url}/weather/weatherInfo?city={citycode}&extensions=all&key={apikey}&output=json".format(
url=api_domain, citycode=CityCode, apikey=self.runtime.credentials.get("api_key")
),
)
weatherInfo_data = weatherInfo_response.json()
if weatherInfo_response.status_code == 200 and weatherInfo_data.get("info") == "OK":

View File

@ -110,7 +110,7 @@ class ListWorksheetRecordsTool(BuiltinTool):
result["rows"].append(self.get_row_field_value(row, schema))
return self.create_text_message(json.dumps(result, ensure_ascii=False))
else:
result_text = f"Found {result['total']} rows in worksheet \"{worksheet_name}\"."
result_text = f'Found {result["total"]} rows in worksheet "{worksheet_name}".'
if result["total"] > 0:
result_text += (
f" The following are {min(limit, result['total'])}"

View File

@ -28,4 +28,4 @@ class BaseStabilityAuthorization:
"""
This method is responsible for generating the authorization headers.
"""
return {"Authorization": f'Bearer {credentials.get("api_key", "")}'}
return {"Authorization": f"Bearer {credentials.get('api_key', '')}"}

View File

@ -38,7 +38,7 @@ class VannaProvider(BuiltinToolProviderController):
tool_parameters={
"model": "chinook",
"db_type": "SQLite",
"url": f'{self._get_protocol_and_main_domain(credentials["base_url"])}/Chinook.sqlite',
"url": f"{self._get_protocol_and_main_domain(credentials['base_url'])}/Chinook.sqlite",
"query": "What are the top 10 customers by sales?",
},
)

View File

@ -84,9 +84,9 @@ class ApiTool(Tool):
if "api_key_header_prefix" in credentials:
api_key_header_prefix = credentials["api_key_header_prefix"]
if api_key_header_prefix == "basic" and credentials["api_key_value"]:
credentials["api_key_value"] = f'Basic {credentials["api_key_value"]}'
credentials["api_key_value"] = f"Basic {credentials['api_key_value']}"
elif api_key_header_prefix == "bearer" and credentials["api_key_value"]:
credentials["api_key_value"] = f'Bearer {credentials["api_key_value"]}'
credentials["api_key_value"] = f"Bearer {credentials['api_key_value']}"
elif api_key_header_prefix == "custom":
pass

View File

@ -29,7 +29,7 @@ class ToolFileMessageTransformer:
user_id=user_id, tenant_id=tenant_id, conversation_id=conversation_id, file_url=message.message
)
url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".png"}'
url = f"/files/tools/{file.id}{guess_extension(file.mimetype) or '.png'}"
result.append(
ToolInvokeMessage(
@ -122,4 +122,4 @@ class ToolFileMessageTransformer:
@classmethod
def get_tool_file_url(cls, tool_file_id: str, extension: Optional[str]) -> str:
return f'/files/tools/{tool_file_id}{extension or ".bin"}'
return f"/files/tools/{tool_file_id}{extension or '.bin'}"

View File

@ -149,7 +149,7 @@ class ApiBasedToolSchemaParser:
if not path:
path = str(uuid.uuid4())
interface["operation"]["operationId"] = f'{path}_{interface["method"]}'
interface["operation"]["operationId"] = f"{path}_{interface['method']}"
bundles.append(
ApiToolBundle(

View File

@ -253,9 +253,9 @@ class Executor:
)
if executor_response.size > threshold_size:
raise ResponseSizeError(
f'{"File" if executor_response.is_file else "Text"} size is too large,'
f' max size is {threshold_size / 1024 / 1024:.2f} MB,'
f' but current size is {executor_response.readable_size}.'
f"{'File' if executor_response.is_file else 'Text'} size is too large,"
f" max size is {threshold_size / 1024 / 1024:.2f} MB,"
f" but current size is {executor_response.readable_size}."
)
return executor_response
@ -338,7 +338,7 @@ class Executor:
if self.auth.config and self.auth.config.header:
authorization_header = self.auth.config.header
if k.lower() == authorization_header.lower():
raw += f'{k}: {"*" * len(v)}\r\n'
raw += f"{k}: {'*' * len(v)}\r\n"
continue
raw += f"{k}: {v}\r\n"

View File

@ -26,7 +26,7 @@ def handle(sender, **kwargs):
tool_runtime=tool_runtime,
provider_name=tool_entity.provider_name,
provider_type=tool_entity.provider_type,
identity_id=f'WORKFLOW.{app.id}.{node_data.get("id")}',
identity_id=f"WORKFLOW.{app.id}.{node_data.get('id')}",
)
manager.delete_tool_parameters_cache()
except:

40
api/poetry.lock generated
View File

@ -8846,29 +8846,29 @@ pyasn1 = ">=0.1.3"
[[package]]
name = "ruff"
version = "0.8.6"
version = "0.9.2"
description = "An extremely fast Python linter and code formatter, written in Rust."
optional = false
python-versions = ">=3.7"
files = [
{file = "ruff-0.8.6-py3-none-linux_armv6l.whl", hash = "sha256:defed167955d42c68b407e8f2e6f56ba52520e790aba4ca707a9c88619e580e3"},
{file = "ruff-0.8.6-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:54799ca3d67ae5e0b7a7ac234baa657a9c1784b48ec954a094da7c206e0365b1"},
{file = "ruff-0.8.6-py3-none-macosx_11_0_arm64.whl", hash = "sha256:e88b8f6d901477c41559ba540beeb5a671e14cd29ebd5683903572f4b40a9807"},
{file = "ruff-0.8.6-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0509e8da430228236a18a677fcdb0c1f102dd26d5520f71f79b094963322ed25"},
{file = "ruff-0.8.6-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:91a7ddb221779871cf226100e677b5ea38c2d54e9e2c8ed847450ebbdf99b32d"},
{file = "ruff-0.8.6-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:248b1fb3f739d01d528cc50b35ee9c4812aa58cc5935998e776bf8ed5b251e75"},
{file = "ruff-0.8.6-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:bc3c083c50390cf69e7e1b5a5a7303898966be973664ec0c4a4acea82c1d4315"},
{file = "ruff-0.8.6-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:52d587092ab8df308635762386f45f4638badb0866355b2b86760f6d3c076188"},
{file = "ruff-0.8.6-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:61323159cf21bc3897674e5adb27cd9e7700bab6b84de40d7be28c3d46dc67cf"},
{file = "ruff-0.8.6-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ae4478b1471fc0c44ed52a6fb787e641a2ac58b1c1f91763bafbc2faddc5117"},
{file = "ruff-0.8.6-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:0c000a471d519b3e6cfc9c6680025d923b4ca140ce3e4612d1a2ef58e11f11fe"},
{file = "ruff-0.8.6-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:9257aa841e9e8d9b727423086f0fa9a86b6b420fbf4bf9e1465d1250ce8e4d8d"},
{file = "ruff-0.8.6-py3-none-musllinux_1_2_i686.whl", hash = "sha256:45a56f61b24682f6f6709636949ae8cc82ae229d8d773b4c76c09ec83964a95a"},
{file = "ruff-0.8.6-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:496dd38a53aa173481a7d8866bcd6451bd934d06976a2505028a50583e001b76"},
{file = "ruff-0.8.6-py3-none-win32.whl", hash = "sha256:e169ea1b9eae61c99b257dc83b9ee6c76f89042752cb2d83486a7d6e48e8f764"},
{file = "ruff-0.8.6-py3-none-win_amd64.whl", hash = "sha256:f1d70bef3d16fdc897ee290d7d20da3cbe4e26349f62e8a0274e7a3f4ce7a905"},
{file = "ruff-0.8.6-py3-none-win_arm64.whl", hash = "sha256:7d7fc2377a04b6e04ffe588caad613d0c460eb2ecba4c0ccbbfe2bc973cbc162"},
{file = "ruff-0.8.6.tar.gz", hash = "sha256:dcad24b81b62650b0eb8814f576fc65cfee8674772a6e24c9b747911801eeaa5"},
{file = "ruff-0.9.2-py3-none-linux_armv6l.whl", hash = "sha256:80605a039ba1454d002b32139e4970becf84b5fee3a3c3bf1c2af6f61a784347"},
{file = "ruff-0.9.2-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:b9aab82bb20afd5f596527045c01e6ae25a718ff1784cb92947bff1f83068b00"},
{file = "ruff-0.9.2-py3-none-macosx_11_0_arm64.whl", hash = "sha256:fbd337bac1cfa96be615f6efcd4bc4d077edbc127ef30e2b8ba2a27e18c054d4"},
{file = "ruff-0.9.2-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82b35259b0cbf8daa22a498018e300b9bb0174c2bbb7bcba593935158a78054d"},
{file = "ruff-0.9.2-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8b6a9701d1e371bf41dca22015c3f89769da7576884d2add7317ec1ec8cb9c3c"},
{file = "ruff-0.9.2-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9cc53e68b3c5ae41e8faf83a3b89f4a5d7b2cb666dff4b366bb86ed2a85b481f"},
{file = "ruff-0.9.2-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:8efd9da7a1ee314b910da155ca7e8953094a7c10d0c0a39bfde3fcfd2a015684"},
{file = "ruff-0.9.2-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3292c5a22ea9a5f9a185e2d131dc7f98f8534a32fb6d2ee7b9944569239c648d"},
{file = "ruff-0.9.2-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1a605fdcf6e8b2d39f9436d343d1f0ff70c365a1e681546de0104bef81ce88df"},
{file = "ruff-0.9.2-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c547f7f256aa366834829a08375c297fa63386cbe5f1459efaf174086b564247"},
{file = "ruff-0.9.2-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:d18bba3d3353ed916e882521bc3e0af403949dbada344c20c16ea78f47af965e"},
{file = "ruff-0.9.2-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:b338edc4610142355ccf6b87bd356729b62bf1bc152a2fad5b0c7dc04af77bfe"},
{file = "ruff-0.9.2-py3-none-musllinux_1_2_i686.whl", hash = "sha256:492a5e44ad9b22a0ea98cf72e40305cbdaf27fac0d927f8bc9e1df316dcc96eb"},
{file = "ruff-0.9.2-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:af1e9e9fe7b1f767264d26b1075ac4ad831c7db976911fa362d09b2d0356426a"},
{file = "ruff-0.9.2-py3-none-win32.whl", hash = "sha256:71cbe22e178c5da20e1514e1e01029c73dc09288a8028a5d3446e6bba87a5145"},
{file = "ruff-0.9.2-py3-none-win_amd64.whl", hash = "sha256:c5e1d6abc798419cf46eed03f54f2e0c3adb1ad4b801119dedf23fcaf69b55b5"},
{file = "ruff-0.9.2-py3-none-win_arm64.whl", hash = "sha256:a1b63fa24149918f8b37cef2ee6fff81f24f0d74b6f0bdc37bc3e1f2143e41c6"},
{file = "ruff-0.9.2.tar.gz", hash = "sha256:b5eceb334d55fae5f316f783437392642ae18e16dcf4f1858d55d3c2a0f8f5d0"},
]
[[package]]
@ -11384,4 +11384,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.11,<3.13"
content-hash = "3bb0ce64c87712cf105c75105a0ca75c0523d6b27001ff6a623bb2a0d1343003"
content-hash = "3ac10f0687162281a0cd083a52cba5508b086dd42d63dd68175209e88b249142"

View File

@ -191,4 +191,4 @@ pytest-mock = "~3.14.0"
optional = true
[tool.poetry.group.lint.dependencies]
dotenv-linter = "~0.5.0"
ruff = "~0.8.1"
ruff = "~0.9.2"

View File

@ -221,8 +221,7 @@ class DatasetService:
)
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(f"The dataset in unavailable, due to: {ex.description}")

View File

@ -155,7 +155,7 @@ class ExternalDatasetService:
if custom_parameters:
for parameter in custom_parameters:
if parameter.get("required", False) and not process_parameter.get(parameter.get("name")):
raise ValueError(f'{parameter.get("name")} is required')
raise ValueError(f"{parameter.get('name')} is required")
@staticmethod
def process_external_api(

View File

@ -44,6 +44,6 @@ def test_duplicated_dependency_crossing_groups() -> None:
dependency_names = list(dependencies.keys())
all_dependency_names.extend(dependency_names)
expected_all_dependency_names = set(all_dependency_names)
assert sorted(expected_all_dependency_names) == sorted(
all_dependency_names
), "Duplicated dependencies crossing groups are found"
assert sorted(expected_all_dependency_names) == sorted(all_dependency_names), (
"Duplicated dependencies crossing groups are found"
)

View File

@ -89,9 +89,9 @@ class TestOpenSearchVector:
print("Actual document ID:", hits_by_vector[0].metadata["document_id"] if hits_by_vector else "No hits")
assert len(hits_by_vector) > 0, f"Expected at least one hit, got {len(hits_by_vector)}"
assert (
hits_by_vector[0].metadata["document_id"] == self.example_doc_id
), f"Expected document ID {self.example_doc_id}, got {hits_by_vector[0].metadata['document_id']}"
assert hits_by_vector[0].metadata["document_id"] == self.example_doc_id, (
f"Expected document ID {self.example_doc_id}, got {hits_by_vector[0].metadata['document_id']}"
)
def test_get_ids_by_metadata_field(self):
mock_response = {"hits": {"total": {"value": 1}, "hits": [{"_id": "mock_id"}]}}

View File

@ -438,9 +438,9 @@ def test_fetch_prompt_messages__basic(faker, llm_node, model_config):
# Verify the result
assert len(prompt_messages) == len(scenario.expected_messages), f"Scenario failed: {scenario.description}"
assert (
prompt_messages == scenario.expected_messages
), f"Message content mismatch in scenario: {scenario.description}"
assert prompt_messages == scenario.expected_messages, (
f"Message content mismatch in scenario: {scenario.description}"
)
def test_handle_list_messages_basic(llm_node):

View File

@ -401,8 +401,7 @@ def test__convert_to_llm_node_for_workflow_advanced_completion_model(default_var
prompt_template = PromptTemplateEntity(
prompt_type=PromptTemplateEntity.PromptType.ADVANCED,
advanced_completion_prompt_template=AdvancedCompletionPromptTemplateEntity(
prompt="You are a helpful assistant named {{name}}.\n\nContext:\n{{#context#}}\n\n"
"Human: hi\nAssistant: ",
prompt="You are a helpful assistant named {{name}}.\n\nContext:\n{{#context#}}\n\nHuman: hi\nAssistant: ",
role_prefix=AdvancedCompletionPromptTemplateEntity.RolePrefixEntity(user="Human", assistant="Assistant"),
),
)