mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-14 05:16:00 +08:00
feat(api): support wenxin bge-large and tao embedding model. (#7393)
This commit is contained in:
parent
31f9977411
commit
1f944c6eeb
@ -118,6 +118,9 @@ class _CommonWenxin:
|
|||||||
'ernie-4.0-turbo-8k-preview': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-4.0-turbo-8k-preview',
|
'ernie-4.0-turbo-8k-preview': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-4.0-turbo-8k-preview',
|
||||||
'yi_34b_chat': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/yi_34b_chat',
|
'yi_34b_chat': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/yi_34b_chat',
|
||||||
'embedding-v1': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/embedding-v1',
|
'embedding-v1': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/embedding-v1',
|
||||||
|
'bge-large-en': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/bge_large_en',
|
||||||
|
'bge-large-zh': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/bge_large_zh',
|
||||||
|
'tao-8k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/tao_8k',
|
||||||
}
|
}
|
||||||
|
|
||||||
function_calling_supports = [
|
function_calling_supports = [
|
||||||
|
@ -0,0 +1,9 @@
|
|||||||
|
model: bge-large-en
|
||||||
|
model_type: text-embedding
|
||||||
|
model_properties:
|
||||||
|
context_size: 512
|
||||||
|
max_chunks: 16
|
||||||
|
pricing:
|
||||||
|
input: '0.0005'
|
||||||
|
unit: '0.001'
|
||||||
|
currency: RMB
|
@ -0,0 +1,9 @@
|
|||||||
|
model: bge-large-zh
|
||||||
|
model_type: text-embedding
|
||||||
|
model_properties:
|
||||||
|
context_size: 512
|
||||||
|
max_chunks: 16
|
||||||
|
pricing:
|
||||||
|
input: '0.0005'
|
||||||
|
unit: '0.001'
|
||||||
|
currency: RMB
|
@ -0,0 +1,9 @@
|
|||||||
|
model: tao-8k
|
||||||
|
model_type: text-embedding
|
||||||
|
model_properties:
|
||||||
|
context_size: 8192
|
||||||
|
max_chunks: 1
|
||||||
|
pricing:
|
||||||
|
input: '0.0005'
|
||||||
|
unit: '0.001'
|
||||||
|
currency: RMB
|
@ -5,7 +5,7 @@ from core.model_runtime.entities.text_embedding_entities import TextEmbeddingRes
|
|||||||
from core.model_runtime.model_providers.wenxin.text_embedding.text_embedding import WenxinTextEmbeddingModel
|
from core.model_runtime.model_providers.wenxin.text_embedding.text_embedding import WenxinTextEmbeddingModel
|
||||||
|
|
||||||
|
|
||||||
def test_invoke_embedding_model():
|
def test_invoke_embedding_v1():
|
||||||
sleep(3)
|
sleep(3)
|
||||||
model = WenxinTextEmbeddingModel()
|
model = WenxinTextEmbeddingModel()
|
||||||
|
|
||||||
@ -22,3 +22,60 @@ def test_invoke_embedding_model():
|
|||||||
assert isinstance(response, TextEmbeddingResult)
|
assert isinstance(response, TextEmbeddingResult)
|
||||||
assert len(response.embeddings) == 3
|
assert len(response.embeddings) == 3
|
||||||
assert isinstance(response.embeddings[0], list)
|
assert isinstance(response.embeddings[0], list)
|
||||||
|
|
||||||
|
|
||||||
|
def test_invoke_embedding_bge_large_en():
|
||||||
|
sleep(3)
|
||||||
|
model = WenxinTextEmbeddingModel()
|
||||||
|
|
||||||
|
response = model.invoke(
|
||||||
|
model='bge-large-en',
|
||||||
|
credentials={
|
||||||
|
'api_key': os.environ.get('WENXIN_API_KEY'),
|
||||||
|
'secret_key': os.environ.get('WENXIN_SECRET_KEY')
|
||||||
|
},
|
||||||
|
texts=['hello', '你好', 'xxxxx'],
|
||||||
|
user="abc-123"
|
||||||
|
)
|
||||||
|
|
||||||
|
assert isinstance(response, TextEmbeddingResult)
|
||||||
|
assert len(response.embeddings) == 3
|
||||||
|
assert isinstance(response.embeddings[0], list)
|
||||||
|
|
||||||
|
|
||||||
|
def test_invoke_embedding_bge_large_zh():
|
||||||
|
sleep(3)
|
||||||
|
model = WenxinTextEmbeddingModel()
|
||||||
|
|
||||||
|
response = model.invoke(
|
||||||
|
model='bge-large-zh',
|
||||||
|
credentials={
|
||||||
|
'api_key': os.environ.get('WENXIN_API_KEY'),
|
||||||
|
'secret_key': os.environ.get('WENXIN_SECRET_KEY')
|
||||||
|
},
|
||||||
|
texts=['hello', '你好', 'xxxxx'],
|
||||||
|
user="abc-123"
|
||||||
|
)
|
||||||
|
|
||||||
|
assert isinstance(response, TextEmbeddingResult)
|
||||||
|
assert len(response.embeddings) == 3
|
||||||
|
assert isinstance(response.embeddings[0], list)
|
||||||
|
|
||||||
|
|
||||||
|
def test_invoke_embedding_tao_8k():
|
||||||
|
sleep(3)
|
||||||
|
model = WenxinTextEmbeddingModel()
|
||||||
|
|
||||||
|
response = model.invoke(
|
||||||
|
model='tao-8k',
|
||||||
|
credentials={
|
||||||
|
'api_key': os.environ.get('WENXIN_API_KEY'),
|
||||||
|
'secret_key': os.environ.get('WENXIN_SECRET_KEY')
|
||||||
|
},
|
||||||
|
texts=['hello', '你好', 'xxxxx'],
|
||||||
|
user="abc-123"
|
||||||
|
)
|
||||||
|
|
||||||
|
assert isinstance(response, TextEmbeddingResult)
|
||||||
|
assert len(response.embeddings) == 3
|
||||||
|
assert isinstance(response.embeddings[0], list)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user