mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-04-21 21:29:48 +08:00
Retrieval Service efficiency optimization (#13543)
This commit is contained in:
parent
566e548713
commit
222df44d21
@ -1,3 +1,4 @@
|
||||
import os
|
||||
from typing import Any, Literal, Optional
|
||||
from urllib.parse import quote_plus
|
||||
|
||||
@ -166,6 +167,11 @@ class DatabaseConfig(BaseSettings):
|
||||
default=False,
|
||||
)
|
||||
|
||||
RETRIEVAL_SERVICE_WORKER: NonNegativeInt = Field(
|
||||
description="If True, enables the retrieval service worker.",
|
||||
default=os.cpu_count(),
|
||||
)
|
||||
|
||||
@computed_field
|
||||
def SQLALCHEMY_ENGINE_OPTIONS(self) -> dict[str, Any]:
|
||||
return {
|
||||
|
@ -1,9 +1,11 @@
|
||||
import concurrent.futures
|
||||
import json
|
||||
import threading
|
||||
from typing import Optional
|
||||
|
||||
from flask import Flask, current_app
|
||||
from sqlalchemy.orm import load_only
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
|
||||
from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.datasource.vdb.vector_factory import Vector
|
||||
@ -27,6 +29,7 @@ default_retrieval_model = {
|
||||
|
||||
|
||||
class RetrievalService:
|
||||
# Cache precompiled regular expressions to avoid repeated compilation
|
||||
@classmethod
|
||||
def retrieve(
|
||||
cls,
|
||||
@ -41,74 +44,62 @@ class RetrievalService:
|
||||
):
|
||||
if not query:
|
||||
return []
|
||||
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
||||
if not dataset:
|
||||
return []
|
||||
|
||||
dataset = cls._get_dataset(dataset_id)
|
||||
if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
|
||||
return []
|
||||
|
||||
all_documents: list[Document] = []
|
||||
threads: list[threading.Thread] = []
|
||||
exceptions: list[str] = []
|
||||
# retrieval_model source with keyword
|
||||
|
||||
# Optimize multithreading with thread pools
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=dify_config.RETRIEVAL_SERVICE_WORKER) as executor: # type: ignore
|
||||
futures = []
|
||||
if retrieval_method == "keyword_search":
|
||||
keyword_thread = threading.Thread(
|
||||
target=RetrievalService.keyword_search,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"dataset_id": dataset_id,
|
||||
"query": query,
|
||||
"top_k": top_k,
|
||||
"all_documents": all_documents,
|
||||
"exceptions": exceptions,
|
||||
},
|
||||
futures.append(
|
||||
executor.submit(
|
||||
cls.keyword_search,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
dataset_id=dataset_id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
all_documents=all_documents,
|
||||
exceptions=exceptions,
|
||||
)
|
||||
)
|
||||
threads.append(keyword_thread)
|
||||
keyword_thread.start()
|
||||
# retrieval_model source with semantic
|
||||
if RetrievalMethod.is_support_semantic_search(retrieval_method):
|
||||
embedding_thread = threading.Thread(
|
||||
target=RetrievalService.embedding_search,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"dataset_id": dataset_id,
|
||||
"query": query,
|
||||
"top_k": top_k,
|
||||
"score_threshold": score_threshold,
|
||||
"reranking_model": reranking_model,
|
||||
"all_documents": all_documents,
|
||||
"retrieval_method": retrieval_method,
|
||||
"exceptions": exceptions,
|
||||
},
|
||||
futures.append(
|
||||
executor.submit(
|
||||
cls.embedding_search,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
dataset_id=dataset_id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
all_documents=all_documents,
|
||||
retrieval_method=retrieval_method,
|
||||
exceptions=exceptions,
|
||||
)
|
||||
)
|
||||
threads.append(embedding_thread)
|
||||
embedding_thread.start()
|
||||
|
||||
# retrieval source with full text
|
||||
if RetrievalMethod.is_support_fulltext_search(retrieval_method):
|
||||
full_text_index_thread = threading.Thread(
|
||||
target=RetrievalService.full_text_index_search,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"dataset_id": dataset_id,
|
||||
"query": query,
|
||||
"retrieval_method": retrieval_method,
|
||||
"score_threshold": score_threshold,
|
||||
"top_k": top_k,
|
||||
"reranking_model": reranking_model,
|
||||
"all_documents": all_documents,
|
||||
"exceptions": exceptions,
|
||||
},
|
||||
futures.append(
|
||||
executor.submit(
|
||||
cls.full_text_index_search,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
dataset_id=dataset_id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
all_documents=all_documents,
|
||||
retrieval_method=retrieval_method,
|
||||
exceptions=exceptions,
|
||||
)
|
||||
threads.append(full_text_index_thread)
|
||||
full_text_index_thread.start()
|
||||
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
)
|
||||
concurrent.futures.wait(futures, timeout=30, return_when=concurrent.futures.ALL_COMPLETED)
|
||||
|
||||
if exceptions:
|
||||
exception_message = ";\n".join(exceptions)
|
||||
raise ValueError(exception_message)
|
||||
raise ValueError(";\n".join(exceptions))
|
||||
|
||||
if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
|
||||
data_post_processor = DataPostProcessor(
|
||||
@ -133,18 +124,21 @@ class RetrievalService:
|
||||
)
|
||||
return all_documents
|
||||
|
||||
@classmethod
|
||||
def _get_dataset(cls, dataset_id: str) -> Optional[Dataset]:
|
||||
return db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
||||
|
||||
@classmethod
|
||||
def keyword_search(
|
||||
cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list
|
||||
):
|
||||
with flask_app.app_context():
|
||||
try:
|
||||
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
||||
dataset = cls._get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise ValueError("dataset not found")
|
||||
|
||||
keyword = Keyword(dataset=dataset)
|
||||
|
||||
documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k)
|
||||
all_documents.extend(documents)
|
||||
except Exception as e:
|
||||
@ -165,12 +159,11 @@ class RetrievalService:
|
||||
):
|
||||
with flask_app.app_context():
|
||||
try:
|
||||
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
||||
dataset = cls._get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise ValueError("dataset not found")
|
||||
|
||||
vector = Vector(dataset=dataset)
|
||||
|
||||
documents = vector.search_by_vector(
|
||||
query,
|
||||
search_type="similarity_score_threshold",
|
||||
@ -187,7 +180,7 @@ class RetrievalService:
|
||||
and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
|
||||
):
|
||||
data_post_processor = DataPostProcessor(
|
||||
str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
|
||||
str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL.value), reranking_model, None, False
|
||||
)
|
||||
all_documents.extend(
|
||||
data_post_processor.invoke(
|
||||
@ -217,13 +210,11 @@ class RetrievalService:
|
||||
):
|
||||
with flask_app.app_context():
|
||||
try:
|
||||
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
||||
dataset = cls._get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise ValueError("dataset not found")
|
||||
|
||||
vector_processor = Vector(
|
||||
dataset=dataset,
|
||||
)
|
||||
vector_processor = Vector(dataset=dataset)
|
||||
|
||||
documents = vector_processor.search_by_full_text(cls.escape_query_for_search(query), top_k=top_k)
|
||||
if documents:
|
||||
@ -234,7 +225,7 @@ class RetrievalService:
|
||||
and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
|
||||
):
|
||||
data_post_processor = DataPostProcessor(
|
||||
str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
|
||||
str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL.value), reranking_model, None, False
|
||||
)
|
||||
all_documents.extend(
|
||||
data_post_processor.invoke(
|
||||
@ -253,34 +244,74 @@ class RetrievalService:
|
||||
def escape_query_for_search(query: str) -> str:
|
||||
return json.dumps(query).strip('"')
|
||||
|
||||
@staticmethod
|
||||
def format_retrieval_documents(documents: list[Document]) -> list[RetrievalSegments]:
|
||||
@classmethod
|
||||
def format_retrieval_documents(cls, documents: list[Document]) -> list[RetrievalSegments]:
|
||||
"""Format retrieval documents with optimized batch processing"""
|
||||
if not documents:
|
||||
return []
|
||||
|
||||
try:
|
||||
# Collect document IDs
|
||||
document_ids = {doc.metadata.get("document_id") for doc in documents if "document_id" in doc.metadata}
|
||||
if not document_ids:
|
||||
return []
|
||||
|
||||
# Batch query dataset documents
|
||||
dataset_documents = {
|
||||
doc.id: doc
|
||||
for doc in db.session.query(DatasetDocument)
|
||||
.filter(DatasetDocument.id.in_(document_ids))
|
||||
.options(load_only(DatasetDocument.id, DatasetDocument.doc_form, DatasetDocument.dataset_id))
|
||||
.all()
|
||||
}
|
||||
|
||||
records = []
|
||||
include_segment_ids = []
|
||||
include_segment_ids = set()
|
||||
segment_child_map = {}
|
||||
|
||||
# Process documents
|
||||
for document in documents:
|
||||
document_id = document.metadata.get("document_id")
|
||||
dataset_document = db.session.query(DatasetDocument).filter(DatasetDocument.id == document_id).first()
|
||||
if dataset_document:
|
||||
if document_id not in dataset_documents:
|
||||
continue
|
||||
|
||||
dataset_document = dataset_documents[document_id]
|
||||
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
# Handle parent-child documents
|
||||
child_index_node_id = document.metadata.get("doc_id")
|
||||
result = (
|
||||
db.session.query(ChildChunk, DocumentSegment)
|
||||
.join(DocumentSegment, ChildChunk.segment_id == DocumentSegment.id)
|
||||
|
||||
child_chunk = (
|
||||
db.session.query(ChildChunk).filter(ChildChunk.index_node_id == child_index_node_id).first()
|
||||
)
|
||||
|
||||
if not child_chunk:
|
||||
continue
|
||||
|
||||
segment = (
|
||||
db.session.query(DocumentSegment)
|
||||
.filter(
|
||||
ChildChunk.index_node_id == child_index_node_id,
|
||||
DocumentSegment.dataset_id == dataset_document.dataset_id,
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.id == child_chunk.segment_id,
|
||||
)
|
||||
.options(
|
||||
load_only(
|
||||
DocumentSegment.id,
|
||||
DocumentSegment.content,
|
||||
DocumentSegment.answer,
|
||||
DocumentSegment.doc_metadata,
|
||||
)
|
||||
)
|
||||
.first()
|
||||
)
|
||||
if result:
|
||||
child_chunk, segment = result
|
||||
|
||||
if not segment:
|
||||
continue
|
||||
|
||||
if segment.id not in include_segment_ids:
|
||||
include_segment_ids.append(segment.id)
|
||||
include_segment_ids.add(segment.id)
|
||||
child_chunk_detail = {
|
||||
"id": child_chunk.id,
|
||||
"content": child_chunk.content,
|
||||
@ -308,9 +339,10 @@ class RetrievalService:
|
||||
segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
|
||||
)
|
||||
else:
|
||||
# Handle normal documents
|
||||
index_node_id = document.metadata.get("doc_id")
|
||||
if not index_node_id:
|
||||
continue
|
||||
else:
|
||||
index_node_id = document.metadata["doc_id"]
|
||||
|
||||
segment = (
|
||||
db.session.query(DocumentSegment)
|
||||
@ -325,16 +357,24 @@ class RetrievalService:
|
||||
|
||||
if not segment:
|
||||
continue
|
||||
include_segment_ids.append(segment.id)
|
||||
|
||||
include_segment_ids.add(segment.id)
|
||||
record = {
|
||||
"segment": segment,
|
||||
"score": document.metadata.get("score", None),
|
||||
"score": document.metadata.get("score"), # type: ignore
|
||||
"segment_metadata": segment.doc_metadata,
|
||||
}
|
||||
|
||||
records.append(record)
|
||||
|
||||
# Add child chunks information to records
|
||||
for record in records:
|
||||
if record["segment"].id in segment_child_map:
|
||||
record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks", None)
|
||||
record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks") # type: ignore
|
||||
record["score"] = segment_child_map[record["segment"].id]["max_score"]
|
||||
|
||||
return [RetrievalSegments(**record) for record in records]
|
||||
except Exception as e:
|
||||
db.session.rollback()
|
||||
raise e
|
||||
finally:
|
||||
db.session.close()
|
||||
|
Loading…
x
Reference in New Issue
Block a user