diff --git a/README.md b/README.md index 75094d39db..f6d14bb840 100644 --- a/README.md +++ b/README.md @@ -168,7 +168,7 @@ Star Dify on GitHub and be instantly notified of new releases. > Before installing Dify, make sure your machine meets the following minimum system requirements: > >- CPU >= 2 Core ->- RAM >= 4GB +>- RAM >= 4 GiB
diff --git a/README_CN.md b/README_CN.md index 4553524ce5..689f98ccf4 100644 --- a/README_CN.md +++ b/README_CN.md @@ -174,7 +174,7 @@ Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI 在安装 Dify 之前,请确保您的机器满足以下最低系统要求: - CPU >= 2 Core -- RAM >= 4GB +- RAM >= 4 GiB ### 快速启动 diff --git a/api/services/enterprise/base.py b/api/services/enterprise/base.py index 7d4fdfd2d0..380051b40d 100644 --- a/api/services/enterprise/base.py +++ b/api/services/enterprise/base.py @@ -1,4 +1,5 @@ import os +from urllib.parse import urljoin import requests @@ -15,8 +16,7 @@ class EnterpriseRequest: @classmethod def send_request(cls, method, endpoint, json=None, params=None): headers = {"Content-Type": "application/json", "Enterprise-Api-Secret-Key": cls.secret_key} - - url = f"{cls.base_url}{endpoint}" + url = urljoin(cls.base_url, endpoint) response = requests.request(method, url, json=json, params=params, headers=headers, proxies=cls.proxies) return response.json() diff --git a/api/tests/unit_tests/core/model_runtime/model_providers/wenxin/test_text_embedding.py b/api/tests/unit_tests/core/model_runtime/model_providers/wenxin/test_text_embedding.py index 5b159b49b6..a301f56d75 100644 --- a/api/tests/unit_tests/core/model_runtime/model_providers/wenxin/test_text_embedding.py +++ b/api/tests/unit_tests/core/model_runtime/model_providers/wenxin/test_text_embedding.py @@ -1,3 +1,5 @@ +import string + import numpy as np from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult @@ -31,7 +33,7 @@ def test_max_chunks(): max_chunks = embedding_model._get_max_chunks(model, credentials) embedding_model._create_text_embedding = _create_text_embedding - texts = ["0123456789" for i in range(0, max_chunks * 2)] + texts = [string.digits for i in range(0, max_chunks * 2)] result: TextEmbeddingResult = embedding_model.invoke(model, credentials, texts, "test") assert len(result.embeddings) == max_chunks * 2