Merge branch 'feat/support-remove-first-and-remove-last-in-variable-assigner' into deploy/dev

This commit is contained in:
-LAN- 2025-04-30 15:09:10 +08:00
commit 39c651edb3
No known key found for this signature in database
GPG Key ID: 6BA0D108DED011FF
472 changed files with 3484 additions and 2009 deletions

View File

@ -34,4 +34,4 @@ if you see such error message when you open this project in codespaces:
![Alt text](troubleshooting.png)
a simple workaround is change `/signin` endpoint into another one, then login with GitHub account and close the tab, then change it back to `/signin` endpoint. Then all things will be fine.
The reason is `signin` endpoint is not allowed in codespaces, details can be found [here](https://github.com/orgs/community/discussions/5204)
The reason is `signin` endpoint is not allowed in codespaces, details can be found [here](https://github.com/orgs/community/discussions/5204)

View File

@ -2,7 +2,7 @@
// README at: https://github.com/devcontainers/templates/tree/main/src/anaconda
{
"name": "Python 3.12",
"build": {
"build": {
"context": "..",
"dockerfile": "Dockerfile"
},

View File

@ -1,3 +1,3 @@
This file copied into the container along with environment.yml* from the parent
folder. This file is included to prevents the Dockerfile COPY instruction from
failing if no environment.yml is found.
folder. This file is included to prevents the Dockerfile COPY instruction from
failing if no environment.yml is found.

View File

@ -5,18 +5,35 @@ root = true
# Unix-style newlines with a newline ending every file
[*]
charset = utf-8
end_of_line = lf
insert_final_newline = true
trim_trailing_whitespace = true
[*.py]
indent_size = 4
indent_style = space
[*.{yml,yaml}]
indent_style = space
indent_size = 2
[*.toml]
indent_size = 4
indent_style = space
# Markdown and MDX are whitespace sensitive languages.
# Do not remove trailing spaces.
[*.{md,mdx}]
trim_trailing_whitespace = false
# Matches multiple files with brace expansion notation
# Set default charset
[*.{js,tsx}]
charset = utf-8
indent_style = space
indent_size = 2
# Matches the exact files either package.json or .travis.yml
[{package.json,.travis.yml}]
# Matches the exact files package.json
[package.json]
indent_style = space
indent_size = 2

2
.gitattributes vendored
View File

@ -1,5 +1,5 @@
# Ensure that .sh scripts use LF as line separator, even if they are checked out
# to Windows(NTFS) file-system, by a user of Docker for Windows.
# to Windows(NTFS) file-system, by a user of Docker for Windows.
# These .sh scripts will be run from the Container after `docker compose up -d`.
# If they appear to be CRLF style, Dash from the Container will fail to execute
# them.

View File

@ -0,0 +1,22 @@
{
"Verbose": false,
"Debug": false,
"IgnoreDefaults": false,
"SpacesAfterTabs": false,
"NoColor": false,
"Exclude": [
"^web/public/vs/",
"^web/public/pdf.worker.min.mjs$",
"web/app/components/base/icons/src/vender/"
],
"AllowedContentTypes": [],
"PassedFiles": [],
"Disable": {
"EndOfLine": false,
"Indentation": false,
"IndentSize": true,
"InsertFinalNewline": false,
"TrimTrailingWhitespace": false,
"MaxLineLength": false
}
}

View File

@ -9,6 +9,12 @@ concurrency:
group: style-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
permissions:
checks: write
statuses: write
contents: read
jobs:
python-style:
name: Python Style
@ -163,3 +169,14 @@ jobs:
VALIDATE_DOCKERFILE_HADOLINT: true
VALIDATE_XML: true
VALIDATE_YAML: true
- name: EditorConfig checks
uses: super-linter/super-linter/slim@v7
env:
DEFAULT_BRANCH: main
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
IGNORE_GENERATED_FILES: true
IGNORE_GITIGNORED_FILES: true
# EditorConfig validation
VALIDATE_EDITORCONFIG: true
EDITORCONFIG_FILE_NAME: editorconfig-checker.json

View File

@ -90,4 +90,4 @@ Recomendamos revisar este documento cuidadosamente antes de proceder con la conf
No dudes en contactarnos si encuentras algún problema durante el proceso de configuración.
## Obteniendo Ayuda
Si alguna vez te quedas atascado o tienes una pregunta urgente mientras contribuyes, simplemente envíanos tus consultas a través del issue relacionado de GitHub, o únete a nuestro [Discord](https://discord.gg/8Tpq4AcN9c) para una charla rápida.
Si alguna vez te quedas atascado o tienes una pregunta urgente mientras contribuyes, simplemente envíanos tus consultas a través del issue relacionado de GitHub, o únete a nuestro [Discord](https://discord.gg/8Tpq4AcN9c) para una charla rápida.

View File

@ -90,4 +90,4 @@ Nous recommandons de revoir attentivement ce document avant de procéder à la c
N'hésitez pas à nous contacter si vous rencontrez des problèmes pendant le processus de configuration.
## Obtenir de l'aide
Si jamais vous êtes bloqué ou avez une question urgente en contribuant, envoyez-nous simplement vos questions via le problème GitHub concerné, ou rejoignez notre [Discord](https://discord.gg/8Tpq4AcN9c) pour une discussion rapide.
Si jamais vous êtes bloqué ou avez une question urgente en contribuant, envoyez-nous simplement vos questions via le problème GitHub concerné, ou rejoignez notre [Discord](https://discord.gg/8Tpq4AcN9c) pour une discussion rapide.

View File

@ -90,4 +90,4 @@ PR 설명에 기존 이슈를 연결하거나 새 이슈를 여는 것을 잊지
설정 과정에서 문제가 발생하면 언제든지 연락해 주세요.
## 도움 받기
기여하는 동안 막히거나 긴급한 질문이 있으면, 관련 GitHub 이슈를 통해 질문을 보내거나, 빠른 대화를 위해 우리의 [Discord](https://discord.gg/8Tpq4AcN9c)에 참여하세요.
기여하는 동안 막히거나 긴급한 질문이 있으면, 관련 GitHub 이슈를 통해 질문을 보내거나, 빠른 대화를 위해 우리의 [Discord](https://discord.gg/8Tpq4AcN9c)에 참여하세요.

View File

@ -90,4 +90,4 @@ Recomendamos revisar este documento cuidadosamente antes de prosseguir com a con
Sinta-se à vontade para entrar em contato se encontrar quaisquer problemas durante o processo de configuração.
## Obtendo Ajuda
Se você ficar preso ou tiver uma dúvida urgente enquanto contribui, simplesmente envie suas perguntas através do problema relacionado no GitHub, ou entre no nosso [Discord](https://discord.gg/8Tpq4AcN9c) para uma conversa rápida.
Se você ficar preso ou tiver uma dúvida urgente enquanto contribui, simplesmente envie suas perguntas através do problema relacionado no GitHub, ou entre no nosso [Discord](https://discord.gg/8Tpq4AcN9c) para uma conversa rápida.

View File

@ -90,4 +90,4 @@ Kuruluma geçmeden önce bu belgeyi dikkatlice incelemenizi öneririz, çünkü
Kurulum süreci sırasında herhangi bir sorunla karşılaşırsanız bizimle iletişime geçmekten çekinmeyin.
## Yardım Almak
Katkıda bulunurken takılırsanız veya yanıcı bir sorunuz olursa, sorularınızı ilgili GitHub sorunu aracılığıyla bize gönderin veya hızlı bir sohbet için [Discord'umuza](https://discord.gg/8Tpq4AcN9c) katılın.
Katkıda bulunurken takılırsanız veya yanıcı bir sorunuz olursa, sorularınızı ilgili GitHub sorunu aracılığıyla bize gönderin veya hızlı bir sohbet için [Discord'umuza](https://discord.gg/8Tpq4AcN9c) katılın.

View File

@ -1,259 +1,259 @@
![cover-v5-optimized](https://github.com/langgenius/dify/assets/13230914/f9e19af5-61ba-4119-b926-d10c4c06ebab)
<p align="center">
📌 <a href="https://dify.ai/blog/introducing-dify-workflow-file-upload-a-demo-on-ai-podcast">Predstavljamo nalaganje datotek Dify Workflow: znova ustvarite Google NotebookLM Podcast</a>
</p>
<p align="center">
<a href="https://cloud.dify.ai">Dify Cloud</a> ·
<a href="https://docs.dify.ai/getting-started/install-self-hosted">Samostojno gostovanje</a> ·
<a href="https://docs.dify.ai">Dokumentacija</a> ·
<a href="https://dify.ai/pricing">Pregled ponudb izdelkov Dify</a>
</p>
<p align="center">
<a href="https://dify.ai" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Product-F04438"></a>
<a href="https://dify.ai/pricing" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/free-pricing?logo=free&color=%20%23155EEF&label=pricing&labelColor=%20%23528bff"></a>
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat on Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
<img alt="Commits last month" src="https://img.shields.io/github/commit-activity/m/langgenius/dify?labelColor=%20%2332b583&color=%20%2312b76a"></a>
<a href="https://github.com/langgenius/dify/" target="_blank">
<img alt="Issues closed" src="https://img.shields.io/github/issues-search?query=repo%3Alanggenius%2Fdify%20is%3Aclosed&label=issues%20closed&labelColor=%20%237d89b0&color=%20%235d6b98"></a>
<a href="https://github.com/langgenius/dify/discussions/" target="_blank">
<img alt="Discussion posts" src="https://img.shields.io/github/discussions/langgenius/dify?labelColor=%20%239b8afb&color=%20%237a5af8"></a>
</p>
<p align="center">
<a href="./README.md"><img alt="README in English" src="https://img.shields.io/badge/English-d9d9d9"></a>
<a href="./README_CN.md"><img alt="简体中文版自述文件" src="https://img.shields.io/badge/简体中文-d9d9d9"></a>
<a href="./README_JA.md"><img alt="日本語のREADME" src="https://img.shields.io/badge/日本語-d9d9d9"></a>
<a href="./README_ES.md"><img alt="README en Español" src="https://img.shields.io/badge/Español-d9d9d9"></a>
<a href="./README_FR.md"><img alt="README en Français" src="https://img.shields.io/badge/Français-d9d9d9"></a>
<a href="./README_KL.md"><img alt="README tlhIngan Hol" src="https://img.shields.io/badge/Klingon-d9d9d9"></a>
<a href="./README_KR.md"><img alt="README in Korean" src="https://img.shields.io/badge/한국어-d9d9d9"></a>
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_SI.md"><img alt="README Slovenščina" src="https://img.shields.io/badge/Sloven%C5%A1%C4%8Dina-d9d9d9"></a>
<a href="./README_BN.md"><img alt="README in বাংলা" src="https://img.shields.io/badge/বাংলা-d9d9d9"></a>
</p>
Dify je odprtokodna platforma za razvoj aplikacij LLM. Njegov intuitivni vmesnik združuje agentski potek dela z umetno inteligenco, cevovod RAG, zmogljivosti agentov, upravljanje modelov, funkcije opazovanja in več, kar vam omogoča hiter prehod od prototipa do proizvodnje.
## Hitri začetek
> Preden namestite Dify, se prepričajte, da vaša naprava izpolnjuje naslednje minimalne sistemske zahteve:
>
>- CPU >= 2 Core
>- RAM >= 4 GiB
</br>
Najlažji način za zagon strežnika Dify je prek docker compose . Preden zaženete Dify z naslednjimi ukazi, se prepričajte, da sta Docker in Docker Compose nameščena na vašem računalniku:
```bash
cd dify
cd docker
cp .env.example .env
docker compose up -d
```
Po zagonu lahko dostopate do nadzorne plošče Dify v brskalniku na [http://localhost/install](http://localhost/install) in začnete postopek inicializacije.
#### Iskanje pomoči
Prosimo, glejte naša pogosta vprašanja [FAQ](https://docs.dify.ai/getting-started/install-self-hosted/faqs) če naletite na težave pri nastavitvi Dify. Če imate še vedno težave, se obrnite na [skupnost ali nas](#community--contact).
> Če želite prispevati k Difyju ali narediti dodaten razvoj, glejte naš vodnik za [uvajanje iz izvorne kode](https://docs.dify.ai/getting-started/install-self-hosted/local-source-code)
## Ključne značilnosti
**1. Potek dela**:
Zgradite in preizkusite zmogljive poteke dela AI na vizualnem platnu, pri čemer izkoristite vse naslednje funkcije in več.
https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa
**2. Celovita podpora za modele**:
Brezhibna integracija s stotinami lastniških/odprtokodnih LLM-jev ducatov ponudnikov sklepanja in samostojnih rešitev, ki pokrivajo GPT, Mistral, Llama3 in vse modele, združljive z API-jem OpenAI. Celoten seznam podprtih ponudnikov modelov najdete [tukaj](https://docs.dify.ai/getting-started/readme/model-providers).
![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
**3. Prompt IDE**:
intuitivni vmesnik za ustvarjanje pozivov, primerjavo zmogljivosti modela in dodajanje dodatnih funkcij, kot je pretvorba besedila v govor, aplikaciji, ki temelji na klepetu.
**4. RAG Pipeline**:
E Obsežne zmogljivosti RAG, ki pokrivajo vse od vnosa dokumenta do priklica, s podporo za ekstrakcijo besedila iz datotek PDF, PPT in drugih običajnih formatov dokumentov.
**5. Agent capabilities**:
definirate lahko agente, ki temeljijo na klicanju funkcij LLM ali ReAct, in dodate vnaprej izdelana orodja ali orodja po meri za agenta. Dify ponuja več kot 50 vgrajenih orodij za agente AI, kot so Google Search, DALL·E, Stable Diffusion in WolframAlpha.
**6. LLMOps**:
Spremljajte in analizirajte dnevnike aplikacij in učinkovitost skozi čas. Pozive, nabore podatkov in modele lahko nenehno izboljšujete na podlagi proizvodnih podatkov in opomb.
**7. Backend-as-a-Service**:
AVse ponudbe Difyja so opremljene z ustreznimi API-ji, tako da lahko Dify brez težav integrirate v svojo poslovno logiko.
## Primerjava Funkcij
<table style="width: 100%;">
<tr>
<th align="center">Funkcija</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>
<th align="center">Flowise</th>
<th align="center">OpenAI Assistants API</th>
</tr>
<tr>
<td align="center">Programski pristop</td>
<td align="center">API + usmerjeno v aplikacije</td>
<td align="center">Python koda</td>
<td align="center">Usmerjeno v aplikacije</td>
<td align="center">Usmerjeno v API</td>
</tr>
<tr>
<td align="center">Podprti LLM-ji</td>
<td align="center">Bogata izbira</td>
<td align="center">Bogata izbira</td>
<td align="center">Bogata izbira</td>
<td align="center">Samo OpenAI</td>
</tr>
<tr>
<td align="center">RAG pogon</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Agent</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Potek dela</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Spremljanje</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Funkcija za podjetja (SSO/nadzor dostopa)</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Lokalna namestitev</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</table>
## Uporaba Dify
- **Cloud </br>**
Gostimo storitev Dify Cloud za vsakogar, ki jo lahko preizkusite brez nastavitev. Zagotavlja vse zmožnosti različice za samostojno namestitev in vključuje 200 brezplačnih klicev GPT-4 v načrtu peskovnika.
- **Self-hosting Dify Community Edition</br>**
Hitro zaženite Dify v svojem okolju s tem [začetnim vodnikom](#quick-start) . Za dodatne reference in podrobnejša navodila uporabite našo [dokumentacijo](https://docs.dify.ai) .
- **Dify za podjetja/organizacije</br>**
Ponujamo dodatne funkcije, osredotočene na podjetja. Zabeležite svoja vprašanja prek tega klepetalnega robota ali nam pošljite e-pošto, da se pogovorimo o potrebah podjetja. </br>
> Za novoustanovljena podjetja in mala podjetja, ki uporabljajo AWS, si oglejte Dify Premium na AWS Marketplace in ga z enim klikom uvedite v svoj AWS VPC. To je cenovno ugodna ponudba AMI z možnostjo ustvarjanja aplikacij z logotipom in blagovno znamko po meri.
## Staying ahead
Star Dify on GitHub and be instantly notified of new releases.
![star-us](https://github.com/langgenius/dify/assets/13230914/b823edc1-6388-4e25-ad45-2f6b187adbb4)
## Napredne nastavitve
Če morate prilagoditi konfiguracijo, si oglejte komentarje v naši datoteki .env.example in posodobite ustrezne vrednosti v svoji .env datoteki. Poleg tega boste morda morali prilagoditi docker-compose.yamlsamo datoteko, na primer spremeniti različice slike, preslikave vrat ali namestitve nosilca, glede na vaše specifično okolje in zahteve za uvajanje. Po kakršnih koli spremembah ponovno zaženite docker-compose up -d. Celoten seznam razpoložljivih spremenljivk okolja najdete tukaj .
Če želite konfigurirati visoko razpoložljivo nastavitev, so na voljo Helm Charts in datoteke YAML, ki jih prispeva skupnost, ki omogočajo uvedbo Difyja v Kubernetes.
- [Helm Chart by @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
- [Helm Chart by @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
- [YAML file by @Winson-030](https://github.com/Winson-030/dify-kubernetes)
- [YAML file by @wyy-holding](https://github.com/wyy-holding/dify-k8s)
#### Uporaba Terraform za uvajanje
namestite Dify v Cloud Platform z enim klikom z uporabo [terraform](https://www.terraform.io/)
##### Azure Global
- [Azure Terraform by @nikawang](https://github.com/nikawang/dify-azure-terraform)
##### Google Cloud
- [Google Cloud Terraform by @sotazum](https://github.com/DeNA/dify-google-cloud-terraform)
#### Uporaba AWS CDK za uvajanje
Uvedite Dify v AWS z uporabo [CDK](https://aws.amazon.com/cdk/)
##### AWS
- [AWS CDK by @KevinZhao](https://github.com/aws-samples/solution-for-deploying-dify-on-aws)
## Prispevam
Za tiste, ki bi radi prispevali kodo, si oglejte naš vodnik za prispevke . Hkrati vas prosimo, da podprete Dify tako, da ga delite na družbenih medijih ter na dogodkih in konferencah.
> Iščemo sodelavce za pomoč pri prevajanju Difyja v jezike, ki niso mandarinščina ali angleščina. Če želite pomagati, si oglejte i18n README za več informacij in nam pustite komentar v global-userskanalu našega strežnika skupnosti Discord .
## Skupnost in stik
* [Github Discussion](https://github.com/langgenius/dify/discussions). Najboljše za: izmenjavo povratnih informacij in postavljanje vprašanj.
* [GitHub Issues](https://github.com/langgenius/dify/issues). Najboljše za: hrošče, na katere naletite pri uporabi Dify.AI, in predloge funkcij. Oglejte si naš [vodnik za prispevke](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Discord](https://discord.gg/FngNHpbcY7). Najboljše za: deljenje vaših aplikacij in druženje s skupnostjo.
* [X(Twitter)](https://twitter.com/dify_ai). Najboljše za: deljenje vaših aplikacij in druženje s skupnostjo.
**Contributors**
<a href="https://github.com/langgenius/dify/graphs/contributors">
<img src="https://contrib.rocks/image?repo=langgenius/dify" />
</a>
## Star history
[![Star History Chart](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## Varnostno razkritje
Zaradi zaščite vaše zasebnosti se izogibajte objavljanju varnostnih vprašanj na GitHub. Namesto tega pošljite vprašanja na security@dify.ai in zagotovili vam bomo podrobnejši odgovor.
## Licenca
To skladišče je na voljo pod [odprtokodno licenco Dify](LICENSE) , ki je v bistvu Apache 2.0 z nekaj dodatnimi omejitvami.
![cover-v5-optimized](https://github.com/langgenius/dify/assets/13230914/f9e19af5-61ba-4119-b926-d10c4c06ebab)
<p align="center">
📌 <a href="https://dify.ai/blog/introducing-dify-workflow-file-upload-a-demo-on-ai-podcast">Predstavljamo nalaganje datotek Dify Workflow: znova ustvarite Google NotebookLM Podcast</a>
</p>
<p align="center">
<a href="https://cloud.dify.ai">Dify Cloud</a> ·
<a href="https://docs.dify.ai/getting-started/install-self-hosted">Samostojno gostovanje</a> ·
<a href="https://docs.dify.ai">Dokumentacija</a> ·
<a href="https://dify.ai/pricing">Pregled ponudb izdelkov Dify</a>
</p>
<p align="center">
<a href="https://dify.ai" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Product-F04438"></a>
<a href="https://dify.ai/pricing" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/free-pricing?logo=free&color=%20%23155EEF&label=pricing&labelColor=%20%23528bff"></a>
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat on Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
<img alt="Commits last month" src="https://img.shields.io/github/commit-activity/m/langgenius/dify?labelColor=%20%2332b583&color=%20%2312b76a"></a>
<a href="https://github.com/langgenius/dify/" target="_blank">
<img alt="Issues closed" src="https://img.shields.io/github/issues-search?query=repo%3Alanggenius%2Fdify%20is%3Aclosed&label=issues%20closed&labelColor=%20%237d89b0&color=%20%235d6b98"></a>
<a href="https://github.com/langgenius/dify/discussions/" target="_blank">
<img alt="Discussion posts" src="https://img.shields.io/github/discussions/langgenius/dify?labelColor=%20%239b8afb&color=%20%237a5af8"></a>
</p>
<p align="center">
<a href="./README.md"><img alt="README in English" src="https://img.shields.io/badge/English-d9d9d9"></a>
<a href="./README_CN.md"><img alt="简体中文版自述文件" src="https://img.shields.io/badge/简体中文-d9d9d9"></a>
<a href="./README_JA.md"><img alt="日本語のREADME" src="https://img.shields.io/badge/日本語-d9d9d9"></a>
<a href="./README_ES.md"><img alt="README en Español" src="https://img.shields.io/badge/Español-d9d9d9"></a>
<a href="./README_FR.md"><img alt="README en Français" src="https://img.shields.io/badge/Français-d9d9d9"></a>
<a href="./README_KL.md"><img alt="README tlhIngan Hol" src="https://img.shields.io/badge/Klingon-d9d9d9"></a>
<a href="./README_KR.md"><img alt="README in Korean" src="https://img.shields.io/badge/한국어-d9d9d9"></a>
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_SI.md"><img alt="README Slovenščina" src="https://img.shields.io/badge/Sloven%C5%A1%C4%8Dina-d9d9d9"></a>
<a href="./README_BN.md"><img alt="README in বাংলা" src="https://img.shields.io/badge/বাংলা-d9d9d9"></a>
</p>
Dify je odprtokodna platforma za razvoj aplikacij LLM. Njegov intuitivni vmesnik združuje agentski potek dela z umetno inteligenco, cevovod RAG, zmogljivosti agentov, upravljanje modelov, funkcije opazovanja in več, kar vam omogoča hiter prehod od prototipa do proizvodnje.
## Hitri začetek
> Preden namestite Dify, se prepričajte, da vaša naprava izpolnjuje naslednje minimalne sistemske zahteve:
>
>- CPU >= 2 Core
>- RAM >= 4 GiB
</br>
Najlažji način za zagon strežnika Dify je prek docker compose . Preden zaženete Dify z naslednjimi ukazi, se prepričajte, da sta Docker in Docker Compose nameščena na vašem računalniku:
```bash
cd dify
cd docker
cp .env.example .env
docker compose up -d
```
Po zagonu lahko dostopate do nadzorne plošče Dify v brskalniku na [http://localhost/install](http://localhost/install) in začnete postopek inicializacije.
#### Iskanje pomoči
Prosimo, glejte naša pogosta vprašanja [FAQ](https://docs.dify.ai/getting-started/install-self-hosted/faqs) če naletite na težave pri nastavitvi Dify. Če imate še vedno težave, se obrnite na [skupnost ali nas](#community--contact).
> Če želite prispevati k Difyju ali narediti dodaten razvoj, glejte naš vodnik za [uvajanje iz izvorne kode](https://docs.dify.ai/getting-started/install-self-hosted/local-source-code)
## Ključne značilnosti
**1. Potek dela**:
Zgradite in preizkusite zmogljive poteke dela AI na vizualnem platnu, pri čemer izkoristite vse naslednje funkcije in več.
https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa
**2. Celovita podpora za modele**:
Brezhibna integracija s stotinami lastniških/odprtokodnih LLM-jev ducatov ponudnikov sklepanja in samostojnih rešitev, ki pokrivajo GPT, Mistral, Llama3 in vse modele, združljive z API-jem OpenAI. Celoten seznam podprtih ponudnikov modelov najdete [tukaj](https://docs.dify.ai/getting-started/readme/model-providers).
![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
**3. Prompt IDE**:
intuitivni vmesnik za ustvarjanje pozivov, primerjavo zmogljivosti modela in dodajanje dodatnih funkcij, kot je pretvorba besedila v govor, aplikaciji, ki temelji na klepetu.
**4. RAG Pipeline**:
E Obsežne zmogljivosti RAG, ki pokrivajo vse od vnosa dokumenta do priklica, s podporo za ekstrakcijo besedila iz datotek PDF, PPT in drugih običajnih formatov dokumentov.
**5. Agent capabilities**:
definirate lahko agente, ki temeljijo na klicanju funkcij LLM ali ReAct, in dodate vnaprej izdelana orodja ali orodja po meri za agenta. Dify ponuja več kot 50 vgrajenih orodij za agente AI, kot so Google Search, DALL·E, Stable Diffusion in WolframAlpha.
**6. LLMOps**:
Spremljajte in analizirajte dnevnike aplikacij in učinkovitost skozi čas. Pozive, nabore podatkov in modele lahko nenehno izboljšujete na podlagi proizvodnih podatkov in opomb.
**7. Backend-as-a-Service**:
AVse ponudbe Difyja so opremljene z ustreznimi API-ji, tako da lahko Dify brez težav integrirate v svojo poslovno logiko.
## Primerjava Funkcij
<table style="width: 100%;">
<tr>
<th align="center">Funkcija</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>
<th align="center">Flowise</th>
<th align="center">OpenAI Assistants API</th>
</tr>
<tr>
<td align="center">Programski pristop</td>
<td align="center">API + usmerjeno v aplikacije</td>
<td align="center">Python koda</td>
<td align="center">Usmerjeno v aplikacije</td>
<td align="center">Usmerjeno v API</td>
</tr>
<tr>
<td align="center">Podprti LLM-ji</td>
<td align="center">Bogata izbira</td>
<td align="center">Bogata izbira</td>
<td align="center">Bogata izbira</td>
<td align="center">Samo OpenAI</td>
</tr>
<tr>
<td align="center">RAG pogon</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Agent</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Potek dela</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Spremljanje</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Funkcija za podjetja (SSO/nadzor dostopa)</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Lokalna namestitev</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</table>
## Uporaba Dify
- **Cloud </br>**
Gostimo storitev Dify Cloud za vsakogar, ki jo lahko preizkusite brez nastavitev. Zagotavlja vse zmožnosti različice za samostojno namestitev in vključuje 200 brezplačnih klicev GPT-4 v načrtu peskovnika.
- **Self-hosting Dify Community Edition</br>**
Hitro zaženite Dify v svojem okolju s tem [začetnim vodnikom](#quick-start) . Za dodatne reference in podrobnejša navodila uporabite našo [dokumentacijo](https://docs.dify.ai) .
- **Dify za podjetja/organizacije</br>**
Ponujamo dodatne funkcije, osredotočene na podjetja. Zabeležite svoja vprašanja prek tega klepetalnega robota ali nam pošljite e-pošto, da se pogovorimo o potrebah podjetja. </br>
> Za novoustanovljena podjetja in mala podjetja, ki uporabljajo AWS, si oglejte Dify Premium na AWS Marketplace in ga z enim klikom uvedite v svoj AWS VPC. To je cenovno ugodna ponudba AMI z možnostjo ustvarjanja aplikacij z logotipom in blagovno znamko po meri.
## Staying ahead
Star Dify on GitHub and be instantly notified of new releases.
![star-us](https://github.com/langgenius/dify/assets/13230914/b823edc1-6388-4e25-ad45-2f6b187adbb4)
## Napredne nastavitve
Če morate prilagoditi konfiguracijo, si oglejte komentarje v naši datoteki .env.example in posodobite ustrezne vrednosti v svoji .env datoteki. Poleg tega boste morda morali prilagoditi docker-compose.yamlsamo datoteko, na primer spremeniti različice slike, preslikave vrat ali namestitve nosilca, glede na vaše specifično okolje in zahteve za uvajanje. Po kakršnih koli spremembah ponovno zaženite docker-compose up -d. Celoten seznam razpoložljivih spremenljivk okolja najdete tukaj .
Če želite konfigurirati visoko razpoložljivo nastavitev, so na voljo Helm Charts in datoteke YAML, ki jih prispeva skupnost, ki omogočajo uvedbo Difyja v Kubernetes.
- [Helm Chart by @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
- [Helm Chart by @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
- [YAML file by @Winson-030](https://github.com/Winson-030/dify-kubernetes)
- [YAML file by @wyy-holding](https://github.com/wyy-holding/dify-k8s)
#### Uporaba Terraform za uvajanje
namestite Dify v Cloud Platform z enim klikom z uporabo [terraform](https://www.terraform.io/)
##### Azure Global
- [Azure Terraform by @nikawang](https://github.com/nikawang/dify-azure-terraform)
##### Google Cloud
- [Google Cloud Terraform by @sotazum](https://github.com/DeNA/dify-google-cloud-terraform)
#### Uporaba AWS CDK za uvajanje
Uvedite Dify v AWS z uporabo [CDK](https://aws.amazon.com/cdk/)
##### AWS
- [AWS CDK by @KevinZhao](https://github.com/aws-samples/solution-for-deploying-dify-on-aws)
## Prispevam
Za tiste, ki bi radi prispevali kodo, si oglejte naš vodnik za prispevke . Hkrati vas prosimo, da podprete Dify tako, da ga delite na družbenih medijih ter na dogodkih in konferencah.
> Iščemo sodelavce za pomoč pri prevajanju Difyja v jezike, ki niso mandarinščina ali angleščina. Če želite pomagati, si oglejte i18n README za več informacij in nam pustite komentar v global-userskanalu našega strežnika skupnosti Discord .
## Skupnost in stik
* [Github Discussion](https://github.com/langgenius/dify/discussions). Najboljše za: izmenjavo povratnih informacij in postavljanje vprašanj.
* [GitHub Issues](https://github.com/langgenius/dify/issues). Najboljše za: hrošče, na katere naletite pri uporabi Dify.AI, in predloge funkcij. Oglejte si naš [vodnik za prispevke](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Discord](https://discord.gg/FngNHpbcY7). Najboljše za: deljenje vaših aplikacij in druženje s skupnostjo.
* [X(Twitter)](https://twitter.com/dify_ai). Najboljše za: deljenje vaših aplikacij in druženje s skupnostjo.
**Contributors**
<a href="https://github.com/langgenius/dify/graphs/contributors">
<img src="https://contrib.rocks/image?repo=langgenius/dify" />
</a>
## Star history
[![Star History Chart](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## Varnostno razkritje
Zaradi zaščite vaše zasebnosti se izogibajte objavljanju varnostnih vprašanj na GitHub. Namesto tega pošljite vprašanja na security@dify.ai in zagotovili vam bomo podrobnejši odgovor.
## Licenca
To skladišče je na voljo pod [odprtokodno licenco Dify](LICENSE) , ki je v bistvu Apache 2.0 z nekaj dodatnimi omejitvami.

View File

@ -16,4 +16,4 @@ logs
.ruff_cache
# venv
.venv
.venv

View File

@ -52,7 +52,6 @@ def initialize_extensions(app: DifyApp):
ext_mail,
ext_migrate,
ext_otel,
ext_otel_patch,
ext_proxy_fix,
ext_redis,
ext_repositories,
@ -85,7 +84,6 @@ def initialize_extensions(app: DifyApp):
ext_proxy_fix,
ext_blueprints,
ext_commands,
ext_otel_patch, # Apply patch before initializing OpenTelemetry
ext_otel,
]
for ext in extensions:

View File

@ -17,6 +17,7 @@ from core.rag.models.document import Document
from events.app_event import app_was_created
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from extensions.ext_storage import storage
from libs.helper import email as email_validate
from libs.password import hash_password, password_pattern, valid_password
from libs.rsa import generate_key_pair
@ -443,13 +444,13 @@ def convert_to_agent_apps():
WHERE a.mode = 'chat'
AND am.agent_mode is not null
AND (
am.agent_mode like '%"strategy": "function_call"%'
am.agent_mode like '%"strategy": "function_call"%'
OR am.agent_mode like '%"strategy": "react"%'
)
)
AND (
am.agent_mode like '{"enabled": true%'
am.agent_mode like '{"enabled": true%'
OR am.agent_mode like '{"max_iteration": %'
) ORDER BY a.created_at DESC LIMIT 1000
) ORDER BY a.created_at DESC LIMIT 1000
"""
with db.engine.begin() as conn:
@ -815,3 +816,331 @@ def clear_free_plan_tenant_expired_logs(days: int, batch: int, tenant_ids: list[
ClearFreePlanTenantExpiredLogs.process(days, batch, tenant_ids)
click.echo(click.style("Clear free plan tenant expired logs completed.", fg="green"))
@click.option("-f", "--force", is_flag=True, help="Skip user confirmation and force the command to execute.")
@click.command("clear-orphaned-file-records", help="Clear orphaned file records.")
def clear_orphaned_file_records(force: bool):
"""
Clear orphaned file records in the database.
"""
# define tables and columns to process
files_tables = [
{"table": "upload_files", "id_column": "id", "key_column": "key"},
{"table": "tool_files", "id_column": "id", "key_column": "file_key"},
]
ids_tables = [
{"type": "uuid", "table": "message_files", "column": "upload_file_id"},
{"type": "text", "table": "documents", "column": "data_source_info"},
{"type": "text", "table": "document_segments", "column": "content"},
{"type": "text", "table": "messages", "column": "answer"},
{"type": "text", "table": "workflow_node_executions", "column": "inputs"},
{"type": "text", "table": "workflow_node_executions", "column": "process_data"},
{"type": "text", "table": "workflow_node_executions", "column": "outputs"},
{"type": "text", "table": "conversations", "column": "introduction"},
{"type": "text", "table": "conversations", "column": "system_instruction"},
{"type": "json", "table": "messages", "column": "inputs"},
{"type": "json", "table": "messages", "column": "message"},
]
# notify user and ask for confirmation
click.echo(
click.style(
"This command will first find and delete orphaned file records from the message_files table,", fg="yellow"
)
)
click.echo(
click.style(
"and then it will find and delete orphaned file records in the following tables:",
fg="yellow",
)
)
for files_table in files_tables:
click.echo(click.style(f"- {files_table['table']}", fg="yellow"))
click.echo(
click.style("The following tables and columns will be scanned to find orphaned file records:", fg="yellow")
)
for ids_table in ids_tables:
click.echo(click.style(f"- {ids_table['table']} ({ids_table['column']})", fg="yellow"))
click.echo("")
click.echo(click.style("!!! USE WITH CAUTION !!!", fg="red"))
click.echo(
click.style(
(
"Since not all patterns have been fully tested, "
"please note that this command may delete unintended file records."
),
fg="yellow",
)
)
click.echo(
click.style("This cannot be undone. Please make sure to back up your database before proceeding.", fg="yellow")
)
click.echo(
click.style(
(
"It is also recommended to run this during the maintenance window, "
"as this may cause high load on your instance."
),
fg="yellow",
)
)
if not force:
click.confirm("Do you want to proceed?", abort=True)
# start the cleanup process
click.echo(click.style("Starting orphaned file records cleanup.", fg="white"))
# clean up the orphaned records in the message_files table where message_id doesn't exist in messages table
try:
click.echo(
click.style("- Listing message_files records where message_id doesn't exist in messages table", fg="white")
)
query = (
"SELECT mf.id, mf.message_id "
"FROM message_files mf LEFT JOIN messages m ON mf.message_id = m.id "
"WHERE m.id IS NULL"
)
orphaned_message_files = []
with db.engine.begin() as conn:
rs = conn.execute(db.text(query))
for i in rs:
orphaned_message_files.append({"id": str(i[0]), "message_id": str(i[1])})
if orphaned_message_files:
click.echo(click.style(f"Found {len(orphaned_message_files)} orphaned message_files records:", fg="white"))
for record in orphaned_message_files:
click.echo(click.style(f" - id: {record['id']}, message_id: {record['message_id']}", fg="black"))
if not force:
click.confirm(
(
f"Do you want to proceed "
f"to delete all {len(orphaned_message_files)} orphaned message_files records?"
),
abort=True,
)
click.echo(click.style("- Deleting orphaned message_files records", fg="white"))
query = "DELETE FROM message_files WHERE id IN :ids"
with db.engine.begin() as conn:
conn.execute(db.text(query), {"ids": tuple([record["id"] for record in orphaned_message_files])})
click.echo(
click.style(f"Removed {len(orphaned_message_files)} orphaned message_files records.", fg="green")
)
else:
click.echo(click.style("No orphaned message_files records found. There is nothing to delete.", fg="green"))
except Exception as e:
click.echo(click.style(f"Error deleting orphaned message_files records: {str(e)}", fg="red"))
# clean up the orphaned records in the rest of the *_files tables
try:
# fetch file id and keys from each table
all_files_in_tables = []
for files_table in files_tables:
click.echo(click.style(f"- Listing file records in table {files_table['table']}", fg="white"))
query = f"SELECT {files_table['id_column']}, {files_table['key_column']} FROM {files_table['table']}"
with db.engine.begin() as conn:
rs = conn.execute(db.text(query))
for i in rs:
all_files_in_tables.append({"table": files_table["table"], "id": str(i[0]), "key": i[1]})
click.echo(click.style(f"Found {len(all_files_in_tables)} files in tables.", fg="white"))
# fetch referred table and columns
guid_regexp = "[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}"
all_ids_in_tables = []
for ids_table in ids_tables:
query = ""
if ids_table["type"] == "uuid":
click.echo(
click.style(
f"- Listing file ids in column {ids_table['column']} in table {ids_table['table']}", fg="white"
)
)
query = (
f"SELECT {ids_table['column']} FROM {ids_table['table']} WHERE {ids_table['column']} IS NOT NULL"
)
with db.engine.begin() as conn:
rs = conn.execute(db.text(query))
for i in rs:
all_ids_in_tables.append({"table": ids_table["table"], "id": str(i[0])})
elif ids_table["type"] == "text":
click.echo(
click.style(
f"- Listing file-id-like strings in column {ids_table['column']} in table {ids_table['table']}",
fg="white",
)
)
query = (
f"SELECT regexp_matches({ids_table['column']}, '{guid_regexp}', 'g') AS extracted_id "
f"FROM {ids_table['table']}"
)
with db.engine.begin() as conn:
rs = conn.execute(db.text(query))
for i in rs:
for j in i[0]:
all_ids_in_tables.append({"table": ids_table["table"], "id": j})
elif ids_table["type"] == "json":
click.echo(
click.style(
(
f"- Listing file-id-like JSON string in column {ids_table['column']} "
f"in table {ids_table['table']}"
),
fg="white",
)
)
query = (
f"SELECT regexp_matches({ids_table['column']}::text, '{guid_regexp}', 'g') AS extracted_id "
f"FROM {ids_table['table']}"
)
with db.engine.begin() as conn:
rs = conn.execute(db.text(query))
for i in rs:
for j in i[0]:
all_ids_in_tables.append({"table": ids_table["table"], "id": j})
click.echo(click.style(f"Found {len(all_ids_in_tables)} file ids in tables.", fg="white"))
except Exception as e:
click.echo(click.style(f"Error fetching keys: {str(e)}", fg="red"))
return
# find orphaned files
all_files = [file["id"] for file in all_files_in_tables]
all_ids = [file["id"] for file in all_ids_in_tables]
orphaned_files = list(set(all_files) - set(all_ids))
if not orphaned_files:
click.echo(click.style("No orphaned file records found. There is nothing to delete.", fg="green"))
return
click.echo(click.style(f"Found {len(orphaned_files)} orphaned file records.", fg="white"))
for file in orphaned_files:
click.echo(click.style(f"- orphaned file id: {file}", fg="black"))
if not force:
click.confirm(f"Do you want to proceed to delete all {len(orphaned_files)} orphaned file records?", abort=True)
# delete orphaned records for each file
try:
for files_table in files_tables:
click.echo(click.style(f"- Deleting orphaned file records in table {files_table['table']}", fg="white"))
query = f"DELETE FROM {files_table['table']} WHERE {files_table['id_column']} IN :ids"
with db.engine.begin() as conn:
conn.execute(db.text(query), {"ids": tuple(orphaned_files)})
except Exception as e:
click.echo(click.style(f"Error deleting orphaned file records: {str(e)}", fg="red"))
return
click.echo(click.style(f"Removed {len(orphaned_files)} orphaned file records.", fg="green"))
@click.option("-f", "--force", is_flag=True, help="Skip user confirmation and force the command to execute.")
@click.command("remove-orphaned-files-on-storage", help="Remove orphaned files on the storage.")
def remove_orphaned_files_on_storage(force: bool):
"""
Remove orphaned files on the storage.
"""
# define tables and columns to process
files_tables = [
{"table": "upload_files", "key_column": "key"},
{"table": "tool_files", "key_column": "file_key"},
]
storage_paths = ["image_files", "tools", "upload_files"]
# notify user and ask for confirmation
click.echo(click.style("This command will find and remove orphaned files on the storage,", fg="yellow"))
click.echo(
click.style("by comparing the files on the storage with the records in the following tables:", fg="yellow")
)
for files_table in files_tables:
click.echo(click.style(f"- {files_table['table']}", fg="yellow"))
click.echo(click.style("The following paths on the storage will be scanned to find orphaned files:", fg="yellow"))
for storage_path in storage_paths:
click.echo(click.style(f"- {storage_path}", fg="yellow"))
click.echo("")
click.echo(click.style("!!! USE WITH CAUTION !!!", fg="red"))
click.echo(
click.style(
"Currently, this command will work only for opendal based storage (STORAGE_TYPE=opendal).", fg="yellow"
)
)
click.echo(
click.style(
"Since not all patterns have been fully tested, please note that this command may delete unintended files.",
fg="yellow",
)
)
click.echo(
click.style("This cannot be undone. Please make sure to back up your storage before proceeding.", fg="yellow")
)
click.echo(
click.style(
(
"It is also recommended to run this during the maintenance window, "
"as this may cause high load on your instance."
),
fg="yellow",
)
)
if not force:
click.confirm("Do you want to proceed?", abort=True)
# start the cleanup process
click.echo(click.style("Starting orphaned files cleanup.", fg="white"))
# fetch file id and keys from each table
all_files_in_tables = []
try:
for files_table in files_tables:
click.echo(click.style(f"- Listing files from table {files_table['table']}", fg="white"))
query = f"SELECT {files_table['key_column']} FROM {files_table['table']}"
with db.engine.begin() as conn:
rs = conn.execute(db.text(query))
for i in rs:
all_files_in_tables.append(str(i[0]))
click.echo(click.style(f"Found {len(all_files_in_tables)} files in tables.", fg="white"))
except Exception as e:
click.echo(click.style(f"Error fetching keys: {str(e)}", fg="red"))
all_files_on_storage = []
for storage_path in storage_paths:
try:
click.echo(click.style(f"- Scanning files on storage path {storage_path}", fg="white"))
files = storage.scan(path=storage_path, files=True, directories=False)
all_files_on_storage.extend(files)
except FileNotFoundError as e:
click.echo(click.style(f" -> Skipping path {storage_path} as it does not exist.", fg="yellow"))
continue
except Exception as e:
click.echo(click.style(f" -> Error scanning files on storage path {storage_path}: {str(e)}", fg="red"))
continue
click.echo(click.style(f"Found {len(all_files_on_storage)} files on storage.", fg="white"))
# find orphaned files
orphaned_files = list(set(all_files_on_storage) - set(all_files_in_tables))
if not orphaned_files:
click.echo(click.style("No orphaned files found. There is nothing to remove.", fg="green"))
return
click.echo(click.style(f"Found {len(orphaned_files)} orphaned files.", fg="white"))
for file in orphaned_files:
click.echo(click.style(f"- orphaned file: {file}", fg="black"))
if not force:
click.confirm(f"Do you want to proceed to remove all {len(orphaned_files)} orphaned files?", abort=True)
# delete orphaned files
removed_files = 0
error_files = 0
for file in orphaned_files:
try:
storage.delete(file)
removed_files += 1
click.echo(click.style(f"- Removing orphaned file: {file}", fg="white"))
except Exception as e:
error_files += 1
click.echo(click.style(f"- Error deleting orphaned file {file}: {str(e)}", fg="red"))
continue
if error_files == 0:
click.echo(click.style(f"Removed {removed_files} orphaned files without errors.", fg="green"))
else:
click.echo(click.style(f"Removed {removed_files} orphaned files, with {error_files} errors.", fg="yellow"))

View File

@ -1,4 +1,5 @@
from typing import Optional
import enum
from typing import Literal, Optional
from pydantic import Field, PositiveInt
from pydantic_settings import BaseSettings
@ -9,6 +10,14 @@ class OpenSearchConfig(BaseSettings):
Configuration settings for OpenSearch
"""
class AuthMethod(enum.StrEnum):
"""
Authentication method for OpenSearch
"""
BASIC = "basic"
AWS_MANAGED_IAM = "aws_managed_iam"
OPENSEARCH_HOST: Optional[str] = Field(
description="Hostname or IP address of the OpenSearch server (e.g., 'localhost' or 'opensearch.example.com')",
default=None,
@ -19,6 +28,16 @@ class OpenSearchConfig(BaseSettings):
default=9200,
)
OPENSEARCH_SECURE: bool = Field(
description="Whether to use SSL/TLS encrypted connection for OpenSearch (True for HTTPS, False for HTTP)",
default=False,
)
OPENSEARCH_AUTH_METHOD: AuthMethod = Field(
description="Authentication method for OpenSearch connection (default is 'basic')",
default=AuthMethod.BASIC,
)
OPENSEARCH_USER: Optional[str] = Field(
description="Username for authenticating with OpenSearch",
default=None,
@ -29,7 +48,11 @@ class OpenSearchConfig(BaseSettings):
default=None,
)
OPENSEARCH_SECURE: bool = Field(
description="Whether to use SSL/TLS encrypted connection for OpenSearch (True for HTTPS, False for HTTP)",
default=False,
OPENSEARCH_AWS_REGION: Optional[str] = Field(
description="AWS region for OpenSearch (e.g. 'us-west-2')",
default=None,
)
OPENSEARCH_AWS_SERVICE: Optional[Literal["es", "aoss"]] = Field(
description="AWS service for OpenSearch (e.g. 'aoss' for OpenSearch Serverless)", default=None
)

View File

@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
CURRENT_VERSION: str = Field(
description="Dify version",
default="1.3.0",
default="1.3.1",
)
COMMIT_SHA: str = Field(

View File

@ -16,11 +16,25 @@ AUDIO_EXTENSIONS.extend([ext.upper() for ext in AUDIO_EXTENSIONS])
if dify_config.ETL_TYPE == "Unstructured":
DOCUMENT_EXTENSIONS = ["txt", "markdown", "md", "mdx", "pdf", "html", "htm", "xlsx", "xls"]
DOCUMENT_EXTENSIONS = ["txt", "markdown", "md", "mdx", "pdf", "html", "htm", "xlsx", "xls", "vtt", "properties"]
DOCUMENT_EXTENSIONS.extend(("doc", "docx", "csv", "eml", "msg", "pptx", "xml", "epub"))
if dify_config.UNSTRUCTURED_API_URL:
DOCUMENT_EXTENSIONS.append("ppt")
DOCUMENT_EXTENSIONS.extend([ext.upper() for ext in DOCUMENT_EXTENSIONS])
else:
DOCUMENT_EXTENSIONS = ["txt", "markdown", "md", "mdx", "pdf", "html", "htm", "xlsx", "xls", "docx", "csv"]
DOCUMENT_EXTENSIONS = [
"txt",
"markdown",
"md",
"mdx",
"pdf",
"html",
"htm",
"xlsx",
"xls",
"docx",
"csv",
"vtt",
"properties",
]
DOCUMENT_EXTENSIONS.extend([ext.upper() for ext in DOCUMENT_EXTENSIONS])

View File

@ -186,7 +186,7 @@ class AnnotationUpdateDeleteApi(Resource):
app_id = str(app_id)
annotation_id = str(annotation_id)
AppAnnotationService.delete_app_annotation(app_id, annotation_id)
return {"result": "success"}, 200
return {"result": "success"}, 204
class AnnotationBatchImportApi(Resource):

View File

@ -84,7 +84,7 @@ class TraceAppConfigApi(Resource):
result = OpsService.delete_tracing_app_config(app_id=app_id, tracing_provider=args["tracing_provider"])
if not result:
raise TracingConfigNotExist()
return {"result": "success"}
return {"result": "success"}, 204
except Exception as e:
raise BadRequest(str(e))

View File

@ -65,7 +65,7 @@ class ApiKeyAuthDataSourceBindingDelete(Resource):
ApiKeyAuthService.delete_provider_auth(current_user.current_tenant_id, binding_id)
return {"result": "success"}, 200
return {"result": "success"}, 204
api.add_resource(ApiKeyAuthDataSource, "/api-key-auth/data-source")

View File

@ -40,7 +40,7 @@ from core.indexing_runner import IndexingRunner
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.plugin.manager.exc import PluginDaemonClientSideError
from core.plugin.impl.exc import PluginDaemonClientSideError
from core.rag.extractor.entity.extract_setting import ExtractSetting
from extensions.ext_database import db
from extensions.ext_redis import redis_client

View File

@ -131,7 +131,7 @@ class DatasetDocumentSegmentListApi(Resource):
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
SegmentService.delete_segments(segment_ids, document, dataset)
return {"result": "success"}, 200
return {"result": "success"}, 204
class DatasetDocumentSegmentApi(Resource):
@ -333,7 +333,7 @@ class DatasetDocumentSegmentUpdateApi(Resource):
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
SegmentService.delete_segment(segment, document, dataset)
return {"result": "success"}, 200
return {"result": "success"}, 204
class DatasetDocumentSegmentBatchImportApi(Resource):
@ -590,7 +590,7 @@ class ChildChunkUpdateApi(Resource):
SegmentService.delete_child_chunk(child_chunk, dataset)
except ChildChunkDeleteIndexServiceError as e:
raise ChildChunkDeleteIndexError(str(e))
return {"result": "success"}, 200
return {"result": "success"}, 204
@setup_required
@login_required

View File

@ -135,7 +135,7 @@ class ExternalApiTemplateApi(Resource):
raise Forbidden()
ExternalDatasetService.delete_external_knowledge_api(current_user.current_tenant_id, external_knowledge_api_id)
return {"result": "success"}, 200
return {"result": "success"}, 204
class ExternalApiUseCheckApi(Resource):

View File

@ -82,7 +82,7 @@ class DatasetMetadataApi(Resource):
DatasetService.check_dataset_permission(dataset, current_user)
MetadataService.delete_metadata(dataset_id_str, metadata_id_str)
return 200
return {"result": "success"}, 204
class DatasetMetadataBuiltInFieldApi(Resource):

View File

@ -113,7 +113,7 @@ class InstalledAppApi(InstalledAppResource):
db.session.delete(installed_app)
db.session.commit()
return {"result": "success", "message": "App uninstalled successfully"}
return {"result": "success", "message": "App uninstalled successfully"}, 204
def patch(self, installed_app):
parser = reqparse.RequestParser()

View File

@ -72,7 +72,7 @@ class SavedMessageApi(InstalledAppResource):
SavedMessageService.delete(app_model, current_user, message_id)
return {"result": "success"}
return {"result": "success"}, 204
api.add_resource(

View File

@ -99,7 +99,7 @@ class APIBasedExtensionDetailAPI(Resource):
APIBasedExtensionService.delete(extension_data_from_db)
return {"result": "success"}
return {"result": "success"}, 204
api.add_resource(CodeBasedExtensionAPI, "/code-based-extension")

View File

@ -86,7 +86,7 @@ class TagUpdateDeleteApi(Resource):
TagService.delete_tag(tag_id)
return 200
return 204
class TagBindingCreateApi(Resource):

View File

@ -5,7 +5,7 @@ from werkzeug.exceptions import Forbidden
from controllers.console import api
from controllers.console.wraps import account_initialization_required, setup_required
from core.model_runtime.utils.encoders import jsonable_encoder
from core.plugin.manager.exc import PluginPermissionDeniedError
from core.plugin.impl.exc import PluginPermissionDeniedError
from libs.login import login_required
from services.plugin.endpoint_service import EndpointService

View File

@ -10,7 +10,7 @@ from controllers.console import api
from controllers.console.workspace import plugin_permission_required
from controllers.console.wraps import account_initialization_required, setup_required
from core.model_runtime.utils.encoders import jsonable_encoder
from core.plugin.manager.exc import PluginDaemonClientSideError
from core.plugin.impl.exc import PluginDaemonClientSideError
from libs.login import login_required
from models.account import TenantPluginPermission
from services.plugin.plugin_permission_service import PluginPermissionService

View File

@ -70,12 +70,26 @@ class FilePreviewApi(Resource):
direct_passthrough=True,
headers={},
)
# add Accept-Ranges header for audio/video files
if upload_file.mime_type in [
"audio/mpeg",
"audio/wav",
"audio/mp4",
"audio/ogg",
"audio/flac",
"audio/aac",
"video/mp4",
"video/webm",
"video/quicktime",
"audio/x-m4a",
]:
response.headers["Accept-Ranges"] = "bytes"
if upload_file.size > 0:
response.headers["Content-Length"] = str(upload_file.size)
if args["as_attachment"]:
encoded_filename = quote(upload_file.name)
response.headers["Content-Disposition"] = f"attachment; filename*=UTF-8''{encoded_filename}"
response.headers["Content-Type"] = "application/octet-stream"
response.headers["Content-Type"] = "application/octet-stream"
return response

View File

@ -79,7 +79,7 @@ class AnnotationListApi(Resource):
class AnnotationUpdateDeleteApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON))
@marshal_with(annotation_fields)
def post(self, app_model: App, end_user: EndUser, annotation_id):
def put(self, app_model: App, end_user: EndUser, annotation_id):
if not current_user.is_editor:
raise Forbidden()
@ -98,7 +98,7 @@ class AnnotationUpdateDeleteApi(Resource):
annotation_id = str(annotation_id)
AppAnnotationService.delete_app_annotation(app_model.id, annotation_id)
return {"result": "success"}, 200
return {"result": "success"}, 204
api.add_resource(AnnotationReplyActionApi, "/apps/annotation-reply/<string:action>")

View File

@ -72,7 +72,7 @@ class ConversationDetailApi(Resource):
ConversationService.delete(app_model, conversation_id, end_user)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
return {"result": "success"}, 200
return {"result": "success"}, 204
class ConversationRenameApi(Resource):

View File

@ -323,7 +323,7 @@ class DocumentDeleteApi(DatasetApiResource):
except services.errors.document.DocumentIndexingError:
raise DocumentIndexingError("Cannot delete document during indexing.")
return {"result": "success"}, 200
return {"result": "success"}, 204
class DocumentListApi(DatasetApiResource):

View File

@ -63,7 +63,7 @@ class DatasetMetadataServiceApi(DatasetApiResource):
DatasetService.check_dataset_permission(dataset, current_user)
MetadataService.delete_metadata(dataset_id_str, metadata_id_str)
return 200
return 204
class DatasetMetadataBuiltInFieldServiceApi(DatasetApiResource):

View File

@ -159,7 +159,7 @@ class DatasetSegmentApi(DatasetApiResource):
if not segment:
raise NotFound("Segment not found.")
SegmentService.delete_segment(segment, document, dataset)
return {"result": "success"}, 200
return {"result": "success"}, 204
@cloud_edition_billing_resource_check("vector_space", "dataset")
def post(self, tenant_id, dataset_id, document_id, segment_id):
@ -344,7 +344,7 @@ class DatasetChildChunkApi(DatasetApiResource):
except ChildChunkDeleteIndexServiceError as e:
raise ChildChunkDeleteIndexError(str(e))
return {"result": "success"}, 200
return {"result": "success"}, 204
@cloud_edition_billing_resource_check("vector_space", "dataset")
@cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")

View File

@ -67,7 +67,7 @@ class SavedMessageApi(WebApiResource):
SavedMessageService.delete(app_model, end_user, message_id)
return {"result": "success"}
return {"result": "success"}, 204
api.add_resource(SavedMessageListApi, "/saved-messages")

View File

@ -69,6 +69,13 @@ class CotAgentRunner(BaseAgentRunner, ABC):
tool_instances, prompt_messages_tools = self._init_prompt_tools()
self._prompt_messages_tools = prompt_messages_tools
# fix metadata filter not work
if app_config.dataset is not None:
metadata_filtering_conditions = app_config.dataset.retrieve_config.metadata_filtering_conditions
for key, dataset_retriever_tool in tool_instances.items():
if hasattr(dataset_retriever_tool, "retrieval_tool"):
dataset_retriever_tool.retrieval_tool.metadata_filtering_conditions = metadata_filtering_conditions
function_call_state = True
llm_usage: dict[str, Optional[LLMUsage]] = {"usage": None}
final_answer = ""

View File

@ -45,6 +45,13 @@ class FunctionCallAgentRunner(BaseAgentRunner):
# convert tools into ModelRuntime Tool format
tool_instances, prompt_messages_tools = self._init_prompt_tools()
# fix metadata filter not work
if app_config.dataset is not None:
metadata_filtering_conditions = app_config.dataset.retrieve_config.metadata_filtering_conditions
for key, dataset_retriever_tool in tool_instances.items():
if hasattr(dataset_retriever_tool, "retrieval_tool"):
dataset_retriever_tool.retrieval_tool.metadata_filtering_conditions = metadata_filtering_conditions
assert app_config.agent
iteration_step = 1

View File

@ -1,4 +1,4 @@
ENGLISH_REACT_COMPLETION_PROMPT_TEMPLATES = """Respond to the human as helpfully and accurately as possible.
ENGLISH_REACT_COMPLETION_PROMPT_TEMPLATES = """Respond to the human as helpfully and accurately as possible.
{{instruction}}
@ -47,7 +47,7 @@ Thought:""" # noqa: E501
ENGLISH_REACT_COMPLETION_AGENT_SCRATCHPAD_TEMPLATES = """Observation: {{observation}}
Thought:"""
ENGLISH_REACT_CHAT_PROMPT_TEMPLATES = """Respond to the human as helpfully and accurately as possible.
ENGLISH_REACT_CHAT_PROMPT_TEMPLATES = """Respond to the human as helpfully and accurately as possible.
{{instruction}}

View File

@ -4,7 +4,7 @@ from typing import Any, Optional
from core.agent.entities import AgentInvokeMessage
from core.agent.plugin_entities import AgentStrategyEntity, AgentStrategyParameter
from core.agent.strategy.base import BaseAgentStrategy
from core.plugin.manager.agent import PluginAgentManager
from core.plugin.impl.agent import PluginAgentClient
from core.plugin.utils.converter import convert_parameters_to_plugin_format
@ -42,7 +42,7 @@ class PluginAgentStrategy(BaseAgentStrategy):
"""
Invoke the agent strategy.
"""
manager = PluginAgentManager()
manager = PluginAgentClient()
initialized_params = self.initialize_parameters(params)
params = convert_parameters_to_plugin_format(initialized_params)

View File

@ -25,8 +25,8 @@ from core.app.entities.task_entities import ChatbotAppBlockingResponse, ChatbotA
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.ops.ops_trace_manager import TraceQueueManager
from core.prompt.utils.get_thread_messages_length import get_thread_messages_length
from core.repository import RepositoryFactory
from core.repository.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.workflow.repository import RepositoryFactory
from core.workflow.repository.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from extensions.ext_database import db
from factories import file_factory
from models.account import Account

View File

@ -62,10 +62,10 @@ from core.app.task_pipeline.workflow_cycle_manage import WorkflowCycleManage
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.utils.encoders import jsonable_encoder
from core.ops.ops_trace_manager import TraceQueueManager
from core.repository.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.workflow.enums import SystemVariableKey
from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeState
from core.workflow.nodes import NodeType
from core.workflow.repository.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from events.message_event import message_was_created
from extensions.ext_database import db
from models import Conversation, EndUser, Message, MessageFile

View File

@ -23,8 +23,8 @@ from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerat
from core.app.entities.task_entities import WorkflowAppBlockingResponse, WorkflowAppStreamResponse
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.ops.ops_trace_manager import TraceQueueManager
from core.repository import RepositoryFactory
from core.repository.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.workflow.repository import RepositoryFactory
from core.workflow.repository.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from extensions.ext_database import db
from factories import file_factory
from models import Account, App, EndUser, Workflow

View File

@ -54,8 +54,8 @@ from core.app.entities.task_entities import (
from core.app.task_pipeline.based_generate_task_pipeline import BasedGenerateTaskPipeline
from core.app.task_pipeline.workflow_cycle_manage import WorkflowCycleManage
from core.ops.ops_trace_manager import TraceQueueManager
from core.repository.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.workflow.enums import SystemVariableKey
from core.workflow.repository.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from extensions.ext_database import db
from models.account import Account
from models.enums import CreatedByRole

View File

@ -49,12 +49,12 @@ from core.file import FILE_MODEL_IDENTITY, File
from core.model_runtime.utils.encoders import jsonable_encoder
from core.ops.entities.trace_entity import TraceTaskName
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
from core.repository.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.tools.tool_manager import ToolManager
from core.workflow.entities.node_entities import NodeRunMetadataKey
from core.workflow.enums import SystemVariableKey
from core.workflow.nodes import NodeType
from core.workflow.nodes.tool.entities import ToolNodeData
from core.workflow.repository.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.workflow.workflow_entry import WorkflowEntry
from models.account import Account
from models.enums import CreatedByRole, WorkflowRunTriggeredFrom
@ -381,6 +381,8 @@ class WorkflowCycleManage:
workflow_node_execution.elapsed_time = elapsed_time
workflow_node_execution.execution_metadata = execution_metadata
self._workflow_node_execution_repository.update(workflow_node_execution)
return workflow_node_execution
def _handle_workflow_node_execution_retried(

View File

@ -1 +1 @@
1
1

View File

@ -10,13 +10,13 @@ class NodeJsTemplateTransformer(TemplateTransformer):
f"""
// declare main function
{cls._code_placeholder}
// decode and prepare input object
var inputs_obj = JSON.parse(Buffer.from('{cls._inputs_placeholder}', 'base64').toString('utf-8'))
// execute main function
var output_obj = main(inputs_obj)
// convert output to json and print
var output_json = JSON.stringify(output_obj)
var result = `<<RESULT>>${{output_json}}<<RESULT>>`

View File

@ -21,20 +21,20 @@ class Jinja2TemplateTransformer(TemplateTransformer):
import jinja2
template = jinja2.Template('''{cls._code_placeholder}''')
return template.render(**inputs)
import json
from base64 import b64decode
# decode and prepare input dict
inputs_obj = json.loads(b64decode('{cls._inputs_placeholder}').decode('utf-8'))
# execute main function
output = main(**inputs_obj)
# convert output and print
result = f'''<<RESULT>>{{output}}<<RESULT>>'''
print(result)
""")
return runner_script
@ -43,15 +43,15 @@ class Jinja2TemplateTransformer(TemplateTransformer):
preload_script = dedent("""
import jinja2
from base64 import b64decode
def _jinja2_preload_():
# prepare jinja2 environment, load template and render before to avoid sandbox issue
template = jinja2.Template('{{s}}')
template.render(s='a')
if __name__ == '__main__':
_jinja2_preload_()
""")
return preload_script

View File

@ -9,16 +9,16 @@ class Python3TemplateTransformer(TemplateTransformer):
runner_script = dedent(f"""
# declare main function
{cls._code_placeholder}
import json
from base64 import b64decode
# decode and prepare input dict
inputs_obj = json.loads(b64decode('{cls._inputs_placeholder}').decode('utf-8'))
# execute main function
output_obj = main(**inputs_obj)
# convert output to json and print
output_json = json.dumps(output_obj, indent=4)
result = f'''<<RESULT>>{{output_json}}<<RESULT>>'''

View File

@ -3,6 +3,8 @@ import logging
import re
from typing import Optional, cast
import json_repair
from core.llm_generator.output_parser.rule_config_generator import RuleConfigGeneratorOutputParser
from core.llm_generator.output_parser.suggested_questions_after_answer import SuggestedQuestionsAfterAnswerOutputParser
from core.llm_generator.prompts import (
@ -366,7 +368,20 @@ class LLMGenerator:
),
)
generated_json_schema = cast(str, response.message.content)
raw_content = response.message.content
if not isinstance(raw_content, str):
raise ValueError(f"LLM response content must be a string, got: {type(raw_content)}")
try:
parsed_content = json.loads(raw_content)
except json.JSONDecodeError:
parsed_content = json_repair.loads(raw_content)
if not isinstance(parsed_content, dict | list):
raise ValueError(f"Failed to parse structured output from llm: {raw_content}")
generated_json_schema = json.dumps(parsed_content, indent=2, ensure_ascii=False)
return {"output": generated_json_schema, "error": ""}
except InvokeError as e:

View File

@ -1,5 +1,5 @@
# Written by YORKI MINAKO🤡, Edited by Xiaoyi
CONVERSATION_TITLE_PROMPT = """You need to decompose the user's input into "subject" and "intention" in order to accurately figure out what the user's input language actually is.
CONVERSATION_TITLE_PROMPT = """You need to decompose the user's input into "subject" and "intention" in order to accurately figure out what the user's input language actually is.
Notice: the language type user uses could be diverse, which can be English, Chinese, Italian, Español, Arabic, Japanese, French, and etc.
ENSURE your output is in the SAME language as the user's input!
Your output is restricted only to: (Input language) Intention + Subject(short as possible)
@ -58,7 +58,7 @@ User Input: yo, 你今天咋样?
"Your Output": "查询今日我的状态☺️"
}
User Input:
User Input:
""" # noqa: E501
PYTHON_CODE_GENERATOR_PROMPT_TEMPLATE = (
@ -163,11 +163,11 @@ Here is a task description for which I would like you to create a high-quality p
{{TASK_DESCRIPTION}}
</task_description>
Based on task description, please create a well-structured prompt template that another AI could use to consistently complete the task. The prompt template should include:
- Do not include <input> or <output> section and variables in the prompt, assume user will add them at their own will.
- Clear instructions for the AI that will be using this prompt, demarcated with <instruction> tags. The instructions should provide step-by-step directions on how to complete the task using the input variables. Also Specifies in the instructions that the output should not contain any xml tag.
- Relevant examples if needed to clarify the task further, demarcated with <example> tags. Do not include variables in the prompt. Give three pairs of input and output examples.
- Do not include <input> or <output> section and variables in the prompt, assume user will add them at their own will.
- Clear instructions for the AI that will be using this prompt, demarcated with <instruction> tags. The instructions should provide step-by-step directions on how to complete the task using the input variables. Also Specifies in the instructions that the output should not contain any xml tag.
- Relevant examples if needed to clarify the task further, demarcated with <example> tags. Do not include variables in the prompt. Give three pairs of input and output examples.
- Include other relevant sections demarcated with appropriate XML tags like <examples>, <instruction>.
- Use the same language as task description.
- Use the same language as task description.
- Output in ``` xml ``` and start with <instruction>
Please generate the full prompt template with at least 300 words and output only the prompt template.
""" # noqa: E501
@ -178,28 +178,28 @@ Here is a task description for which I would like you to create a high-quality p
{{TASK_DESCRIPTION}}
</task_description>
Based on task description, please create a well-structured prompt template that another AI could use to consistently complete the task. The prompt template should include:
- Descriptive variable names surrounded by {{ }} (two curly brackets) to indicate where the actual values will be substituted in. Choose variable names that clearly indicate the type of value expected. Variable names have to be composed of number, english alphabets and underline and nothing else.
- Clear instructions for the AI that will be using this prompt, demarcated with <instruction> tags. The instructions should provide step-by-step directions on how to complete the task using the input variables. Also Specifies in the instructions that the output should not contain any xml tag.
- Relevant examples if needed to clarify the task further, demarcated with <example> tags. Do not use curly brackets any other than in <instruction> section.
- Descriptive variable names surrounded by {{ }} (two curly brackets) to indicate where the actual values will be substituted in. Choose variable names that clearly indicate the type of value expected. Variable names have to be composed of number, english alphabets and underline and nothing else.
- Clear instructions for the AI that will be using this prompt, demarcated with <instruction> tags. The instructions should provide step-by-step directions on how to complete the task using the input variables. Also Specifies in the instructions that the output should not contain any xml tag.
- Relevant examples if needed to clarify the task further, demarcated with <example> tags. Do not use curly brackets any other than in <instruction> section.
- Any other relevant sections demarcated with appropriate XML tags like <input>, <output>, etc.
- Use the same language as task description.
- Use the same language as task description.
- Output in ``` xml ``` and start with <instruction>
Please generate the full prompt template and output only the prompt template.
""" # noqa: E501
RULE_CONFIG_PARAMETER_GENERATE_TEMPLATE = """
I need to extract the following information from the input text. The <information to be extracted> tag specifies the 'type', 'description' and 'required' of the information to be extracted.
I need to extract the following information from the input text. The <information to be extracted> tag specifies the 'type', 'description' and 'required' of the information to be extracted.
<information to be extracted>
variables name bounded two double curly brackets. Variable name has to be composed of number, english alphabets and underline and nothing else.
variables name bounded two double curly brackets. Variable name has to be composed of number, english alphabets and underline and nothing else.
</information to be extracted>
Step 1: Carefully read the input and understand the structure of the expected output.
Step 2: Extract relevant parameters from the provided text based on the name and description of object.
Step 2: Extract relevant parameters from the provided text based on the name and description of object.
Step 3: Structure the extracted parameters to JSON object as specified in <structure>.
Step 4: Ensure that the list of variable_names is properly formatted and valid. The output should not contain any XML tags. Output an empty list if there is no valid variable name in input text.
Step 4: Ensure that the list of variable_names is properly formatted and valid. The output should not contain any XML tags. Output an empty list if there is no valid variable name in input text.
### Structure
Here is the structure of the expected output, I should always follow the output structure.
Here is the structure of the expected output, I should always follow the output structure.
["variable_name_1", "variable_name_2"]
### Input Text
@ -214,13 +214,13 @@ I should always output a valid list. Output nothing other than the list of varia
RULE_CONFIG_STATEMENT_GENERATE_TEMPLATE = """
<instruction>
Step 1: Identify the purpose of the chatbot from the variable {{TASK_DESCRIPTION}} and infer chatbot's tone (e.g., friendly, professional, etc.) to add personality traits.
Step 1: Identify the purpose of the chatbot from the variable {{TASK_DESCRIPTION}} and infer chatbot's tone (e.g., friendly, professional, etc.) to add personality traits.
Step 2: Create a coherent and engaging opening statement.
Step 3: Ensure the output is welcoming and clearly explains what the chatbot is designed to do. Do not include any XML tags in the output.
Please use the same language as the user's input language. If user uses chinese then generate opening statement in chinese, if user uses english then generate opening statement in english.
Example Input:
Please use the same language as the user's input language. If user uses chinese then generate opening statement in chinese, if user uses english then generate opening statement in english.
Example Input:
Provide customer support for an e-commerce website
Example Output:
Example Output:
Welcome! I'm here to assist you with any questions or issues you might have with your shopping experience. Whether you're looking for product information, need help with your order, or have any other inquiries, feel free to ask. I'm friendly, helpful, and ready to support you in any way I can.
<Task>
Here is the task description: {{INPUT_TEXT}}
@ -276,15 +276,15 @@ Your task is to convert simple user descriptions into properly formatted JSON Sc
{
"type": "object",
"properties": {
"email": {
"email": {
"type": "string",
"format": "email"
},
"password": {
"password": {
"type": "string",
"minLength": 8
},
"age": {
"age": {
"type": "integer",
"minimum": 18
}

View File

@ -307,4 +307,4 @@ Runtime Errors:
"""
```
For interface method details, see: [Interfaces](./interfaces.md). For specific implementations, refer to: [llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py).
For interface method details, see: [Interfaces](./interfaces.md). For specific implementations, refer to: [llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py).

View File

@ -170,4 +170,4 @@ Runtime Errors:
"""
```
For interface method explanations, see: [Interfaces](./interfaces.md). For detailed implementation, refer to: [llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py).
For interface method explanations, see: [Interfaces](./interfaces.md). For detailed implementation, refer to: [llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py).

View File

@ -294,4 +294,4 @@ provider_credential_schema:
"""
```
接口方法说明见:[Interfaces](./interfaces.md),具体实现可参考:[llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py)。
接口方法说明见:[Interfaces](./interfaces.md),具体实现可参考:[llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py)。

View File

@ -169,4 +169,4 @@ pricing: # 价格信息
"""
```
接口方法说明见:[Interfaces](./interfaces.md),具体实现可参考:[llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py)。
接口方法说明见:[Interfaces](./interfaces.md),具体实现可参考:[llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py)。

View File

@ -26,7 +26,7 @@ from core.model_runtime.errors.invoke import (
)
from core.model_runtime.model_providers.__base.tokenizers.gpt2_tokenzier import GPT2Tokenizer
from core.plugin.entities.plugin_daemon import PluginDaemonInnerError, PluginModelProviderEntity
from core.plugin.manager.model import PluginModelManager
from core.plugin.impl.model import PluginModelClient
class AIModel(BaseModel):
@ -141,7 +141,7 @@ class AIModel(BaseModel):
:param credentials: model credentials
:return: model schema
"""
plugin_model_manager = PluginModelManager()
plugin_model_manager = PluginModelClient()
cache_key = f"{self.tenant_id}:{self.plugin_id}:{self.provider_name}:{self.model_type.value}:{model}"
# sort credentials
sorted_credentials = sorted(credentials.items()) if credentials else []

View File

@ -2,7 +2,7 @@ import logging
import time
import uuid
from collections.abc import Generator, Sequence
from typing import Optional, Union
from typing import Optional, Union, cast
from pydantic import ConfigDict
@ -20,7 +20,8 @@ from core.model_runtime.entities.model_entities import (
PriceType,
)
from core.model_runtime.model_providers.__base.ai_model import AIModel
from core.plugin.manager.model import PluginModelManager
from core.model_runtime.utils.helper import convert_llm_result_chunk_to_str
from core.plugin.impl.model import PluginModelClient
logger = logging.getLogger(__name__)
@ -140,7 +141,7 @@ class LargeLanguageModel(AIModel):
result: Union[LLMResult, Generator[LLMResultChunk, None, None]]
try:
plugin_model_manager = PluginModelManager()
plugin_model_manager = PluginModelClient()
result = plugin_model_manager.invoke_llm(
tenant_id=self.tenant_id,
user_id=user or "unknown",
@ -280,7 +281,9 @@ class LargeLanguageModel(AIModel):
callbacks=callbacks,
)
assistant_message.content += chunk.delta.message.content
text = convert_llm_result_chunk_to_str(chunk.delta.message.content)
current_content = cast(str, assistant_message.content)
assistant_message.content = current_content + text
real_model = chunk.model
if chunk.delta.usage:
usage = chunk.delta.usage
@ -326,7 +329,7 @@ class LargeLanguageModel(AIModel):
:return:
"""
if dify_config.PLUGIN_BASED_TOKEN_COUNTING_ENABLED:
plugin_model_manager = PluginModelManager()
plugin_model_manager = PluginModelClient()
return plugin_model_manager.get_llm_num_tokens(
tenant_id=self.tenant_id,
user_id="unknown",

View File

@ -5,7 +5,7 @@ from pydantic import ConfigDict
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.model_providers.__base.ai_model import AIModel
from core.plugin.manager.model import PluginModelManager
from core.plugin.impl.model import PluginModelClient
class ModerationModel(AIModel):
@ -31,7 +31,7 @@ class ModerationModel(AIModel):
self.started_at = time.perf_counter()
try:
plugin_model_manager = PluginModelManager()
plugin_model_manager = PluginModelClient()
return plugin_model_manager.invoke_moderation(
tenant_id=self.tenant_id,
user_id=user or "unknown",

View File

@ -3,7 +3,7 @@ from typing import Optional
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.entities.rerank_entities import RerankResult
from core.model_runtime.model_providers.__base.ai_model import AIModel
from core.plugin.manager.model import PluginModelManager
from core.plugin.impl.model import PluginModelClient
class RerankModel(AIModel):
@ -36,7 +36,7 @@ class RerankModel(AIModel):
:return: rerank result
"""
try:
plugin_model_manager = PluginModelManager()
plugin_model_manager = PluginModelClient()
return plugin_model_manager.invoke_rerank(
tenant_id=self.tenant_id,
user_id=user or "unknown",

View File

@ -4,7 +4,7 @@ from pydantic import ConfigDict
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.model_providers.__base.ai_model import AIModel
from core.plugin.manager.model import PluginModelManager
from core.plugin.impl.model import PluginModelClient
class Speech2TextModel(AIModel):
@ -28,7 +28,7 @@ class Speech2TextModel(AIModel):
:return: text for given audio file
"""
try:
plugin_model_manager = PluginModelManager()
plugin_model_manager = PluginModelClient()
return plugin_model_manager.invoke_speech_to_text(
tenant_id=self.tenant_id,
user_id=user or "unknown",

View File

@ -6,7 +6,7 @@ from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
from core.model_runtime.model_providers.__base.ai_model import AIModel
from core.plugin.manager.model import PluginModelManager
from core.plugin.impl.model import PluginModelClient
class TextEmbeddingModel(AIModel):
@ -38,7 +38,7 @@ class TextEmbeddingModel(AIModel):
:return: embeddings result
"""
try:
plugin_model_manager = PluginModelManager()
plugin_model_manager = PluginModelClient()
return plugin_model_manager.invoke_text_embedding(
tenant_id=self.tenant_id,
user_id=user or "unknown",
@ -61,7 +61,7 @@ class TextEmbeddingModel(AIModel):
:param texts: texts to embed
:return:
"""
plugin_model_manager = PluginModelManager()
plugin_model_manager = PluginModelClient()
return plugin_model_manager.get_text_embedding_num_tokens(
tenant_id=self.tenant_id,
user_id="unknown",

View File

@ -6,7 +6,7 @@ from pydantic import ConfigDict
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.model_providers.__base.ai_model import AIModel
from core.plugin.manager.model import PluginModelManager
from core.plugin.impl.model import PluginModelClient
logger = logging.getLogger(__name__)
@ -42,7 +42,7 @@ class TTSModel(AIModel):
:return: translated audio file
"""
try:
plugin_model_manager = PluginModelManager()
plugin_model_manager = PluginModelClient()
return plugin_model_manager.invoke_tts(
tenant_id=self.tenant_id,
user_id=user or "unknown",
@ -65,7 +65,7 @@ class TTSModel(AIModel):
:param credentials: The credentials required to access the TTS model.
:return: A list of voices supported by the TTS model.
"""
plugin_model_manager = PluginModelManager()
plugin_model_manager = PluginModelClient()
return plugin_model_manager.get_tts_model_voices(
tenant_id=self.tenant_id,
user_id="unknown",

View File

@ -22,8 +22,8 @@ from core.model_runtime.schema_validators.model_credential_schema_validator impo
from core.model_runtime.schema_validators.provider_credential_schema_validator import ProviderCredentialSchemaValidator
from core.plugin.entities.plugin import ModelProviderID
from core.plugin.entities.plugin_daemon import PluginModelProviderEntity
from core.plugin.manager.asset import PluginAssetManager
from core.plugin.manager.model import PluginModelManager
from core.plugin.impl.asset import PluginAssetManager
from core.plugin.impl.model import PluginModelClient
logger = logging.getLogger(__name__)
@ -40,7 +40,7 @@ class ModelProviderFactory:
self.provider_position_map = {}
self.tenant_id = tenant_id
self.plugin_model_manager = PluginModelManager()
self.plugin_model_manager = PluginModelClient()
if not self.provider_position_map:
# get the path of current classes

View File

@ -1,6 +1,8 @@
import pydantic
from pydantic import BaseModel
from core.model_runtime.entities.message_entities import PromptMessageContentUnionTypes
def dump_model(model: BaseModel) -> dict:
if hasattr(pydantic, "model_dump"):
@ -8,3 +10,18 @@ def dump_model(model: BaseModel) -> dict:
return pydantic.model_dump(model) # type: ignore
else:
return model.model_dump()
def convert_llm_result_chunk_to_str(content: None | str | list[PromptMessageContentUnionTypes]) -> str:
if content is None:
message_text = ""
elif isinstance(content, str):
message_text = content
elif isinstance(content, list):
# Assuming the list contains PromptMessageContent objects with a "data" attribute
message_text = "".join(
item.data if hasattr(item, "data") and isinstance(item.data, str) else str(item) for item in content
)
else:
message_text = str(content)
return message_text

View File

@ -1 +1 @@
3
3

View File

@ -1 +1 @@
2
2

View File

@ -29,7 +29,7 @@ from core.ops.langfuse_trace.entities.langfuse_trace_entity import (
UnitEnum,
)
from core.ops.utils import filter_none_values
from core.repository.repository_factory import RepositoryFactory
from core.workflow.repository.repository_factory import RepositoryFactory
from extensions.ext_database import db
from models.model import EndUser

View File

@ -28,7 +28,7 @@ from core.ops.langsmith_trace.entities.langsmith_trace_entity import (
LangSmithRunUpdateModel,
)
from core.ops.utils import filter_none_values, generate_dotted_order
from core.repository.repository_factory import RepositoryFactory
from core.workflow.repository.repository_factory import RepositoryFactory
from extensions.ext_database import db
from models.model import EndUser, MessageFile

View File

@ -22,7 +22,7 @@ from core.ops.entities.trace_entity import (
TraceTaskName,
WorkflowTraceInfo,
)
from core.repository.repository_factory import RepositoryFactory
from core.workflow.repository.repository_factory import RepositoryFactory
from extensions.ext_database import db
from models.model import EndUser, MessageFile

View File

@ -72,7 +72,7 @@ class PluginAppBackwardsInvocation(BaseBackwardsInvocation):
raise ValueError("missing query")
return cls.invoke_chat_app(app, user, conversation_id, query, stream, inputs, files)
elif app.mode == AppMode.WORKFLOW.value:
elif app.mode == AppMode.WORKFLOW:
return cls.invoke_workflow_app(app, user, stream, inputs, files)
elif app.mode == AppMode.COMPLETION:
return cls.invoke_completion_app(app, user, stream, inputs, files)

View File

@ -239,8 +239,8 @@ class PluginModelBackwardsInvocation(BaseBackwardsInvocation):
content = payload.text
SUMMARY_PROMPT = """You are a professional language researcher, you are interested in the language
and you can quickly aimed at the main point of an webpage and reproduce it in your own words but
retain the original meaning and keep the key points.
and you can quickly aimed at the main point of an webpage and reproduce it in your own words but
retain the original meaning and keep the key points.
however, the text you got is too long, what you got is possible a part of the text.
Please summarize the text you got.

View File

@ -1,6 +1,7 @@
from collections.abc import Mapping
from datetime import datetime
from enum import StrEnum
from typing import Generic, Optional, TypeVar
from typing import Any, Generic, Optional, TypeVar
from pydantic import BaseModel, ConfigDict, Field
@ -158,3 +159,11 @@ class PluginInstallTaskStartResponse(BaseModel):
class PluginUploadResponse(BaseModel):
unique_identifier: str = Field(description="The unique identifier of the plugin.")
manifest: PluginDeclaration
class PluginOAuthAuthorizationUrlResponse(BaseModel):
authorization_url: str = Field(description="The URL of the authorization.")
class PluginOAuthCredentialsResponse(BaseModel):
credentials: Mapping[str, Any] = Field(description="The credentials of the OAuth.")

View File

@ -6,10 +6,10 @@ from core.plugin.entities.plugin import GenericProviderID
from core.plugin.entities.plugin_daemon import (
PluginAgentProviderEntity,
)
from core.plugin.manager.base import BasePluginManager
from core.plugin.impl.base import BasePluginClient
class PluginAgentManager(BasePluginManager):
class PluginAgentClient(BasePluginClient):
def fetch_agent_strategy_providers(self, tenant_id: str) -> list[PluginAgentProviderEntity]:
"""
Fetch agent providers for the given tenant.

View File

@ -1,7 +1,7 @@
from core.plugin.manager.base import BasePluginManager
from core.plugin.impl.base import BasePluginClient
class PluginAssetManager(BasePluginManager):
class PluginAssetManager(BasePluginClient):
def fetch_asset(self, tenant_id: str, id: str) -> bytes:
"""
Fetch an asset by id.

View File

@ -18,7 +18,7 @@ from core.model_runtime.errors.invoke import (
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.plugin.entities.plugin_daemon import PluginDaemonBasicResponse, PluginDaemonError, PluginDaemonInnerError
from core.plugin.manager.exc import (
from core.plugin.impl.exc import (
PluginDaemonBadRequestError,
PluginDaemonInternalServerError,
PluginDaemonNotFoundError,
@ -37,7 +37,7 @@ T = TypeVar("T", bound=(BaseModel | dict | list | bool | str))
logger = logging.getLogger(__name__)
class BasePluginManager:
class BasePluginClient:
def _request(
self,
method: str,

View File

@ -1,9 +1,9 @@
from pydantic import BaseModel
from core.plugin.manager.base import BasePluginManager
from core.plugin.impl.base import BasePluginClient
class PluginDebuggingManager(BasePluginManager):
class PluginDebuggingClient(BasePluginClient):
def get_debugging_key(self, tenant_id: str) -> str:
"""
Get the debugging key for the given tenant.

View File

@ -1,8 +1,8 @@
from core.plugin.entities.endpoint import EndpointEntityWithInstance
from core.plugin.manager.base import BasePluginManager
from core.plugin.impl.base import BasePluginClient
class PluginEndpointManager(BasePluginManager):
class PluginEndpointClient(BasePluginClient):
def create_endpoint(
self, tenant_id: str, user_id: str, plugin_unique_identifier: str, name: str, settings: dict
) -> bool:

View File

@ -18,10 +18,10 @@ from core.plugin.entities.plugin_daemon import (
PluginTextEmbeddingNumTokensResponse,
PluginVoicesResponse,
)
from core.plugin.manager.base import BasePluginManager
from core.plugin.impl.base import BasePluginClient
class PluginModelManager(BasePluginManager):
class PluginModelClient(BasePluginClient):
def fetch_model_providers(self, tenant_id: str) -> Sequence[PluginModelProviderEntity]:
"""
Fetch model providers for the given tenant.

View File

@ -0,0 +1,98 @@
from collections.abc import Mapping
from typing import Any
from werkzeug import Request
from core.plugin.entities.plugin_daemon import PluginOAuthAuthorizationUrlResponse, PluginOAuthCredentialsResponse
from core.plugin.impl.base import BasePluginClient
class OAuthHandler(BasePluginClient):
def get_authorization_url(
self,
tenant_id: str,
user_id: str,
plugin_id: str,
provider: str,
system_credentials: Mapping[str, Any],
) -> PluginOAuthAuthorizationUrlResponse:
return self._request_with_plugin_daemon_response(
"POST",
f"plugin/{tenant_id}/dispatch/oauth/get_authorization_url",
PluginOAuthAuthorizationUrlResponse,
data={
"user_id": user_id,
"data": {
"provider": provider,
"system_credentials": system_credentials,
},
},
headers={
"X-Plugin-ID": plugin_id,
"Content-Type": "application/json",
},
)
def get_credentials(
self,
tenant_id: str,
user_id: str,
plugin_id: str,
provider: str,
system_credentials: Mapping[str, Any],
request: Request,
) -> PluginOAuthCredentialsResponse:
"""
Get credentials from the given request.
"""
# encode request to raw http request
raw_request_bytes = self._convert_request_to_raw_data(request)
return self._request_with_plugin_daemon_response(
"POST",
f"plugin/{tenant_id}/dispatch/oauth/get_credentials",
PluginOAuthCredentialsResponse,
data={
"user_id": user_id,
"data": {
"provider": provider,
"system_credentials": system_credentials,
"raw_request_bytes": raw_request_bytes,
},
},
headers={
"X-Plugin-ID": plugin_id,
"Content-Type": "application/json",
},
)
def _convert_request_to_raw_data(self, request: Request) -> bytes:
"""
Convert a Request object to raw HTTP data.
Args:
request: The Request object to convert.
Returns:
The raw HTTP data as bytes.
"""
# Start with the request line
method = request.method
path = request.path
protocol = request.headers.get("HTTP_VERSION", "HTTP/1.1")
raw_data = f"{method} {path} {protocol}\r\n".encode()
# Add headers
for header_name, header_value in request.headers.items():
raw_data += f"{header_name}: {header_value}\r\n".encode()
# Add empty line to separate headers from body
raw_data += b"\r\n"
# Add body if exists
body = request.get_data(as_text=False)
if body:
raw_data += body
return raw_data

View File

@ -10,10 +10,10 @@ from core.plugin.entities.plugin import (
PluginInstallationSource,
)
from core.plugin.entities.plugin_daemon import PluginInstallTask, PluginInstallTaskStartResponse, PluginUploadResponse
from core.plugin.manager.base import BasePluginManager
from core.plugin.impl.base import BasePluginClient
class PluginInstallationManager(BasePluginManager):
class PluginInstaller(BasePluginClient):
def fetch_plugin_by_identifier(
self,
tenant_id: str,

View File

@ -5,11 +5,11 @@ from pydantic import BaseModel
from core.plugin.entities.plugin import GenericProviderID, ToolProviderID
from core.plugin.entities.plugin_daemon import PluginBasicBooleanResponse, PluginToolProviderEntity
from core.plugin.manager.base import BasePluginManager
from core.plugin.impl.base import BasePluginClient
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolParameter
class PluginToolManager(BasePluginManager):
class PluginToolManager(BasePluginClient):
def fetch_tool_providers(self, tenant_id: str) -> list[PluginToolProviderEntity]:
"""
Fetch tool providers for the given tenant.

View File

@ -10,4 +10,4 @@
],
"query_prompt": "\n\n用户{{#query#}}",
"stops": ["用户:"]
}
}

View File

@ -6,4 +6,4 @@
],
"query_prompt": "{{#query#}}",
"stops": null
}
}

View File

@ -6,4 +6,4 @@
],
"query_prompt": "{{#query#}}",
"stops": null
}
}

View File

@ -156,8 +156,8 @@ class AnalyticdbVectorBySql:
values = []
id_prefix = str(uuid.uuid4()) + "_"
sql = f"""
INSERT INTO {self.table_name}
(id, ref_doc_id, vector, page_content, metadata_, to_tsvector)
INSERT INTO {self.table_name}
(id, ref_doc_id, vector, page_content, metadata_, to_tsvector)
VALUES (%s, %s, %s, %s, %s, to_tsvector('zh_cn', %s));
"""
for i, doc in enumerate(documents):
@ -242,7 +242,7 @@ class AnalyticdbVectorBySql:
where_clause += f"AND metadata_->>'document_id' IN ({document_ids})"
with self._get_cursor() as cur:
cur.execute(
f"""SELECT id, vector, page_content, metadata_,
f"""SELECT id, vector, page_content, metadata_,
ts_rank(to_tsvector, to_tsquery_from_text(%s, 'zh_cn'), 32) AS score
FROM {self.table_name}
WHERE to_tsvector@@to_tsquery_from_text(%s, 'zh_cn') {where_clause}

View File

@ -27,8 +27,8 @@ class MilvusConfig(BaseModel):
uri: str # Milvus server URI
token: Optional[str] = None # Optional token for authentication
user: str # Username for authentication
password: str # Password for authentication
user: Optional[str] = None # Username for authentication
password: Optional[str] = None # Password for authentication
batch_size: int = 100 # Batch size for operations
database: str = "default" # Database name
enable_hybrid_search: bool = False # Flag to enable hybrid search
@ -43,10 +43,11 @@ class MilvusConfig(BaseModel):
"""
if not values.get("uri"):
raise ValueError("config MILVUS_URI is required")
if not values.get("user"):
raise ValueError("config MILVUS_USER is required")
if not values.get("password"):
raise ValueError("config MILVUS_PASSWORD is required")
if not values.get("token"):
if not values.get("user"):
raise ValueError("config MILVUS_USER is required")
if not values.get("password"):
raise ValueError("config MILVUS_PASSWORD is required")
return values
def to_milvus_params(self):
@ -356,11 +357,14 @@ class MilvusVector(BaseVector):
)
redis_client.set(collection_exist_cache_key, 1, ex=3600)
def _init_client(self, config) -> MilvusClient:
def _init_client(self, config: MilvusConfig) -> MilvusClient:
"""
Initialize and return a Milvus client.
"""
client = MilvusClient(uri=config.uri, user=config.user, password=config.password, db_name=config.database)
if config.token:
client = MilvusClient(uri=config.uri, token=config.token, db_name=config.database)
else:
client = MilvusClient(uri=config.uri, user=config.user, password=config.password, db_name=config.database)
return client

View File

@ -203,7 +203,7 @@ class OceanBaseVector(BaseVector):
full_sql = f"""SELECT metadata, text, MATCH (text) AGAINST (:query) AS score
FROM {self._collection_name}
WHERE MATCH (text) AGAINST (:query) > 0
WHERE MATCH (text) AGAINST (:query) > 0
{where_clause}
ORDER BY score DESC
LIMIT {top_k}"""

View File

@ -59,12 +59,12 @@ CREATE TABLE IF NOT EXISTS {table_name} (
"""
SQL_CREATE_INDEX_PQ = """
CREATE INDEX IF NOT EXISTS embedding_{table_name}_pq_idx ON {table_name}
CREATE INDEX IF NOT EXISTS embedding_{table_name}_pq_idx ON {table_name}
USING hnsw (embedding vector_cosine_ops) WITH (m = 16, ef_construction = 64, enable_pq=on, pq_m={pq_m});
"""
SQL_CREATE_INDEX = """
CREATE INDEX IF NOT EXISTS embedding_cosine_{table_name}_idx ON {table_name}
CREATE INDEX IF NOT EXISTS embedding_cosine_{table_name}_idx ON {table_name}
USING hnsw (embedding vector_cosine_ops) WITH (m = 16, ef_construction = 64);
"""

View File

@ -1,10 +1,9 @@
import json
import logging
import ssl
from typing import Any, Optional
from typing import Any, Literal, Optional
from uuid import uuid4
from opensearchpy import OpenSearch, helpers
from opensearchpy import OpenSearch, Urllib3AWSV4SignerAuth, Urllib3HttpConnection, helpers
from opensearchpy.helpers import BulkIndexError
from pydantic import BaseModel, model_validator
@ -24,9 +23,12 @@ logger = logging.getLogger(__name__)
class OpenSearchConfig(BaseModel):
host: str
port: int
secure: bool = False
auth_method: Literal["basic", "aws_managed_iam"] = "basic"
user: Optional[str] = None
password: Optional[str] = None
secure: bool = False
aws_region: Optional[str] = None
aws_service: Optional[str] = None
@model_validator(mode="before")
@classmethod
@ -35,24 +37,40 @@ class OpenSearchConfig(BaseModel):
raise ValueError("config OPENSEARCH_HOST is required")
if not values.get("port"):
raise ValueError("config OPENSEARCH_PORT is required")
if values.get("auth_method") == "aws_managed_iam":
if not values.get("aws_region"):
raise ValueError("config OPENSEARCH_AWS_REGION is required for AWS_MANAGED_IAM auth method")
if not values.get("aws_service"):
raise ValueError("config OPENSEARCH_AWS_SERVICE is required for AWS_MANAGED_IAM auth method")
return values
def create_ssl_context(self) -> ssl.SSLContext:
ssl_context = ssl.create_default_context()
ssl_context.check_hostname = False
ssl_context.verify_mode = ssl.CERT_NONE # Disable Certificate Validation
return ssl_context
def create_aws_managed_iam_auth(self) -> Urllib3AWSV4SignerAuth:
import boto3 # type: ignore
return Urllib3AWSV4SignerAuth(
credentials=boto3.Session().get_credentials(),
region=self.aws_region,
service=self.aws_service, # type: ignore[arg-type]
)
def to_opensearch_params(self) -> dict[str, Any]:
params = {
"hosts": [{"host": self.host, "port": self.port}],
"use_ssl": self.secure,
"verify_certs": self.secure,
"connection_class": Urllib3HttpConnection,
"pool_maxsize": 20,
}
if self.user and self.password:
if self.auth_method == "basic":
logger.info("Using basic authentication for OpenSearch Vector DB")
params["http_auth"] = (self.user, self.password)
if self.secure:
params["ssl_context"] = self.create_ssl_context()
elif self.auth_method == "aws_managed_iam":
logger.info("Using AWS managed IAM role for OpenSearch Vector DB")
params["http_auth"] = self.create_aws_managed_iam_auth()
return params
@ -76,16 +94,23 @@ class OpenSearchVector(BaseVector):
action = {
"_op_type": "index",
"_index": self._collection_name.lower(),
"_id": uuid4().hex,
"_source": {
Field.CONTENT_KEY.value: documents[i].page_content,
Field.VECTOR.value: embeddings[i], # Make sure you pass an array here
Field.METADATA_KEY.value: documents[i].metadata,
},
}
# See https://github.com/langchain-ai/langchainjs/issues/4346#issuecomment-1935123377
if self._client_config.aws_service not in ["aoss"]:
action["_id"] = uuid4().hex
actions.append(action)
helpers.bulk(self._client, actions)
helpers.bulk(
client=self._client,
actions=actions,
timeout=30,
max_retries=3,
)
def get_ids_by_metadata_field(self, key: str, value: str):
query = {"query": {"term": {f"{Field.METADATA_KEY.value}.{key}": value}}}
@ -234,6 +259,7 @@ class OpenSearchVector(BaseVector):
},
}
logger.info(f"Creating OpenSearch index {self._collection_name.lower()}")
self._client.indices.create(index=self._collection_name.lower(), body=index_body)
redis_client.set(collection_exist_cache_key, 1, ex=3600)
@ -252,9 +278,12 @@ class OpenSearchVectorFactory(AbstractVectorFactory):
open_search_config = OpenSearchConfig(
host=dify_config.OPENSEARCH_HOST or "localhost",
port=dify_config.OPENSEARCH_PORT,
secure=dify_config.OPENSEARCH_SECURE,
auth_method=dify_config.OPENSEARCH_AUTH_METHOD.value,
user=dify_config.OPENSEARCH_USER,
password=dify_config.OPENSEARCH_PASSWORD,
secure=dify_config.OPENSEARCH_SECURE,
aws_region=dify_config.OPENSEARCH_AWS_REGION,
aws_service=dify_config.OPENSEARCH_AWS_SERVICE,
)
return OpenSearchVector(collection_name=collection_name, config=open_search_config)

View File

@ -59,8 +59,8 @@ CREATE TABLE IF NOT EXISTS {table_name} (
)
"""
SQL_CREATE_INDEX = """
CREATE INDEX IF NOT EXISTS idx_docs_{table_name} ON {table_name}(text)
INDEXTYPE IS CTXSYS.CONTEXT PARAMETERS
CREATE INDEX IF NOT EXISTS idx_docs_{table_name} ON {table_name}(text)
INDEXTYPE IS CTXSYS.CONTEXT PARAMETERS
('FILTER CTXSYS.NULL_FILTER SECTION GROUP CTXSYS.HTML_SECTION_GROUP LEXER world_lexer')
"""
@ -164,7 +164,7 @@ class OracleVector(BaseVector):
with conn.cursor() as cur:
try:
cur.execute(
f"""INSERT INTO {self.table_name} (id, text, meta, embedding)
f"""INSERT INTO {self.table_name} (id, text, meta, embedding)
VALUES (:1, :2, :3, :4)""",
value,
)
@ -227,8 +227,8 @@ class OracleVector(BaseVector):
conn.outputtypehandler = self.output_type_handler
with conn.cursor() as cur:
cur.execute(
f"""SELECT meta, text, vector_distance(embedding,(select to_vector(:1) from dual),cosine)
AS distance FROM {self.table_name}
f"""SELECT meta, text, vector_distance(embedding,(select to_vector(:1) from dual),cosine)
AS distance FROM {self.table_name}
{where_clause} ORDER BY distance fetch first {top_k} rows only""",
[numpy.array(query_vector)],
)
@ -290,7 +290,7 @@ class OracleVector(BaseVector):
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause = f" AND metadata->>'document_id' in ({document_ids}) "
cur.execute(
f"""select meta, text, embedding FROM {self.table_name}
f"""select meta, text, embedding FROM {self.table_name}
WHERE CONTAINS(text, :kk, 1) > 0 {where_clause}
order by score(1) desc fetch first {top_k} rows only""",
kk=" ACCUM ".join(entities),

View File

@ -61,7 +61,7 @@ CREATE TABLE IF NOT EXISTS {table_name} (
"""
SQL_CREATE_INDEX = """
CREATE INDEX IF NOT EXISTS embedding_cosine_v1_idx ON {table_name}
CREATE INDEX IF NOT EXISTS embedding_cosine_v1_idx ON {table_name}
USING hnsw (embedding vector_cosine_ops) WITH (m = 16, ef_construction = 64);
"""

View File

@ -58,7 +58,7 @@ CREATE TABLE IF NOT EXISTS {table_name} (
"""
SQL_CREATE_INDEX = """
CREATE INDEX IF NOT EXISTS embedding_cosine_v1_idx ON {table_name}
CREATE INDEX IF NOT EXISTS embedding_cosine_v1_idx ON {table_name}
USING hnsw (embedding floatvector_cosine_ops) WITH (m = 16, ef_construction = 64);
"""

View File

@ -205,9 +205,9 @@ class TiDBVector(BaseVector):
with Session(self._engine) as session:
select_statement = sql_text(f"""
SELECT meta, text, distance
SELECT meta, text, distance
FROM (
SELECT
SELECT
meta,
text,
{tidb_dist_func}(vector, :query_vector_str) AS distance

View File

@ -20,7 +20,7 @@ class WaterCrawlProvider:
}
if options.get("crawl_sub_pages", True):
spider_options["page_limit"] = options.get("limit", 1)
spider_options["max_depth"] = options.get("depth", 1)
spider_options["max_depth"] = options.get("max_depth", 1)
spider_options["include_paths"] = options.get("includes", "").split(",") if options.get("includes") else []
spider_options["exclude_paths"] = options.get("excludes", "").split(",") if options.get("excludes") else []

View File

@ -52,14 +52,16 @@ class RerankModelRunner(BaseRerankRunner):
rerank_documents = []
for result in rerank_result.docs:
# format document
rerank_document = Document(
page_content=result.text,
metadata=documents[result.index].metadata,
provider=documents[result.index].provider,
)
if rerank_document.metadata is not None:
rerank_document.metadata["score"] = result.score
rerank_documents.append(rerank_document)
if score_threshold is None or result.score >= score_threshold:
# format document
rerank_document = Document(
page_content=result.text,
metadata=documents[result.index].metadata,
provider=documents[result.index].provider,
)
if rerank_document.metadata is not None:
rerank_document.metadata["score"] = result.score
rerank_documents.append(rerank_document)
return rerank_documents
rerank_documents.sort(key=lambda x: x.metadata.get("score", 0.0), reverse=True)
return rerank_documents[:top_n] if top_n else rerank_documents

Some files were not shown because too many files have changed in this diff Show More