diff --git a/api/core/model_runtime/model_providers/stepfun/__init__.py b/api/core/model_runtime/model_providers/stepfun/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/api/core/model_runtime/model_providers/stepfun/_assets/icon_l_en.png b/api/core/model_runtime/model_providers/stepfun/_assets/icon_l_en.png new file mode 100644 index 0000000000..c118ea09bd Binary files /dev/null and b/api/core/model_runtime/model_providers/stepfun/_assets/icon_l_en.png differ diff --git a/api/core/model_runtime/model_providers/stepfun/_assets/icon_s_en.png b/api/core/model_runtime/model_providers/stepfun/_assets/icon_s_en.png new file mode 100644 index 0000000000..85b96d0c74 Binary files /dev/null and b/api/core/model_runtime/model_providers/stepfun/_assets/icon_s_en.png differ diff --git a/api/core/model_runtime/model_providers/stepfun/llm/__init__.py b/api/core/model_runtime/model_providers/stepfun/llm/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/api/core/model_runtime/model_providers/stepfun/llm/_position.yaml b/api/core/model_runtime/model_providers/stepfun/llm/_position.yaml new file mode 100644 index 0000000000..b34433e1d4 --- /dev/null +++ b/api/core/model_runtime/model_providers/stepfun/llm/_position.yaml @@ -0,0 +1,6 @@ +- step-1-8k +- step-1-32k +- step-1-128k +- step-1-256k +- step-1v-8k +- step-1v-32k diff --git a/api/core/model_runtime/model_providers/stepfun/llm/llm.py b/api/core/model_runtime/model_providers/stepfun/llm/llm.py new file mode 100644 index 0000000000..6f6ffc8faa --- /dev/null +++ b/api/core/model_runtime/model_providers/stepfun/llm/llm.py @@ -0,0 +1,328 @@ +import json +from collections.abc import Generator +from typing import Optional, Union, cast + +import requests + +from core.model_runtime.entities.common_entities import I18nObject +from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta +from core.model_runtime.entities.message_entities import ( + AssistantPromptMessage, + ImagePromptMessageContent, + PromptMessage, + PromptMessageContent, + PromptMessageContentType, + PromptMessageTool, + SystemPromptMessage, + ToolPromptMessage, + UserPromptMessage, +) +from core.model_runtime.entities.model_entities import ( + AIModelEntity, + FetchFrom, + ModelFeature, + ModelPropertyKey, + ModelType, + ParameterRule, + ParameterType, +) +from core.model_runtime.model_providers.openai_api_compatible.llm.llm import OAIAPICompatLargeLanguageModel + + +class StepfunLargeLanguageModel(OAIAPICompatLargeLanguageModel): + def _invoke(self, model: str, credentials: dict, + prompt_messages: list[PromptMessage], model_parameters: dict, + tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None, + stream: bool = True, user: Optional[str] = None) \ + -> Union[LLMResult, Generator]: + self._add_custom_parameters(credentials) + self._add_function_call(model, credentials) + user = user[:32] if user else None + return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream, user) + + def validate_credentials(self, model: str, credentials: dict) -> None: + self._add_custom_parameters(credentials) + super().validate_credentials(model, credentials) + + def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None: + return AIModelEntity( + model=model, + label=I18nObject(en_US=model, zh_Hans=model), + model_type=ModelType.LLM, + features=[ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL, ModelFeature.STREAM_TOOL_CALL] + if credentials.get('function_calling_type') == 'tool_call' + else [], + fetch_from=FetchFrom.CUSTOMIZABLE_MODEL, + model_properties={ + ModelPropertyKey.CONTEXT_SIZE: int(credentials.get('context_size', 8000)), + ModelPropertyKey.MODE: LLMMode.CHAT.value, + }, + parameter_rules=[ + ParameterRule( + name='temperature', + use_template='temperature', + label=I18nObject(en_US='Temperature', zh_Hans='温度'), + type=ParameterType.FLOAT, + ), + ParameterRule( + name='max_tokens', + use_template='max_tokens', + default=512, + min=1, + max=int(credentials.get('max_tokens', 1024)), + label=I18nObject(en_US='Max Tokens', zh_Hans='最大标记'), + type=ParameterType.INT, + ), + ParameterRule( + name='top_p', + use_template='top_p', + label=I18nObject(en_US='Top P', zh_Hans='Top P'), + type=ParameterType.FLOAT, + ), + ] + ) + + def _add_custom_parameters(self, credentials: dict) -> None: + credentials['mode'] = 'chat' + credentials['endpoint_url'] = 'https://api.stepfun.com/v1' + + def _add_function_call(self, model: str, credentials: dict) -> None: + model_schema = self.get_model_schema(model, credentials) + if model_schema and { + ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL + }.intersection(model_schema.features or []): + credentials['function_calling_type'] = 'tool_call' + + def _convert_prompt_message_to_dict(self, message: PromptMessage,credentials: Optional[dict] = None) -> dict: + """ + Convert PromptMessage to dict for OpenAI API format + """ + if isinstance(message, UserPromptMessage): + message = cast(UserPromptMessage, message) + if isinstance(message.content, str): + message_dict = {"role": "user", "content": message.content} + else: + sub_messages = [] + for message_content in message.content: + if message_content.type == PromptMessageContentType.TEXT: + message_content = cast(PromptMessageContent, message_content) + sub_message_dict = { + "type": "text", + "text": message_content.data + } + sub_messages.append(sub_message_dict) + elif message_content.type == PromptMessageContentType.IMAGE: + message_content = cast(ImagePromptMessageContent, message_content) + sub_message_dict = { + "type": "image_url", + "image_url": { + "url": message_content.data, + } + } + sub_messages.append(sub_message_dict) + message_dict = {"role": "user", "content": sub_messages} + elif isinstance(message, AssistantPromptMessage): + message = cast(AssistantPromptMessage, message) + message_dict = {"role": "assistant", "content": message.content} + if message.tool_calls: + message_dict["tool_calls"] = [] + for function_call in message.tool_calls: + message_dict["tool_calls"].append({ + "id": function_call.id, + "type": function_call.type, + "function": { + "name": function_call.function.name, + "arguments": function_call.function.arguments + } + }) + elif isinstance(message, ToolPromptMessage): + message = cast(ToolPromptMessage, message) + message_dict = {"role": "tool", "content": message.content, "tool_call_id": message.tool_call_id} + elif isinstance(message, SystemPromptMessage): + message = cast(SystemPromptMessage, message) + message_dict = {"role": "system", "content": message.content} + else: + raise ValueError(f"Got unknown type {message}") + + if message.name: + message_dict["name"] = message.name + + return message_dict + + def _extract_response_tool_calls(self, response_tool_calls: list[dict]) -> list[AssistantPromptMessage.ToolCall]: + """ + Extract tool calls from response + + :param response_tool_calls: response tool calls + :return: list of tool calls + """ + tool_calls = [] + if response_tool_calls: + for response_tool_call in response_tool_calls: + function = AssistantPromptMessage.ToolCall.ToolCallFunction( + name=response_tool_call["function"]["name"] if response_tool_call.get("function", {}).get("name") else "", + arguments=response_tool_call["function"]["arguments"] if response_tool_call.get("function", {}).get("arguments") else "" + ) + + tool_call = AssistantPromptMessage.ToolCall( + id=response_tool_call["id"] if response_tool_call.get("id") else "", + type=response_tool_call["type"] if response_tool_call.get("type") else "", + function=function + ) + tool_calls.append(tool_call) + + return tool_calls + + def _handle_generate_stream_response(self, model: str, credentials: dict, response: requests.Response, + prompt_messages: list[PromptMessage]) -> Generator: + """ + Handle llm stream response + + :param model: model name + :param credentials: model credentials + :param response: streamed response + :param prompt_messages: prompt messages + :return: llm response chunk generator + """ + full_assistant_content = '' + chunk_index = 0 + + def create_final_llm_result_chunk(index: int, message: AssistantPromptMessage, finish_reason: str) \ + -> LLMResultChunk: + # calculate num tokens + prompt_tokens = self._num_tokens_from_string(model, prompt_messages[0].content) + completion_tokens = self._num_tokens_from_string(model, full_assistant_content) + + # transform usage + usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens) + + return LLMResultChunk( + model=model, + prompt_messages=prompt_messages, + delta=LLMResultChunkDelta( + index=index, + message=message, + finish_reason=finish_reason, + usage=usage + ) + ) + + tools_calls: list[AssistantPromptMessage.ToolCall] = [] + finish_reason = "Unknown" + + def increase_tool_call(new_tool_calls: list[AssistantPromptMessage.ToolCall]): + def get_tool_call(tool_name: str): + if not tool_name: + return tools_calls[-1] + + tool_call = next((tool_call for tool_call in tools_calls if tool_call.function.name == tool_name), None) + if tool_call is None: + tool_call = AssistantPromptMessage.ToolCall( + id='', + type='', + function=AssistantPromptMessage.ToolCall.ToolCallFunction(name=tool_name, arguments="") + ) + tools_calls.append(tool_call) + + return tool_call + + for new_tool_call in new_tool_calls: + # get tool call + tool_call = get_tool_call(new_tool_call.function.name) + # update tool call + if new_tool_call.id: + tool_call.id = new_tool_call.id + if new_tool_call.type: + tool_call.type = new_tool_call.type + if new_tool_call.function.name: + tool_call.function.name = new_tool_call.function.name + if new_tool_call.function.arguments: + tool_call.function.arguments += new_tool_call.function.arguments + + for chunk in response.iter_lines(decode_unicode=True, delimiter="\n\n"): + if chunk: + # ignore sse comments + if chunk.startswith(':'): + continue + decoded_chunk = chunk.strip().lstrip('data: ').lstrip() + chunk_json = None + try: + chunk_json = json.loads(decoded_chunk) + # stream ended + except json.JSONDecodeError as e: + yield create_final_llm_result_chunk( + index=chunk_index + 1, + message=AssistantPromptMessage(content=""), + finish_reason="Non-JSON encountered." + ) + break + if not chunk_json or len(chunk_json['choices']) == 0: + continue + + choice = chunk_json['choices'][0] + finish_reason = chunk_json['choices'][0].get('finish_reason') + chunk_index += 1 + + if 'delta' in choice: + delta = choice['delta'] + delta_content = delta.get('content') + + assistant_message_tool_calls = delta.get('tool_calls', None) + # assistant_message_function_call = delta.delta.function_call + + # extract tool calls from response + if assistant_message_tool_calls: + tool_calls = self._extract_response_tool_calls(assistant_message_tool_calls) + increase_tool_call(tool_calls) + + if delta_content is None or delta_content == '': + continue + + # transform assistant message to prompt message + assistant_prompt_message = AssistantPromptMessage( + content=delta_content, + tool_calls=tool_calls if assistant_message_tool_calls else [] + ) + + full_assistant_content += delta_content + elif 'text' in choice: + choice_text = choice.get('text', '') + if choice_text == '': + continue + + # transform assistant message to prompt message + assistant_prompt_message = AssistantPromptMessage(content=choice_text) + full_assistant_content += choice_text + else: + continue + + # check payload indicator for completion + yield LLMResultChunk( + model=model, + prompt_messages=prompt_messages, + delta=LLMResultChunkDelta( + index=chunk_index, + message=assistant_prompt_message, + ) + ) + + chunk_index += 1 + + if tools_calls: + yield LLMResultChunk( + model=model, + prompt_messages=prompt_messages, + delta=LLMResultChunkDelta( + index=chunk_index, + message=AssistantPromptMessage( + tool_calls=tools_calls, + content="" + ), + ) + ) + + yield create_final_llm_result_chunk( + index=chunk_index, + message=AssistantPromptMessage(content=""), + finish_reason=finish_reason + ) \ No newline at end of file diff --git a/api/core/model_runtime/model_providers/stepfun/llm/step-1-128k.yaml b/api/core/model_runtime/model_providers/stepfun/llm/step-1-128k.yaml new file mode 100644 index 0000000000..13f7b7fd26 --- /dev/null +++ b/api/core/model_runtime/model_providers/stepfun/llm/step-1-128k.yaml @@ -0,0 +1,25 @@ +model: step-1-128k +label: + zh_Hans: step-1-128k + en_US: step-1-128k +model_type: llm +features: + - agent-thought +model_properties: + mode: chat + context_size: 128000 +parameter_rules: + - name: temperature + use_template: temperature + - name: top_p + use_template: top_p + - name: max_tokens + use_template: max_tokens + default: 1024 + min: 1 + max: 128000 +pricing: + input: '0.04' + output: '0.20' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/stepfun/llm/step-1-256k.yaml b/api/core/model_runtime/model_providers/stepfun/llm/step-1-256k.yaml new file mode 100644 index 0000000000..f80ec9851c --- /dev/null +++ b/api/core/model_runtime/model_providers/stepfun/llm/step-1-256k.yaml @@ -0,0 +1,25 @@ +model: step-1-256k +label: + zh_Hans: step-1-256k + en_US: step-1-256k +model_type: llm +features: + - agent-thought +model_properties: + mode: chat + context_size: 256000 +parameter_rules: + - name: temperature + use_template: temperature + - name: top_p + use_template: top_p + - name: max_tokens + use_template: max_tokens + default: 1024 + min: 1 + max: 256000 +pricing: + input: '0.095' + output: '0.300' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/stepfun/llm/step-1-32k.yaml b/api/core/model_runtime/model_providers/stepfun/llm/step-1-32k.yaml new file mode 100644 index 0000000000..96132d14a8 --- /dev/null +++ b/api/core/model_runtime/model_providers/stepfun/llm/step-1-32k.yaml @@ -0,0 +1,28 @@ +model: step-1-32k +label: + zh_Hans: step-1-32k + en_US: step-1-32k +model_type: llm +features: + - agent-thought + - tool-call + - multi-tool-call + - stream-tool-call +model_properties: + mode: chat + context_size: 32000 +parameter_rules: + - name: temperature + use_template: temperature + - name: top_p + use_template: top_p + - name: max_tokens + use_template: max_tokens + default: 1024 + min: 1 + max: 32000 +pricing: + input: '0.015' + output: '0.070' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/stepfun/llm/step-1-8k.yaml b/api/core/model_runtime/model_providers/stepfun/llm/step-1-8k.yaml new file mode 100644 index 0000000000..4a4ba8d178 --- /dev/null +++ b/api/core/model_runtime/model_providers/stepfun/llm/step-1-8k.yaml @@ -0,0 +1,28 @@ +model: step-1-8k +label: + zh_Hans: step-1-8k + en_US: step-1-8k +model_type: llm +features: + - agent-thought + - tool-call + - multi-tool-call + - stream-tool-call +model_properties: + mode: chat + context_size: 8000 +parameter_rules: + - name: temperature + use_template: temperature + - name: top_p + use_template: top_p + - name: max_tokens + use_template: max_tokens + default: 512 + min: 1 + max: 8000 +pricing: + input: '0.005' + output: '0.020' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/stepfun/llm/step-1v-32k.yaml b/api/core/model_runtime/model_providers/stepfun/llm/step-1v-32k.yaml new file mode 100644 index 0000000000..f878ee3e56 --- /dev/null +++ b/api/core/model_runtime/model_providers/stepfun/llm/step-1v-32k.yaml @@ -0,0 +1,25 @@ +model: step-1v-32k +label: + zh_Hans: step-1v-32k + en_US: step-1v-32k +model_type: llm +features: + - vision +model_properties: + mode: chat + context_size: 32000 +parameter_rules: + - name: temperature + use_template: temperature + - name: top_p + use_template: top_p + - name: max_tokens + use_template: max_tokens + default: 1024 + min: 1 + max: 32000 +pricing: + input: '0.015' + output: '0.070' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/stepfun/llm/step-1v-8k.yaml b/api/core/model_runtime/model_providers/stepfun/llm/step-1v-8k.yaml new file mode 100644 index 0000000000..6c3cb61d2c --- /dev/null +++ b/api/core/model_runtime/model_providers/stepfun/llm/step-1v-8k.yaml @@ -0,0 +1,25 @@ +model: step-1v-8k +label: + zh_Hans: step-1v-8k + en_US: step-1v-8k +model_type: llm +features: + - vision +model_properties: + mode: chat + context_size: 8192 +parameter_rules: + - name: temperature + use_template: temperature + - name: top_p + use_template: top_p + - name: max_tokens + use_template: max_tokens + default: 512 + min: 1 + max: 8192 +pricing: + input: '0.005' + output: '0.020' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/stepfun/stepfun.py b/api/core/model_runtime/model_providers/stepfun/stepfun.py new file mode 100644 index 0000000000..50b17392b5 --- /dev/null +++ b/api/core/model_runtime/model_providers/stepfun/stepfun.py @@ -0,0 +1,30 @@ +import logging + +from core.model_runtime.entities.model_entities import ModelType +from core.model_runtime.errors.validate import CredentialsValidateFailedError +from core.model_runtime.model_providers.__base.model_provider import ModelProvider + +logger = logging.getLogger(__name__) + + +class StepfunProvider(ModelProvider): + + def validate_provider_credentials(self, credentials: dict) -> None: + """ + Validate provider credentials + if validate failed, raise exception + + :param credentials: provider credentials, credentials form defined in `provider_credential_schema`. + """ + try: + model_instance = self.get_model_instance(ModelType.LLM) + + model_instance.validate_credentials( + model='step-1-8k', + credentials=credentials + ) + except CredentialsValidateFailedError as ex: + raise ex + except Exception as ex: + logger.exception(f'{self.get_provider_schema().provider} credentials validate failed') + raise ex diff --git a/api/core/model_runtime/model_providers/stepfun/stepfun.yaml b/api/core/model_runtime/model_providers/stepfun/stepfun.yaml new file mode 100644 index 0000000000..ccc8455adc --- /dev/null +++ b/api/core/model_runtime/model_providers/stepfun/stepfun.yaml @@ -0,0 +1,81 @@ +provider: stepfun +label: + zh_Hans: 阶跃星辰 + en_US: Stepfun +description: + en_US: Models provided by stepfun, such as step-1-8k, step-1-32k、step-1v-8k、step-1v-32k, step-1-128k and step-1-256k + zh_Hans: 阶跃星辰提供的模型,例如 step-1-8k、step-1-32k、step-1v-8k、step-1v-32k、step-1-128k 和 step-1-256k。 +icon_small: + en_US: icon_s_en.png +icon_large: + en_US: icon_l_en.png +background: "#FFFFFF" +help: + title: + en_US: Get your API Key from stepfun + zh_Hans: 从 stepfun 获取 API Key + url: + en_US: https://platform.stepfun.com/interface-key +supported_model_types: + - llm +configurate_methods: + - predefined-model + - customizable-model +provider_credential_schema: + credential_form_schemas: + - variable: api_key + label: + en_US: API Key + type: secret-input + required: true + placeholder: + zh_Hans: 在此输入您的 API Key + en_US: Enter your API Key +model_credential_schema: + model: + label: + en_US: Model Name + zh_Hans: 模型名称 + placeholder: + en_US: Enter your model name + zh_Hans: 输入模型名称 + credential_form_schemas: + - variable: api_key + label: + en_US: API Key + type: secret-input + required: true + placeholder: + zh_Hans: 在此输入您的 API Key + en_US: Enter your API Key + - variable: context_size + label: + zh_Hans: 模型上下文长度 + en_US: Model context size + required: true + type: text-input + default: '8192' + placeholder: + zh_Hans: 在此输入您的模型上下文长度 + en_US: Enter your Model context size + - variable: max_tokens + label: + zh_Hans: 最大 token 上限 + en_US: Upper bound for max tokens + default: '8192' + type: text-input + - variable: function_calling_type + label: + en_US: Function calling + type: select + required: false + default: no_call + options: + - value: no_call + label: + en_US: Not supported + zh_Hans: 不支持 + - value: tool_call + label: + en_US: Tool Call + zh_Hans: Tool Call diff --git a/api/tests/integration_tests/model_runtime/stepfun/__init__.py b/api/tests/integration_tests/model_runtime/stepfun/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/api/tests/integration_tests/model_runtime/stepfun/test_llm.py b/api/tests/integration_tests/model_runtime/stepfun/test_llm.py new file mode 100644 index 0000000000..d703147d63 --- /dev/null +++ b/api/tests/integration_tests/model_runtime/stepfun/test_llm.py @@ -0,0 +1,176 @@ +import os +from collections.abc import Generator + +import pytest + +from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta +from core.model_runtime.entities.message_entities import ( + AssistantPromptMessage, + ImagePromptMessageContent, + PromptMessageTool, + SystemPromptMessage, + TextPromptMessageContent, + UserPromptMessage, +) +from core.model_runtime.entities.model_entities import AIModelEntity, ModelType +from core.model_runtime.errors.validate import CredentialsValidateFailedError +from core.model_runtime.model_providers.stepfun.llm.llm import StepfunLargeLanguageModel + + +def test_validate_credentials(): + model = StepfunLargeLanguageModel() + + with pytest.raises(CredentialsValidateFailedError): + model.validate_credentials( + model='step-1-8k', + credentials={ + 'api_key': 'invalid_key' + } + ) + + model.validate_credentials( + model='step-1-8k', + credentials={ + 'api_key': os.environ.get('STEPFUN_API_KEY') + } + ) + +def test_invoke_model(): + model = StepfunLargeLanguageModel() + + response = model.invoke( + model='step-1-8k', + credentials={ + 'api_key': os.environ.get('STEPFUN_API_KEY') + }, + prompt_messages=[ + UserPromptMessage( + content='Hello World!' + ) + ], + model_parameters={ + 'temperature': 0.9, + 'top_p': 0.7 + }, + stop=['Hi'], + stream=False, + user="abc-123" + ) + + assert isinstance(response, LLMResult) + assert len(response.message.content) > 0 + + +def test_invoke_stream_model(): + model = StepfunLargeLanguageModel() + + response = model.invoke( + model='step-1-8k', + credentials={ + 'api_key': os.environ.get('STEPFUN_API_KEY') + }, + prompt_messages=[ + SystemPromptMessage( + content='You are a helpful AI assistant.', + ), + UserPromptMessage( + content='Hello World!' + ) + ], + model_parameters={ + 'temperature': 0.9, + 'top_p': 0.7 + }, + stream=True, + user="abc-123" + ) + + assert isinstance(response, Generator) + + for chunk in response: + assert isinstance(chunk, LLMResultChunk) + assert isinstance(chunk.delta, LLMResultChunkDelta) + assert isinstance(chunk.delta.message, AssistantPromptMessage) + assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True + + +def test_get_customizable_model_schema(): + model = StepfunLargeLanguageModel() + + schema = model.get_customizable_model_schema( + model='step-1-8k', + credentials={ + 'api_key': os.environ.get('STEPFUN_API_KEY') + } + ) + assert isinstance(schema, AIModelEntity) + + +def test_invoke_chat_model_with_tools(): + model = StepfunLargeLanguageModel() + + result = model.invoke( + model='step-1-8k', + credentials={ + 'api_key': os.environ.get('STEPFUN_API_KEY') + }, + prompt_messages=[ + SystemPromptMessage( + content='You are a helpful AI assistant.', + ), + UserPromptMessage( + content="what's the weather today in Shanghai?", + ) + ], + model_parameters={ + 'temperature': 0.9, + 'max_tokens': 100 + }, + tools=[ + PromptMessageTool( + name='get_weather', + description='Determine weather in my location', + parameters={ + "type": "object", + "properties": { + "location": { + "type": "string", + "description": "The city and state e.g. San Francisco, CA" + }, + "unit": { + "type": "string", + "enum": [ + "c", + "f" + ] + } + }, + "required": [ + "location" + ] + } + ), + PromptMessageTool( + name='get_stock_price', + description='Get the current stock price', + parameters={ + "type": "object", + "properties": { + "symbol": { + "type": "string", + "description": "The stock symbol" + } + }, + "required": [ + "symbol" + ] + } + ) + ], + stream=False, + user="abc-123" + ) + + assert isinstance(result, LLMResult) + assert isinstance(result.message, AssistantPromptMessage) + assert len(result.message.tool_calls) > 0 \ No newline at end of file