chore: refactor the OpenAICompatible and improve thinking display (#13299)

This commit is contained in:
非法操作 2025-02-07 13:28:46 +08:00 committed by GitHub
parent be46f32056
commit 3eb3db0663
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 129 additions and 110 deletions

View File

@ -30,6 +30,11 @@ from core.model_runtime.model_providers.__base.ai_model import AIModel
logger = logging.getLogger(__name__)
HTML_THINKING_TAG = (
'<details style="color:gray;background-color: #f5f5f5;padding: 8px;border-radius: 4px;" open> '
"<summary> Thinking... </summary>"
)
class LargeLanguageModel(AIModel):
"""
@ -400,6 +405,40 @@ if you are not sure about the structure.
),
)
def _wrap_thinking_by_reasoning_content(self, delta: dict, is_reasoning: bool) -> tuple[str, bool]:
"""
If the reasoning response is from delta.get("reasoning_content"), we wrap
it with HTML details tag.
:param delta: delta dictionary from LLM streaming response
:param is_reasoning: is reasoning
:return: tuple of (processed_content, is_reasoning)
"""
content = delta.get("content") or ""
reasoning_content = delta.get("reasoning_content")
if reasoning_content:
if not is_reasoning:
content = HTML_THINKING_TAG + reasoning_content
is_reasoning = True
else:
content = reasoning_content
elif is_reasoning:
content = "</details>" + content
is_reasoning = False
return content, is_reasoning
def _wrap_thinking_by_tag(self, content: str) -> str:
"""
if the reasoning response is a <think>...</think> block from delta.get("content"),
we replace <think> to <detail>.
:param content: delta.get("content")
:return: processed_content
"""
return content.replace("<think>", HTML_THINKING_TAG).replace("</think>", "</details>")
def _invoke_result_generator(
self,
model: str,

View File

@ -1,6 +1,5 @@
import codecs
import json
import logging
import re
from collections.abc import Generator
from decimal import Decimal
from typing import Optional, Union, cast
@ -39,8 +38,6 @@ from core.model_runtime.model_providers.__base.large_language_model import Large
from core.model_runtime.model_providers.openai_api_compatible._common import _CommonOaiApiCompat
from core.model_runtime.utils import helper
logger = logging.getLogger(__name__)
class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
"""
@ -100,7 +97,7 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
:param tools: tools for tool calling
:return:
"""
return self._num_tokens_from_messages(model, prompt_messages, tools, credentials)
return self._num_tokens_from_messages(prompt_messages, tools, credentials)
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
@ -399,6 +396,73 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
return self._handle_generate_response(model, credentials, response, prompt_messages)
def _create_final_llm_result_chunk(
self,
index: int,
message: AssistantPromptMessage,
finish_reason: str,
usage: dict,
model: str,
prompt_messages: list[PromptMessage],
credentials: dict,
full_content: str,
) -> LLMResultChunk:
# calculate num tokens
prompt_tokens = usage and usage.get("prompt_tokens")
if prompt_tokens is None:
prompt_tokens = self._num_tokens_from_string(text=prompt_messages[0].content)
completion_tokens = usage and usage.get("completion_tokens")
if completion_tokens is None:
completion_tokens = self._num_tokens_from_string(text=full_content)
# transform usage
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
return LLMResultChunk(
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(index=index, message=message, finish_reason=finish_reason, usage=usage),
)
def _get_tool_call(self, tool_call_id: str, tools_calls: list[AssistantPromptMessage.ToolCall]):
"""
Get or create a tool call by ID
:param tool_call_id: tool call ID
:param tools_calls: list of existing tool calls
:return: existing or new tool call, updated tools_calls
"""
if not tool_call_id:
return tools_calls[-1], tools_calls
tool_call = next((tool_call for tool_call in tools_calls if tool_call.id == tool_call_id), None)
if tool_call is None:
tool_call = AssistantPromptMessage.ToolCall(
id=tool_call_id,
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="", arguments=""),
)
tools_calls.append(tool_call)
return tool_call, tools_calls
def _increase_tool_call(
self, new_tool_calls: list[AssistantPromptMessage.ToolCall], tools_calls: list[AssistantPromptMessage.ToolCall]
) -> list[AssistantPromptMessage.ToolCall]:
for new_tool_call in new_tool_calls:
# get tool call
tool_call, tools_calls = self._get_tool_call(new_tool_call.function.name, tools_calls)
# update tool call
if new_tool_call.id:
tool_call.id = new_tool_call.id
if new_tool_call.type:
tool_call.type = new_tool_call.type
if new_tool_call.function.name:
tool_call.function.name = new_tool_call.function.name
if new_tool_call.function.arguments:
tool_call.function.arguments += new_tool_call.function.arguments
return tools_calls
def _handle_generate_stream_response(
self, model: str, credentials: dict, response: requests.Response, prompt_messages: list[PromptMessage]
) -> Generator:
@ -411,71 +475,15 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
:param prompt_messages: prompt messages
:return: llm response chunk generator
"""
full_assistant_content = ""
chunk_index = 0
def create_final_llm_result_chunk(
id: Optional[str], index: int, message: AssistantPromptMessage, finish_reason: str, usage: dict
) -> LLMResultChunk:
# calculate num tokens
prompt_tokens = usage and usage.get("prompt_tokens")
if prompt_tokens is None:
prompt_tokens = self._num_tokens_from_string(model, prompt_messages[0].content)
completion_tokens = usage and usage.get("completion_tokens")
if completion_tokens is None:
completion_tokens = self._num_tokens_from_string(model, full_assistant_content)
# transform usage
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
return LLMResultChunk(
id=id,
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(index=index, message=message, finish_reason=finish_reason, usage=usage),
)
full_assistant_content = ""
tools_calls: list[AssistantPromptMessage.ToolCall] = []
finish_reason = None
usage = None
is_reasoning_started = False
# delimiter for stream response, need unicode_escape
import codecs
delimiter = credentials.get("stream_mode_delimiter", "\n\n")
delimiter = codecs.decode(delimiter, "unicode_escape")
tools_calls: list[AssistantPromptMessage.ToolCall] = []
def increase_tool_call(new_tool_calls: list[AssistantPromptMessage.ToolCall]):
def get_tool_call(tool_call_id: str):
if not tool_call_id:
return tools_calls[-1]
tool_call = next((tool_call for tool_call in tools_calls if tool_call.id == tool_call_id), None)
if tool_call is None:
tool_call = AssistantPromptMessage.ToolCall(
id=tool_call_id,
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="", arguments=""),
)
tools_calls.append(tool_call)
return tool_call
for new_tool_call in new_tool_calls:
# get tool call
tool_call = get_tool_call(new_tool_call.function.name)
# update tool call
if new_tool_call.id:
tool_call.id = new_tool_call.id
if new_tool_call.type:
tool_call.type = new_tool_call.type
if new_tool_call.function.name:
tool_call.function.name = new_tool_call.function.name
if new_tool_call.function.arguments:
tool_call.function.arguments += new_tool_call.function.arguments
finish_reason = None # The default value of finish_reason is None
message_id, usage = None, None
is_reasoning_started = False
is_reasoning_started_tag = False
for chunk in response.iter_lines(decode_unicode=True, delimiter=delimiter):
chunk = chunk.strip()
if chunk:
@ -490,12 +498,15 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
chunk_json: dict = json.loads(decoded_chunk)
# stream ended
except json.JSONDecodeError as e:
yield create_final_llm_result_chunk(
id=message_id,
yield self._create_final_llm_result_chunk(
index=chunk_index + 1,
message=AssistantPromptMessage(content=""),
finish_reason="Non-JSON encountered.",
usage=usage,
model=model,
credentials=credentials,
prompt_messages=prompt_messages,
full_content=full_assistant_content,
)
break
# handle the error here. for issue #11629
@ -510,42 +521,14 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
choice = chunk_json["choices"][0]
finish_reason = chunk_json["choices"][0].get("finish_reason")
message_id = chunk_json.get("id")
chunk_index += 1
if "delta" in choice:
delta = choice["delta"]
delta_content = delta.get("content")
if not delta_content:
delta_content = ""
if not is_reasoning_started_tag and "<think>" in delta_content:
is_reasoning_started_tag = True
delta_content = "> 💭 " + delta_content.replace("<think>", "")
elif is_reasoning_started_tag and "</think>" in delta_content:
delta_content = delta_content.replace("</think>", "") + "\n\n"
is_reasoning_started_tag = False
elif is_reasoning_started_tag:
if "\n" in delta_content:
delta_content = re.sub(r"\n(?!(>|\n))", "\n> ", delta_content)
reasoning_content = delta.get("reasoning_content")
if is_reasoning_started and not reasoning_content and not delta_content:
delta_content = ""
elif reasoning_content:
if not is_reasoning_started:
delta_content = "> 💭 " + reasoning_content
is_reasoning_started = True
else:
delta_content = reasoning_content
if "\n" in delta_content:
delta_content = re.sub(r"\n(?!(>|\n))", "\n> ", delta_content)
elif is_reasoning_started:
# If we were in reasoning mode but now getting regular content,
# add \n\n to close the reasoning block
delta_content = "\n\n" + delta_content
is_reasoning_started = False
delta_content, is_reasoning_started = self._wrap_thinking_by_reasoning_content(
delta, is_reasoning_started
)
delta_content = self._wrap_thinking_by_tag(delta_content)
assistant_message_tool_calls = None
@ -559,12 +542,10 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
{"id": "tool_call_id", "type": "function", "function": delta.get("function_call", {})}
]
# assistant_message_function_call = delta.delta.function_call
# extract tool calls from response
if assistant_message_tool_calls:
tool_calls = self._extract_response_tool_calls(assistant_message_tool_calls)
increase_tool_call(tool_calls)
tools_calls = self._increase_tool_call(tool_calls, tools_calls)
if delta_content is None or delta_content == "":
continue
@ -589,7 +570,6 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
continue
yield LLMResultChunk(
id=message_id,
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
@ -602,7 +582,6 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
if tools_calls:
yield LLMResultChunk(
id=message_id,
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
@ -611,12 +590,15 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
),
)
yield create_final_llm_result_chunk(
id=message_id,
yield self._create_final_llm_result_chunk(
index=chunk_index,
message=AssistantPromptMessage(content=""),
finish_reason=finish_reason,
usage=usage,
model=model,
credentials=credentials,
prompt_messages=prompt_messages,
full_content=full_assistant_content,
)
def _handle_generate_response(
@ -730,12 +712,11 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
return message_dict
def _num_tokens_from_string(
self, model: str, text: Union[str, list[PromptMessageContent]], tools: Optional[list[PromptMessageTool]] = None
self, text: Union[str, list[PromptMessageContent]], tools: Optional[list[PromptMessageTool]] = None
) -> int:
"""
Approximate num tokens for model with gpt2 tokenizer.
:param model: model name
:param text: prompt text
:param tools: tools for tool calling
:return: number of tokens
@ -758,7 +739,6 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
def _num_tokens_from_messages(
self,
model: str,
messages: list[PromptMessage],
tools: Optional[list[PromptMessageTool]] = None,
credentials: Optional[dict] = None,