This commit is contained in:
jyong 2025-04-28 16:19:12 +08:00
parent d4007ae073
commit 49d1846e63
13 changed files with 902 additions and 109 deletions

View File

@ -3,58 +3,58 @@ from collections.abc import Generator
from mimetypes import guess_extension
from typing import Optional
from core.datasource.datasource_file_manager import DatasourceFileManager
from core.datasource.entities.datasource_entities import DatasourceInvokeMessage
from core.file import File, FileTransferMethod, FileType
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool_file_manager import ToolFileManager
logger = logging.getLogger(__name__)
class ToolFileMessageTransformer:
class DatasourceFileMessageTransformer:
@classmethod
def transform_tool_invoke_messages(
def transform_datasource_invoke_messages(
cls,
messages: Generator[ToolInvokeMessage, None, None],
messages: Generator[DatasourceInvokeMessage, None, None],
user_id: str,
tenant_id: str,
conversation_id: Optional[str] = None,
) -> Generator[ToolInvokeMessage, None, None]:
) -> Generator[DatasourceInvokeMessage, None, None]:
"""
Transform tool message and handle file download
Transform datasource message and handle file download
"""
for message in messages:
if message.type in {ToolInvokeMessage.MessageType.TEXT, ToolInvokeMessage.MessageType.LINK}:
if message.type in {DatasourceInvokeMessage.MessageType.TEXT, DatasourceInvokeMessage.MessageType.LINK}:
yield message
elif message.type == ToolInvokeMessage.MessageType.IMAGE and isinstance(
message.message, ToolInvokeMessage.TextMessage
elif message.type == DatasourceInvokeMessage.MessageType.IMAGE and isinstance(
message.message, DatasourceInvokeMessage.TextMessage
):
# try to download image
try:
assert isinstance(message.message, ToolInvokeMessage.TextMessage)
assert isinstance(message.message, DatasourceInvokeMessage.TextMessage)
file = ToolFileManager.create_file_by_url(
file = DatasourceFileManager.create_file_by_url(
user_id=user_id,
tenant_id=tenant_id,
file_url=message.message.text,
conversation_id=conversation_id,
)
url = f"/files/tools/{file.id}{guess_extension(file.mimetype) or '.png'}"
url = f"/files/datasources/{file.id}{guess_extension(file.mimetype) or '.png'}"
yield ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.IMAGE_LINK,
message=ToolInvokeMessage.TextMessage(text=url),
yield DatasourceInvokeMessage(
type=DatasourceInvokeMessage.MessageType.IMAGE_LINK,
message=DatasourceInvokeMessage.TextMessage(text=url),
meta=message.meta.copy() if message.meta is not None else {},
)
except Exception as e:
yield ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.TEXT,
message=ToolInvokeMessage.TextMessage(
yield DatasourceInvokeMessage(
type=DatasourceInvokeMessage.MessageType.TEXT,
message=DatasourceInvokeMessage.TextMessage(
text=f"Failed to download image: {message.message.text}: {e}"
),
meta=message.meta.copy() if message.meta is not None else {},
)
elif message.type == ToolInvokeMessage.MessageType.BLOB:
elif message.type == DatasourceInvokeMessage.MessageType.BLOB:
# get mime type and save blob to storage
meta = message.meta or {}
@ -63,12 +63,12 @@ class ToolFileMessageTransformer:
filename = meta.get("file_name", None)
# if message is str, encode it to bytes
if not isinstance(message.message, ToolInvokeMessage.BlobMessage):
if not isinstance(message.message, DatasourceInvokeMessage.BlobMessage):
raise ValueError("unexpected message type")
# FIXME: should do a type check here.
assert isinstance(message.message.blob, bytes)
file = ToolFileManager.create_file_by_raw(
file = DatasourceFileManager.create_file_by_raw(
user_id=user_id,
tenant_id=tenant_id,
conversation_id=conversation_id,
@ -77,22 +77,22 @@ class ToolFileMessageTransformer:
filename=filename,
)
url = cls.get_tool_file_url(tool_file_id=file.id, extension=guess_extension(file.mimetype))
url = cls.get_datasource_file_url(datasource_file_id=file.id, extension=guess_extension(file.mimetype))
# check if file is image
if "image" in mimetype:
yield ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.IMAGE_LINK,
message=ToolInvokeMessage.TextMessage(text=url),
yield DatasourceInvokeMessage(
type=DatasourceInvokeMessage.MessageType.IMAGE_LINK,
message=DatasourceInvokeMessage.TextMessage(text=url),
meta=meta.copy() if meta is not None else {},
)
else:
yield ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.BINARY_LINK,
message=ToolInvokeMessage.TextMessage(text=url),
yield DatasourceInvokeMessage(
type=DatasourceInvokeMessage.MessageType.BINARY_LINK,
message=DatasourceInvokeMessage.TextMessage(text=url),
meta=meta.copy() if meta is not None else {},
)
elif message.type == ToolInvokeMessage.MessageType.FILE:
elif message.type == DatasourceInvokeMessage.MessageType.FILE:
meta = message.meta or {}
file = meta.get("file", None)
if isinstance(file, File):
@ -100,15 +100,15 @@ class ToolFileMessageTransformer:
assert file.related_id is not None
url = cls.get_tool_file_url(tool_file_id=file.related_id, extension=file.extension)
if file.type == FileType.IMAGE:
yield ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.IMAGE_LINK,
message=ToolInvokeMessage.TextMessage(text=url),
yield DatasourceInvokeMessage(
type=DatasourceInvokeMessage.MessageType.IMAGE_LINK,
message=DatasourceInvokeMessage.TextMessage(text=url),
meta=meta.copy() if meta is not None else {},
)
else:
yield ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.LINK,
message=ToolInvokeMessage.TextMessage(text=url),
yield DatasourceInvokeMessage(
type=DatasourceInvokeMessage.MessageType.LINK,
message=DatasourceInvokeMessage.TextMessage(text=url),
meta=meta.copy() if meta is not None else {},
)
else:
@ -117,5 +117,5 @@ class ToolFileMessageTransformer:
yield message
@classmethod
def get_tool_file_url(cls, tool_file_id: str, extension: Optional[str]) -> str:
return f"/files/tools/{tool_file_id}{extension or '.bin'}"
def get_datasource_file_url(cls, datasource_file_id: str, extension: Optional[str]) -> str:
return f"/files/datasources/{datasource_file_id}{extension or '.bin'}"

View File

@ -88,13 +88,14 @@ class PluginDatasourceManager(BasePluginManager):
response = self._request_with_plugin_daemon_response_stream(
"POST",
f"plugin/{tenant_id}/dispatch/datasource/invoke_first_step",
f"plugin/{tenant_id}/dispatch/datasource/{online_document}/pages",
ToolInvokeMessage,
data={
"user_id": user_id,
"data": {
"provider": datasource_provider_id.provider_name,
"datasource": datasource_name,
"credentials": credentials,
"datasource_parameters": datasource_parameters,
},

View File

@ -5,13 +5,13 @@ from sqlalchemy import select
from sqlalchemy.orm import Session
from core.callback_handler.workflow_tool_callback_handler import DifyWorkflowCallbackHandler
from core.datasource.datasource_engine import DatasourceEngine
from core.datasource.entities.datasource_entities import DatasourceInvokeMessage, DatasourceParameter
from core.datasource.errors import DatasourceInvokeError
from core.datasource.utils.message_transformer import DatasourceFileMessageTransformer
from core.file import File, FileTransferMethod
from core.plugin.manager.exc import PluginDaemonClientSideError
from core.plugin.manager.plugin import PluginInstallationManager
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolParameter
from core.tools.errors import ToolInvokeError
from core.tools.tool_engine import ToolEngine
from core.tools.utils.message_transformer import ToolFileMessageTransformer
from core.variables.segments import ArrayAnySegment
from core.variables.variables import ArrayAnyVariable
from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult
@ -29,11 +29,7 @@ from models.workflow import WorkflowNodeExecutionStatus
from services.tools.builtin_tools_manage_service import BuiltinToolManageService
from .entities import DatasourceNodeData
from .exc import (
ToolFileError,
ToolNodeError,
ToolParameterError,
)
from .exc import DatasourceNodeError, DatasourceParameterError, ToolFileError
class DatasourceNode(BaseNode[DatasourceNodeData]):
@ -60,12 +56,12 @@ class DatasourceNode(BaseNode[DatasourceNodeData]):
# get datasource runtime
try:
from core.tools.tool_manager import ToolManager
from core.datasource.datasource_manager import DatasourceManager
tool_runtime = ToolManager.get_workflow_tool_runtime(
datasource_runtime = DatasourceManager.get_workflow_datasource_runtime(
self.tenant_id, self.app_id, self.node_id, self.node_data, self.invoke_from
)
except ToolNodeError as e:
except DatasourceNodeError as e:
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
@ -78,14 +74,14 @@ class DatasourceNode(BaseNode[DatasourceNodeData]):
return
# get parameters
tool_parameters = tool_runtime.get_merged_runtime_parameters() or []
datasource_parameters = datasource_runtime.get_merged_runtime_parameters() or []
parameters = self._generate_parameters(
tool_parameters=tool_parameters,
datasource_parameters=datasource_parameters,
variable_pool=self.graph_runtime_state.variable_pool,
node_data=self.node_data,
)
parameters_for_log = self._generate_parameters(
tool_parameters=tool_parameters,
datasource_parameters=datasource_parameters,
variable_pool=self.graph_runtime_state.variable_pool,
node_data=self.node_data,
for_log=True,
@ -95,9 +91,9 @@ class DatasourceNode(BaseNode[DatasourceNodeData]):
conversation_id = self.graph_runtime_state.variable_pool.get(["sys", SystemVariableKey.CONVERSATION_ID])
try:
message_stream = ToolEngine.generic_invoke(
tool=tool_runtime,
tool_parameters=parameters,
message_stream = DatasourceEngine.generic_invoke(
datasource=datasource_runtime,
datasource_parameters=parameters,
user_id=self.user_id,
workflow_tool_callback=DifyWorkflowCallbackHandler(),
workflow_call_depth=self.workflow_call_depth,
@ -105,28 +101,28 @@ class DatasourceNode(BaseNode[DatasourceNodeData]):
app_id=self.app_id,
conversation_id=conversation_id.text if conversation_id else None,
)
except ToolNodeError as e:
except DatasourceNodeError as e:
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
inputs=parameters_for_log,
metadata={NodeRunMetadataKey.TOOL_INFO: tool_info},
error=f"Failed to invoke tool: {str(e)}",
metadata={NodeRunMetadataKey.DATASOURCE_INFO: datasource_info},
error=f"Failed to invoke datasource: {str(e)}",
error_type=type(e).__name__,
)
)
return
try:
# convert tool messages
yield from self._transform_message(message_stream, tool_info, parameters_for_log)
except (PluginDaemonClientSideError, ToolInvokeError) as e:
# convert datasource messages
yield from self._transform_message(message_stream, datasource_info, parameters_for_log)
except (PluginDaemonClientSideError, DatasourceInvokeError) as e:
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
inputs=parameters_for_log,
metadata={NodeRunMetadataKey.TOOL_INFO: tool_info},
error=f"Failed to transform tool message: {str(e)}",
metadata={NodeRunMetadataKey.DATASOURCE_INFO: datasource_info},
error=f"Failed to transform datasource message: {str(e)}",
error_type=type(e).__name__,
)
)
@ -134,9 +130,9 @@ class DatasourceNode(BaseNode[DatasourceNodeData]):
def _generate_parameters(
self,
*,
tool_parameters: Sequence[ToolParameter],
datasource_parameters: Sequence[DatasourceParameter],
variable_pool: VariablePool,
node_data: ToolNodeData,
node_data: DatasourceNodeData,
for_log: bool = False,
) -> dict[str, Any]:
"""
@ -151,25 +147,25 @@ class DatasourceNode(BaseNode[DatasourceNodeData]):
Mapping[str, Any]: A dictionary containing the generated parameters.
"""
tool_parameters_dictionary = {parameter.name: parameter for parameter in tool_parameters}
datasource_parameters_dictionary = {parameter.name: parameter for parameter in datasource_parameters}
result: dict[str, Any] = {}
for parameter_name in node_data.tool_parameters:
parameter = tool_parameters_dictionary.get(parameter_name)
for parameter_name in node_data.datasource_parameters:
parameter = datasource_parameters_dictionary.get(parameter_name)
if not parameter:
result[parameter_name] = None
continue
tool_input = node_data.tool_parameters[parameter_name]
if tool_input.type == "variable":
variable = variable_pool.get(tool_input.value)
datasource_input = node_data.datasource_parameters[parameter_name]
if datasource_input.type == "variable":
variable = variable_pool.get(datasource_input.value)
if variable is None:
raise ToolParameterError(f"Variable {tool_input.value} does not exist")
raise DatasourceParameterError(f"Variable {datasource_input.value} does not exist")
parameter_value = variable.value
elif tool_input.type in {"mixed", "constant"}:
segment_group = variable_pool.convert_template(str(tool_input.value))
elif datasource_input.type in {"mixed", "constant"}:
segment_group = variable_pool.convert_template(str(datasource_input.value))
parameter_value = segment_group.log if for_log else segment_group.text
else:
raise ToolParameterError(f"Unknown tool input type '{tool_input.type}'")
raise DatasourceParameterError(f"Unknown datasource input type '{datasource_input.type}'")
result[parameter_name] = parameter_value
return result
@ -181,15 +177,15 @@ class DatasourceNode(BaseNode[DatasourceNodeData]):
def _transform_message(
self,
messages: Generator[ToolInvokeMessage, None, None],
tool_info: Mapping[str, Any],
messages: Generator[DatasourceInvokeMessage, None, None],
datasource_info: Mapping[str, Any],
parameters_for_log: dict[str, Any],
) -> Generator:
"""
Convert ToolInvokeMessages into tuple[plain_text, files]
"""
# transform message and handle file storage
message_stream = ToolFileMessageTransformer.transform_tool_invoke_messages(
message_stream = DatasourceFileMessageTransformer.transform_datasource_invoke_messages(
messages=messages,
user_id=self.user_id,
tenant_id=self.tenant_id,
@ -207,11 +203,11 @@ class DatasourceNode(BaseNode[DatasourceNodeData]):
for message in message_stream:
if message.type in {
ToolInvokeMessage.MessageType.IMAGE_LINK,
ToolInvokeMessage.MessageType.BINARY_LINK,
ToolInvokeMessage.MessageType.IMAGE,
DatasourceInvokeMessage.MessageType.IMAGE_LINK,
DatasourceInvokeMessage.MessageType.BINARY_LINK,
DatasourceInvokeMessage.MessageType.IMAGE,
}:
assert isinstance(message.message, ToolInvokeMessage.TextMessage)
assert isinstance(message.message, DatasourceInvokeMessage.TextMessage)
url = message.message.text
if message.meta:
@ -238,9 +234,9 @@ class DatasourceNode(BaseNode[DatasourceNodeData]):
tenant_id=self.tenant_id,
)
files.append(file)
elif message.type == ToolInvokeMessage.MessageType.BLOB:
elif message.type == DatasourceInvokeMessage.MessageType.BLOB:
# get tool file id
assert isinstance(message.message, ToolInvokeMessage.TextMessage)
assert isinstance(message.message, DatasourceInvokeMessage.TextMessage)
assert message.meta
tool_file_id = message.message.text.split("/")[-1].split(".")[0]
@ -261,14 +257,14 @@ class DatasourceNode(BaseNode[DatasourceNodeData]):
tenant_id=self.tenant_id,
)
)
elif message.type == ToolInvokeMessage.MessageType.TEXT:
assert isinstance(message.message, ToolInvokeMessage.TextMessage)
elif message.type == DatasourceInvokeMessage.MessageType.TEXT:
assert isinstance(message.message, DatasourceInvokeMessage.TextMessage)
text += message.message.text
yield RunStreamChunkEvent(
chunk_content=message.message.text, from_variable_selector=[self.node_id, "text"]
)
elif message.type == ToolInvokeMessage.MessageType.JSON:
assert isinstance(message.message, ToolInvokeMessage.JsonMessage)
elif message.type == DatasourceInvokeMessage.MessageType.JSON:
assert isinstance(message.message, DatasourceInvokeMessage.JsonMessage)
if self.node_type == NodeType.AGENT:
msg_metadata = message.message.json_object.pop("execution_metadata", {})
agent_execution_metadata = {
@ -277,13 +273,13 @@ class DatasourceNode(BaseNode[DatasourceNodeData]):
if key in NodeRunMetadataKey.__members__.values()
}
json.append(message.message.json_object)
elif message.type == ToolInvokeMessage.MessageType.LINK:
assert isinstance(message.message, ToolInvokeMessage.TextMessage)
elif message.type == DatasourceInvokeMessage.MessageType.LINK:
assert isinstance(message.message, DatasourceInvokeMessage.TextMessage)
stream_text = f"Link: {message.message.text}\n"
text += stream_text
yield RunStreamChunkEvent(chunk_content=stream_text, from_variable_selector=[self.node_id, "text"])
elif message.type == ToolInvokeMessage.MessageType.VARIABLE:
assert isinstance(message.message, ToolInvokeMessage.VariableMessage)
elif message.type == DatasourceInvokeMessage.MessageType.VARIABLE:
assert isinstance(message.message, DatasourceInvokeMessage.VariableMessage)
variable_name = message.message.variable_name
variable_value = message.message.variable_value
if message.message.stream:
@ -298,13 +294,13 @@ class DatasourceNode(BaseNode[DatasourceNodeData]):
)
else:
variables[variable_name] = variable_value
elif message.type == ToolInvokeMessage.MessageType.FILE:
elif message.type == DatasourceInvokeMessage.MessageType.FILE:
assert message.meta is not None
files.append(message.meta["file"])
elif message.type == ToolInvokeMessage.MessageType.LOG:
assert isinstance(message.message, ToolInvokeMessage.LogMessage)
elif message.type == DatasourceInvokeMessage.MessageType.LOG:
assert isinstance(message.message, DatasourceInvokeMessage.LogMessage)
if message.message.metadata:
icon = tool_info.get("icon", "")
icon = datasource_info.get("icon", "")
dict_metadata = dict(message.message.metadata)
if dict_metadata.get("provider"):
manager = PluginInstallationManager()
@ -366,7 +362,7 @@ class DatasourceNode(BaseNode[DatasourceNodeData]):
outputs={"text": text, "files": files, "json": json, **variables},
metadata={
**agent_execution_metadata,
NodeRunMetadataKey.TOOL_INFO: tool_info,
NodeRunMetadataKey.DATASOURCE_INFO: datasource_info,
NodeRunMetadataKey.AGENT_LOG: agent_logs,
},
inputs=parameters_for_log,
@ -379,7 +375,7 @@ class DatasourceNode(BaseNode[DatasourceNodeData]):
*,
graph_config: Mapping[str, Any],
node_id: str,
node_data: ToolNodeData,
node_data: DatasourceNodeData,
) -> Mapping[str, Sequence[str]]:
"""
Extract variable selector to variable mapping
@ -389,8 +385,8 @@ class DatasourceNode(BaseNode[DatasourceNodeData]):
:return:
"""
result = {}
for parameter_name in node_data.tool_parameters:
input = node_data.tool_parameters[parameter_name]
for parameter_name in node_data.datasource_parameters:
input = node_data.datasource_parameters[parameter_name]
if input.type == "mixed":
assert isinstance(input.value, str)
selectors = VariableTemplateParser(input.value).extract_variable_selectors()

View File

@ -1,16 +1,16 @@
class ToolNodeError(ValueError):
"""Base exception for tool node errors."""
class DatasourceNodeError(ValueError):
"""Base exception for datasource node errors."""
pass
class ToolParameterError(ToolNodeError):
"""Exception raised for errors in tool parameters."""
class DatasourceParameterError(DatasourceNodeError):
"""Exception raised for errors in datasource parameters."""
pass
class ToolFileError(ToolNodeError):
"""Exception raised for errors related to tool files."""
class DatasourceFileError(DatasourceNodeError):
"""Exception raised for errors related to datasource files."""
pass

View File

@ -7,6 +7,7 @@ class NodeType(StrEnum):
ANSWER = "answer"
LLM = "llm"
KNOWLEDGE_RETRIEVAL = "knowledge-retrieval"
KNOWLEDGE_INDEX = "knowledge-index"
IF_ELSE = "if-else"
CODE = "code"
TEMPLATE_TRANSFORM = "template-transform"

View File

@ -0,0 +1,3 @@
from .knowledge_index_node import KnowledgeRetrievalNode
__all__ = ["KnowledgeRetrievalNode"]

View File

@ -0,0 +1,147 @@
from collections.abc import Sequence
from typing import Any, Literal, Optional, Union
from pydantic import BaseModel, Field
from core.workflow.nodes.base import BaseNodeData
from core.workflow.nodes.llm.entities import VisionConfig
class RerankingModelConfig(BaseModel):
"""
Reranking Model Config.
"""
provider: str
model: str
class VectorSetting(BaseModel):
"""
Vector Setting.
"""
vector_weight: float
embedding_provider_name: str
embedding_model_name: str
class KeywordSetting(BaseModel):
"""
Keyword Setting.
"""
keyword_weight: float
class WeightedScoreConfig(BaseModel):
"""
Weighted score Config.
"""
vector_setting: VectorSetting
keyword_setting: KeywordSetting
class EmbeddingSetting(BaseModel):
"""
Embedding Setting.
"""
embedding_provider_name: str
embedding_model_name: str
class EconomySetting(BaseModel):
"""
Economy Setting.
"""
keyword_number: int
class RetrievalSetting(BaseModel):
"""
Retrieval Setting.
"""
search_method: Literal["semantic_search", "keyword_search", "hybrid_search"]
top_k: int
score_threshold: Optional[float] = 0.5
score_threshold_enabled: bool = False
reranking_mode: str = "reranking_model"
reranking_enable: bool = True
reranking_model: Optional[RerankingModelConfig] = None
weights: Optional[WeightedScoreConfig] = None
class IndexMethod(BaseModel):
"""
Knowledge Index Setting.
"""
indexing_technique: Literal["high_quality", "economy"]
embedding_setting: EmbeddingSetting
economy_setting: EconomySetting
class FileInfo(BaseModel):
"""
File Info.
"""
file_id: str
class OnlineDocumentIcon(BaseModel):
"""
Document Icon.
"""
icon_url: str
icon_type: str
icon_emoji: str
class OnlineDocumentInfo(BaseModel):
"""
Online document info.
"""
provider: str
workspace_id: str
page_id: str
page_type: str
icon: OnlineDocumentIcon
class WebsiteInfo(BaseModel):
"""
website import info.
"""
provider: str
url: str
class GeneralStructureChunk(BaseModel):
"""
General Structure Chunk.
"""
general_chunk: list[str]
data_source_info: Union[FileInfo, OnlineDocumentInfo, WebsiteInfo]
class ParentChildChunk(BaseModel):
"""
Parent Child Chunk.
"""
parent_content: str
child_content: list[str]
class ParentChildStructureChunk(BaseModel):
"""
Parent Child Structure Chunk.
"""
parent_child_chunks: list[ParentChildChunk]
data_source_info: Union[FileInfo, OnlineDocumentInfo, WebsiteInfo]
class KnowledgeIndexNodeData(BaseNodeData):
"""
Knowledge index Node Data.
"""
type: str = "knowledge-index"
dataset_id: str
index_chunk_variable_selector: list[str]
chunk_structure: Literal["general", "parent-child"]
index_method: IndexMethod
retrieval_setting: RetrievalSetting

View File

@ -0,0 +1,22 @@
class KnowledgeIndexNodeError(ValueError):
"""Base class for KnowledgeIndexNode errors."""
class ModelNotExistError(KnowledgeIndexNodeError):
"""Raised when the model does not exist."""
class ModelCredentialsNotInitializedError(KnowledgeIndexNodeError):
"""Raised when the model credentials are not initialized."""
class ModelNotSupportedError(KnowledgeIndexNodeError):
"""Raised when the model is not supported."""
class ModelQuotaExceededError(KnowledgeIndexNodeError):
"""Raised when the model provider quota is exceeded."""
class InvalidModelTypeError(KnowledgeIndexNodeError):
"""Raised when the model is not a Large Language Model."""

View File

@ -0,0 +1,154 @@
import json
import logging
import re
import time
from collections import defaultdict
from collections.abc import Mapping, Sequence
from typing import Any, Optional, cast
from sqlalchemy import Integer, and_, func, or_, text
from sqlalchemy import cast as sqlalchemy_cast
from core.app.app_config.entities import DatasetRetrieveConfigEntity
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.entities.agent_entities import PlanningStrategy
from core.entities.model_entities import ModelStatus
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.message_entities import PromptMessageRole
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.prompt.simple_prompt_transform import ModelMode
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.entities.metadata_entities import Condition, MetadataCondition
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
from core.rag.retrieval.retrieval_methods import RetrievalMethod
from core.variables import StringSegment
from core.variables.segments import ObjectSegment
from core.workflow.entities.node_entities import NodeRunResult
from core.workflow.nodes.enums import NodeType
from core.workflow.nodes.event.event import ModelInvokeCompletedEvent
from core.workflow.nodes.knowledge_retrieval.template_prompts import (
METADATA_FILTER_ASSISTANT_PROMPT_1,
METADATA_FILTER_ASSISTANT_PROMPT_2,
METADATA_FILTER_COMPLETION_PROMPT,
METADATA_FILTER_SYSTEM_PROMPT,
METADATA_FILTER_USER_PROMPT_1,
METADATA_FILTER_USER_PROMPT_3,
)
from core.workflow.nodes.llm.entities import LLMNodeChatModelMessage, LLMNodeCompletionModelPromptTemplate
from core.workflow.nodes.llm.node import LLMNode
from core.workflow.nodes.question_classifier.template_prompts import QUESTION_CLASSIFIER_USER_PROMPT_2
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from libs.json_in_md_parser import parse_and_check_json_markdown
from models.dataset import Dataset, DatasetMetadata, Document, RateLimitLog
from models.workflow import WorkflowNodeExecutionStatus
from services.dataset_service import DatasetService
from services.feature_service import FeatureService
from .entities import KnowledgeIndexNodeData, KnowledgeRetrievalNodeData, ModelConfig
from .exc import (
InvalidModelTypeError,
KnowledgeIndexNodeError,
KnowledgeRetrievalNodeError,
ModelCredentialsNotInitializedError,
ModelNotExistError,
ModelNotSupportedError,
ModelQuotaExceededError,
)
logger = logging.getLogger(__name__)
default_retrieval_model = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"score_threshold_enabled": False,
}
class KnowledgeIndexNode(LLMNode):
_node_data_cls = KnowledgeIndexNodeData # type: ignore
_node_type = NodeType.KNOWLEDGE_INDEX
def _run(self) -> NodeRunResult: # type: ignore
node_data = cast(KnowledgeIndexNodeData, self.node_data)
# extract variables
variable = self.graph_runtime_state.variable_pool.get(node_data.index_chunk_variable_selector)
if not isinstance(variable, ObjectSegment):
return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
inputs={},
error="Query variable is not object type.",
)
chunks = variable.value
variables = {"chunks": chunks}
if not chunks:
return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED, inputs=variables, error="Chunks is required."
)
# check rate limit
if self.tenant_id:
knowledge_rate_limit = FeatureService.get_knowledge_rate_limit(self.tenant_id)
if knowledge_rate_limit.enabled:
current_time = int(time.time() * 1000)
key = f"rate_limit_{self.tenant_id}"
redis_client.zadd(key, {current_time: current_time})
redis_client.zremrangebyscore(key, 0, current_time - 60000)
request_count = redis_client.zcard(key)
if request_count > knowledge_rate_limit.limit:
# add ratelimit record
rate_limit_log = RateLimitLog(
tenant_id=self.tenant_id,
subscription_plan=knowledge_rate_limit.subscription_plan,
operation="knowledge",
)
db.session.add(rate_limit_log)
db.session.commit()
return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
inputs=variables,
error="Sorry, you have reached the knowledge base request rate limit of your subscription.",
error_type="RateLimitExceeded",
)
# retrieve knowledge
try:
results = self._invoke_knowledge_index(node_data=node_data, chunks=chunks)
outputs = {"result": results}
return NodeRunResult(
status=WorkflowNodeExecutionStatus.SUCCEEDED, inputs=variables, process_data=None, outputs=outputs
)
except KnowledgeIndexNodeError as e:
logger.warning("Error when running knowledge index node")
return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
inputs=variables,
error=str(e),
error_type=type(e).__name__,
)
# Temporary handle all exceptions from DatasetRetrieval class here.
except Exception as e:
return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
inputs=variables,
error=str(e),
error_type=type(e).__name__,
)
def _invoke_knowledge_index(self, node_data: KnowledgeIndexNodeData, chunks: list[any]) -> Any:
dataset = Dataset.query.filter_by(id=node_data.dataset_id).first()
if not dataset:
raise KnowledgeIndexNodeError(f"Dataset {node_data.dataset_id} not found.")
DatasetService.invoke_knowledge_index(
dataset=dataset,
chunks=chunks,
index_method=node_data.index_method,
retrieval_setting=node_data.retrieval_setting,
)
pass

View File

@ -0,0 +1,66 @@
METADATA_FILTER_SYSTEM_PROMPT = """
### Job Description',
You are a text metadata extract engine that extract text's metadata based on user input and set the metadata value
### Task
Your task is to ONLY extract the metadatas that exist in the input text from the provided metadata list and Use the following operators ["=", "!=", ">", "<", ">=", "<="] to express logical relationships, then return result in JSON format with the key "metadata_fields" and value "metadata_field_value" and comparison operator "comparison_operator".
### Format
The input text is in the variable input_text. Metadata are specified as a list in the variable metadata_fields.
### Constraint
DO NOT include anything other than the JSON array in your response.
""" # noqa: E501
METADATA_FILTER_USER_PROMPT_1 = """
{ "input_text": "I want to know which companys email address test@example.com is?",
"metadata_fields": ["filename", "email", "phone", "address"]
}
"""
METADATA_FILTER_ASSISTANT_PROMPT_1 = """
```json
{"metadata_map": [
{"metadata_field_name": "email", "metadata_field_value": "test@example.com", "comparison_operator": "="}
]
}
```
"""
METADATA_FILTER_USER_PROMPT_2 = """
{"input_text": "What are the movies with a score of more than 9 in 2024?",
"metadata_fields": ["name", "year", "rating", "country"]}
"""
METADATA_FILTER_ASSISTANT_PROMPT_2 = """
```json
{"metadata_map": [
{"metadata_field_name": "year", "metadata_field_value": "2024", "comparison_operator": "="},
{"metadata_field_name": "rating", "metadata_field_value": "9", "comparison_operator": ">"},
]}
```
"""
METADATA_FILTER_USER_PROMPT_3 = """
'{{"input_text": "{input_text}",',
'"metadata_fields": {metadata_fields}}}'
"""
METADATA_FILTER_COMPLETION_PROMPT = """
### Job Description
You are a text metadata extract engine that extract text's metadata based on user input and set the metadata value
### Task
# Your task is to ONLY extract the metadatas that exist in the input text from the provided metadata list and Use the following operators ["=", "!=", ">", "<", ">=", "<="] to express logical relationships, then return result in JSON format with the key "metadata_fields" and value "metadata_field_value" and comparison operator "comparison_operator".
### Format
The input text is in the variable input_text. Metadata are specified as a list in the variable metadata_fields.
### Constraint
DO NOT include anything other than the JSON array in your response.
### Example
Here is the chat example between human and assistant, inside <example></example> XML tags.
<example>
User:{{"input_text": ["I want to know which companys email address test@example.com is?"], "metadata_fields": ["filename", "email", "phone", "address"]}}
Assistant:{{"metadata_map": [{{"metadata_field_name": "email", "metadata_field_value": "test@example.com", "comparison_operator": "="}}]}}
User:{{"input_text": "What are the movies with a score of more than 9 in 2024?", "metadata_fields": ["name", "year", "rating", "country"]}}
Assistant:{{"metadata_map": [{{"metadata_field_name": "year", "metadata_field_value": "2024", "comparison_operator": "="}, {{"metadata_field_name": "rating", "metadata_field_value": "9", "comparison_operator": ">"}}]}}
</example>
### User Input
{{"input_text" : "{input_text}", "metadata_fields" : {metadata_fields}}}
### Assistant Output
""" # noqa: E501

View File

@ -59,7 +59,6 @@ class MultipleRetrievalConfig(BaseModel):
class ModelConfig(BaseModel):
"""
Model Config.
"""
provider: str
name: str

View File

@ -59,6 +59,7 @@ class Dataset(db.Model): # type: ignore[name-defined]
updated_at = db.Column(db.DateTime, nullable=False, server_default=func.current_timestamp())
embedding_model = db.Column(db.String(255), nullable=True)
embedding_model_provider = db.Column(db.String(255), nullable=True)
keyword_number = db.Column(db.Integer, nullable=True, server_default=db.text("10"))
collection_binding_id = db.Column(StringUUID, nullable=True)
retrieval_model = db.Column(JSONB, nullable=True)
built_in_field_enabled = db.Column(db.Boolean, nullable=False, server_default=db.text("false"))

View File

@ -21,6 +21,7 @@ from core.plugin.entities.plugin import ModelProviderID
from core.rag.index_processor.constant.built_in_field import BuiltInField
from core.rag.index_processor.constant.index_type import IndexType
from core.rag.retrieval.retrieval_methods import RetrievalMethod
from core.workflow.nodes.knowledge_index.entities import IndexMethod, RetrievalSetting
from events.dataset_event import dataset_was_deleted
from events.document_event import document_was_deleted
from extensions.ext_database import db
@ -1131,6 +1132,408 @@ class DocumentService:
return documents, batch
@staticmethod
def save_document_with_dataset_id(
dataset: Dataset,
knowledge_config: KnowledgeConfig,
account: Account | Any,
dataset_process_rule: Optional[DatasetProcessRule] = None,
created_from: str = "web",
):
# check document limit
features = FeatureService.get_features(current_user.current_tenant_id)
if features.billing.enabled:
if not knowledge_config.original_document_id:
count = 0
if knowledge_config.data_source:
if knowledge_config.data_source.info_list.data_source_type == "upload_file":
upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
count = len(upload_file_list)
elif knowledge_config.data_source.info_list.data_source_type == "notion_import":
notion_info_list = knowledge_config.data_source.info_list.notion_info_list
for notion_info in notion_info_list: # type: ignore
count = count + len(notion_info.pages)
elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":
website_info = knowledge_config.data_source.info_list.website_info_list
count = len(website_info.urls) # type: ignore
batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
if features.billing.subscription.plan == "sandbox" and count > 1:
raise ValueError("Your current plan does not support batch upload, please upgrade your plan.")
if count > batch_upload_limit:
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
DocumentService.check_documents_upload_quota(count, features)
# if dataset is empty, update dataset data_source_type
if not dataset.data_source_type:
dataset.data_source_type = knowledge_config.data_source.info_list.data_source_type # type: ignore
if not dataset.indexing_technique:
if knowledge_config.indexing_technique not in Dataset.INDEXING_TECHNIQUE_LIST:
raise ValueError("Indexing technique is invalid")
dataset.indexing_technique = knowledge_config.indexing_technique
if knowledge_config.indexing_technique == "high_quality":
model_manager = ModelManager()
if knowledge_config.embedding_model and knowledge_config.embedding_model_provider:
dataset_embedding_model = knowledge_config.embedding_model
dataset_embedding_model_provider = knowledge_config.embedding_model_provider
else:
embedding_model = model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
)
dataset_embedding_model = embedding_model.model
dataset_embedding_model_provider = embedding_model.provider
dataset.embedding_model = dataset_embedding_model
dataset.embedding_model_provider = dataset_embedding_model_provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
dataset_embedding_model_provider, dataset_embedding_model
)
dataset.collection_binding_id = dataset_collection_binding.id
if not dataset.retrieval_model:
default_retrieval_model = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"score_threshold_enabled": False,
}
dataset.retrieval_model = (
knowledge_config.retrieval_model.model_dump()
if knowledge_config.retrieval_model
else default_retrieval_model
) # type: ignore
documents = []
if knowledge_config.original_document_id:
document = DocumentService.update_document_with_dataset_id(dataset, knowledge_config, account)
documents.append(document)
batch = document.batch
else:
batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999))
# save process rule
if not dataset_process_rule:
process_rule = knowledge_config.process_rule
if process_rule:
if process_rule.mode in ("custom", "hierarchical"):
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule.mode,
rules=process_rule.rules.model_dump_json() if process_rule.rules else None,
created_by=account.id,
)
elif process_rule.mode == "automatic":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule.mode,
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
created_by=account.id,
)
else:
logging.warn(
f"Invalid process rule mode: {process_rule.mode}, can not find dataset process rule"
)
return
db.session.add(dataset_process_rule)
db.session.commit()
lock_name = "add_document_lock_dataset_id_{}".format(dataset.id)
with redis_client.lock(lock_name, timeout=600):
position = DocumentService.get_documents_position(dataset.id)
document_ids = []
duplicate_document_ids = []
if knowledge_config.data_source.info_list.data_source_type == "upload_file": # type: ignore
upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
for file_id in upload_file_list:
file = (
db.session.query(UploadFile)
.filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
.first()
)
# raise error if file not found
if not file:
raise FileNotExistsError()
file_name = file.name
data_source_info = {
"upload_file_id": file_id,
}
# check duplicate
if knowledge_config.duplicate:
document = Document.query.filter_by(
dataset_id=dataset.id,
tenant_id=current_user.current_tenant_id,
data_source_type="upload_file",
enabled=True,
name=file_name,
).first()
if document:
document.dataset_process_rule_id = dataset_process_rule.id # type: ignore
document.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
document.created_from = created_from
document.doc_form = knowledge_config.doc_form
document.doc_language = knowledge_config.doc_language
document.data_source_info = json.dumps(data_source_info)
document.batch = batch
document.indexing_status = "waiting"
db.session.add(document)
documents.append(document)
duplicate_document_ids.append(document.id)
continue
document = DocumentService.build_document(
dataset,
dataset_process_rule.id, # type: ignore
knowledge_config.data_source.info_list.data_source_type, # type: ignore
knowledge_config.doc_form,
knowledge_config.doc_language,
data_source_info,
created_from,
position,
account,
file_name,
batch,
)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
documents.append(document)
position += 1
elif knowledge_config.data_source.info_list.data_source_type == "notion_import": # type: ignore
notion_info_list = knowledge_config.data_source.info_list.notion_info_list # type: ignore
if not notion_info_list:
raise ValueError("No notion info list found.")
exist_page_ids = []
exist_document = {}
documents = Document.query.filter_by(
dataset_id=dataset.id,
tenant_id=current_user.current_tenant_id,
data_source_type="notion_import",
enabled=True,
).all()
if documents:
for document in documents:
data_source_info = json.loads(document.data_source_info)
exist_page_ids.append(data_source_info["notion_page_id"])
exist_document[data_source_info["notion_page_id"]] = document.id
for notion_info in notion_info_list:
workspace_id = notion_info.workspace_id
data_source_binding = DataSourceOauthBinding.query.filter(
db.and_(
DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
DataSourceOauthBinding.provider == "notion",
DataSourceOauthBinding.disabled == False,
DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
)
).first()
if not data_source_binding:
raise ValueError("Data source binding not found.")
for page in notion_info.pages:
if page.page_id not in exist_page_ids:
data_source_info = {
"notion_workspace_id": workspace_id,
"notion_page_id": page.page_id,
"notion_page_icon": page.page_icon.model_dump() if page.page_icon else None,
"type": page.type,
}
# Truncate page name to 255 characters to prevent DB field length errors
truncated_page_name = page.page_name[:255] if page.page_name else "nopagename"
document = DocumentService.build_document(
dataset,
dataset_process_rule.id, # type: ignore
knowledge_config.data_source.info_list.data_source_type, # type: ignore
knowledge_config.doc_form,
knowledge_config.doc_language,
data_source_info,
created_from,
position,
account,
truncated_page_name,
batch,
)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
documents.append(document)
position += 1
else:
exist_document.pop(page.page_id)
# delete not selected documents
if len(exist_document) > 0:
clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
elif knowledge_config.data_source.info_list.data_source_type == "website_crawl": # type: ignore
website_info = knowledge_config.data_source.info_list.website_info_list # type: ignore
if not website_info:
raise ValueError("No website info list found.")
urls = website_info.urls
for url in urls:
data_source_info = {
"url": url,
"provider": website_info.provider,
"job_id": website_info.job_id,
"only_main_content": website_info.only_main_content,
"mode": "crawl",
}
if len(url) > 255:
document_name = url[:200] + "..."
else:
document_name = url
document = DocumentService.build_document(
dataset,
dataset_process_rule.id, # type: ignore
knowledge_config.data_source.info_list.data_source_type, # type: ignore
knowledge_config.doc_form,
knowledge_config.doc_language,
data_source_info,
created_from,
position,
account,
document_name,
batch,
)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
documents.append(document)
position += 1
db.session.commit()
# trigger async task
if document_ids:
document_indexing_task.delay(dataset.id, document_ids)
if duplicate_document_ids:
duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
return documents, batch
@staticmethod
def invoke_knowledge_index(
dataset: Dataset,
chunks: list[Any],
index_method: IndexMethod,
retrieval_setting: RetrievalSetting,
original_document_id: str | None = None,
account: Account | Any,
created_from: str = "rag-pipline",
):
if not dataset.indexing_technique:
if index_method.indexing_technique not in Dataset.INDEXING_TECHNIQUE_LIST:
raise ValueError("Indexing technique is invalid")
dataset.indexing_technique = index_method.indexing_technique
if index_method.indexing_technique == "high_quality":
model_manager = ModelManager()
if index_method.embedding_setting.embedding_model and index_method.embedding_setting.embedding_model_provider:
dataset_embedding_model = index_method.embedding_setting.embedding_model
dataset_embedding_model_provider = index_method.embedding_setting.embedding_model_provider
else:
embedding_model = model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
)
dataset_embedding_model = embedding_model.model
dataset_embedding_model_provider = embedding_model.provider
dataset.embedding_model = dataset_embedding_model
dataset.embedding_model_provider = dataset_embedding_model_provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
dataset_embedding_model_provider, dataset_embedding_model
)
dataset.collection_binding_id = dataset_collection_binding.id
if not dataset.retrieval_model:
default_retrieval_model = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"score_threshold_enabled": False,
}
dataset.retrieval_model = (
retrieval_setting.model_dump()
if retrieval_setting
else default_retrieval_model
) # type: ignore
documents = []
if original_document_id:
document = DocumentService.update_document_with_dataset_id(dataset, knowledge_config, account)
documents.append(document)
batch = document.batch
else:
batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999))
lock_name = "add_document_lock_dataset_id_{}".format(dataset.id)
with redis_client.lock(lock_name, timeout=600):
position = DocumentService.get_documents_position(dataset.id)
document_ids = []
duplicate_document_ids = []
for chunk in chunks:
file = (
db.session.query(UploadFile)
.filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
.first()
)
# raise error if file not found
if not file:
raise FileNotExistsError()
file_name = file.name
data_source_info = {
"upload_file_id": file_id,
}
# check duplicate
if knowledge_config.duplicate:
document = Document.query.filter_by(
dataset_id=dataset.id,
tenant_id=current_user.current_tenant_id,
data_source_type="upload_file",
enabled=True,
name=file_name,
).first()
if document:
document.dataset_process_rule_id = dataset_process_rule.id # type: ignore
document.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
document.created_from = created_from
document.doc_form = knowledge_config.doc_form
document.doc_language = knowledge_config.doc_language
document.data_source_info = json.dumps(data_source_info)
document.batch = batch
document.indexing_status = "waiting"
db.session.add(document)
documents.append(document)
duplicate_document_ids.append(document.id)
continue
document = DocumentService.build_document(
dataset,
dataset_process_rule.id, # type: ignore
knowledge_config.data_source.info_list.data_source_type, # type: ignore
knowledge_config.doc_form,
knowledge_config.doc_language,
data_source_info,
created_from,
position,
account,
file_name,
batch,
)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
documents.append(document)
position += 1
db.session.commit()
# trigger async task
if document_ids:
document_indexing_task.delay(dataset.id, document_ids)
if duplicate_document_ids:
duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
return documents, batch
@staticmethod
def check_documents_upload_quota(count: int, features: FeatureModel):
can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
if count > can_upload_size: