update document and segment word count (#10449)

This commit is contained in:
Jyong 2024-11-08 17:32:27 +08:00 committed by GitHub
parent 754bfb181c
commit 4f1a56f0f0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 41 additions and 4 deletions

View File

@ -1414,9 +1414,13 @@ class SegmentService:
created_by=current_user.id,
)
if document.doc_form == "qa_model":
segment_document.word_count += len(args["answer"])
segment_document.answer = args["answer"]
db.session.add(segment_document)
# update document word count
document.word_count += segment_document.word_count
db.session.add(document)
db.session.commit()
# save vector index
@ -1435,6 +1439,7 @@ class SegmentService:
@classmethod
def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
lock_name = "multi_add_segment_lock_document_id_{}".format(document.id)
increment_word_count = 0
with redis_client.lock(lock_name, timeout=600):
embedding_model = None
if dataset.indexing_technique == "high_quality":
@ -1460,7 +1465,10 @@ class SegmentService:
tokens = 0
if dataset.indexing_technique == "high_quality" and embedding_model:
# calc embedding use tokens
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
if document.doc_form == "qa_model":
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment_item["answer"]])
else:
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
segment_document = DocumentSegment(
tenant_id=current_user.current_tenant_id,
dataset_id=document.dataset_id,
@ -1478,6 +1486,8 @@ class SegmentService:
)
if document.doc_form == "qa_model":
segment_document.answer = segment_item["answer"]
segment_document.word_count += len(segment_item["answer"])
increment_word_count += segment_document.word_count
db.session.add(segment_document)
segment_data_list.append(segment_document)
@ -1486,7 +1496,9 @@ class SegmentService:
keywords_list.append(segment_item["keywords"])
else:
keywords_list.append(None)
# update document word count
document.word_count += increment_word_count
db.session.add(document)
try:
# save vector index
VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
@ -1527,10 +1539,14 @@ class SegmentService:
else:
raise ValueError("Can't update disabled segment")
try:
word_count_change = segment.word_count
content = segment_update_entity.content
if segment.content == content:
segment.word_count = len(content)
if document.doc_form == "qa_model":
segment.answer = segment_update_entity.answer
segment.word_count += len(segment_update_entity.answer)
word_count_change = segment.word_count - word_count_change
if segment_update_entity.keywords:
segment.keywords = segment_update_entity.keywords
segment.enabled = True
@ -1538,6 +1554,10 @@ class SegmentService:
segment.disabled_by = None
db.session.add(segment)
db.session.commit()
# update document word count
if word_count_change != 0:
document.word_count = max(0, document.word_count + word_count_change)
db.session.add(document)
# update segment index task
if segment_update_entity.enabled:
VectorService.create_segments_vector([segment_update_entity.keywords], [segment], dataset)
@ -1554,7 +1574,10 @@ class SegmentService:
)
# calc embedding use tokens
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
if document.doc_form == "qa_model":
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment.answer])
else:
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
segment.content = content
segment.index_node_hash = segment_hash
segment.word_count = len(content)
@ -1569,6 +1592,12 @@ class SegmentService:
segment.disabled_by = None
if document.doc_form == "qa_model":
segment.answer = segment_update_entity.answer
segment.word_count += len(segment_update_entity.answer)
word_count_change = segment.word_count - word_count_change
# update document word count
if word_count_change != 0:
document.word_count = max(0, document.word_count + word_count_change)
db.session.add(document)
db.session.add(segment)
db.session.commit()
# update segment vector index
@ -1597,6 +1626,9 @@ class SegmentService:
redis_client.setex(indexing_cache_key, 600, 1)
delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
db.session.delete(segment)
# update document word count
document.word_count -= segment.word_count
db.session.add(document)
db.session.commit()

View File

@ -57,7 +57,7 @@ def batch_create_segment_to_index_task(
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
word_count_change = 0
for segment in content:
content = segment["content"]
doc_id = str(uuid.uuid4())
@ -86,8 +86,13 @@ def batch_create_segment_to_index_task(
)
if dataset_document.doc_form == "qa_model":
segment_document.answer = segment["answer"]
segment_document.word_count += len(segment["answer"])
word_count_change += segment_document.word_count
db.session.add(segment_document)
document_segments.append(segment_document)
# update document word count
dataset_document.word_count += word_count_change
db.session.add(dataset_document)
# add index to db
indexing_runner = IndexingRunner()
indexing_runner.batch_add_segments(document_segments, dataset)