mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-14 13:26:06 +08:00
fix: Removes redundant token calculations and updates dependencies
Eliminates unnecessary pre-calculation of token limits and recalculation of max tokens across multiple app runners, simplifying the logic for prompt handling. Updates tiktoken library from version 0.8.0 to 0.9.0 for improved tokenization performance. Increases default token limit in TokenBufferMemory to accommodate larger prompt messages. These changes streamline the token management process and leverage the latest improvements in the tiktoken library. Fixes potential token overflow issues and prepares the system for handling larger inputs more efficiently. Relates to internal optimization tasks. Signed-off-by: -LAN- <laipz8200@outlook.com>
This commit is contained in:
parent
df98223c8c
commit
559ab46ee1
@ -6,13 +6,9 @@ from flask_restful import Resource, reqparse # type: ignore
|
||||
|
||||
from constants.languages import languages
|
||||
from controllers.console import api
|
||||
from controllers.console.auth.error import (EmailCodeError, InvalidEmailError,
|
||||
InvalidTokenError,
|
||||
PasswordMismatchError)
|
||||
from controllers.console.error import (AccountInFreezeError, AccountNotFound,
|
||||
EmailSendIpLimitError)
|
||||
from controllers.console.wraps import (email_password_login_enabled,
|
||||
setup_required)
|
||||
from controllers.console.auth.error import EmailCodeError, InvalidEmailError, InvalidTokenError, PasswordMismatchError
|
||||
from controllers.console.error import AccountInFreezeError, AccountNotFound, EmailSendIpLimitError
|
||||
from controllers.console.wraps import email_password_login_enabled, setup_required
|
||||
from events.tenant_event import tenant_was_created
|
||||
from extensions.ext_database import db
|
||||
from libs.helper import email, extract_remote_ip
|
||||
|
@ -11,8 +11,7 @@ from models.model import DifySetup
|
||||
from services.feature_service import FeatureService, LicenseStatus
|
||||
from services.operation_service import OperationService
|
||||
|
||||
from .error import (NotInitValidateError, NotSetupError,
|
||||
UnauthorizedAndForceLogout)
|
||||
from .error import NotInitValidateError, NotSetupError, UnauthorizedAndForceLogout
|
||||
|
||||
|
||||
def account_initialization_required(view):
|
||||
|
@ -104,7 +104,6 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
|
||||
# recalc llm max tokens
|
||||
prompt_messages = self._organize_prompt_messages()
|
||||
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
||||
# invoke model
|
||||
chunks = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
|
@ -84,7 +84,6 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
|
||||
# recalc llm max tokens
|
||||
prompt_messages = self._organize_prompt_messages()
|
||||
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
||||
# invoke model
|
||||
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
|
@ -55,20 +55,6 @@ class AgentChatAppRunner(AppRunner):
|
||||
query = application_generate_entity.query
|
||||
files = application_generate_entity.files
|
||||
|
||||
# Pre-calculate the number of tokens of the prompt messages,
|
||||
# and return the rest number of tokens by model context token size limit and max token size limit.
|
||||
# If the rest number of tokens is not enough, raise exception.
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# Not Include: memory, external data, dataset context
|
||||
self.get_pre_calculate_rest_tokens(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
)
|
||||
|
||||
memory = None
|
||||
if application_generate_entity.conversation_id:
|
||||
# get memory of conversation (read-only)
|
||||
|
@ -15,10 +15,8 @@ from core.app.features.annotation_reply.annotation_reply import AnnotationReplyF
|
||||
from core.app.features.hosting_moderation.hosting_moderation import HostingModerationFeature
|
||||
from core.external_data_tool.external_data_fetch import ExternalDataFetch
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import AssistantPromptMessage, PromptMessage
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
from core.model_runtime.errors.invoke import InvokeBadRequestError
|
||||
from core.moderation.input_moderation import InputModeration
|
||||
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
|
||||
@ -31,106 +29,6 @@ if TYPE_CHECKING:
|
||||
|
||||
|
||||
class AppRunner:
|
||||
def get_pre_calculate_rest_tokens(
|
||||
self,
|
||||
app_record: App,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: Mapping[str, str],
|
||||
files: Sequence["File"],
|
||||
query: Optional[str] = None,
|
||||
) -> int:
|
||||
"""
|
||||
Get pre calculate rest tokens
|
||||
:param app_record: app record
|
||||
:param model_config: model config entity
|
||||
:param prompt_template_entity: prompt template entity
|
||||
:param inputs: inputs
|
||||
:param files: files
|
||||
:param query: query
|
||||
:return:
|
||||
"""
|
||||
# Invoke model
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
|
||||
)
|
||||
|
||||
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
|
||||
|
||||
max_tokens = 0
|
||||
for parameter_rule in model_config.model_schema.parameter_rules:
|
||||
if parameter_rule.name == "max_tokens" or (
|
||||
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
|
||||
):
|
||||
max_tokens = (
|
||||
model_config.parameters.get(parameter_rule.name)
|
||||
or model_config.parameters.get(parameter_rule.use_template or "")
|
||||
) or 0
|
||||
|
||||
if model_context_tokens is None:
|
||||
return -1
|
||||
|
||||
if max_tokens is None:
|
||||
max_tokens = 0
|
||||
|
||||
# get prompt messages without memory and context
|
||||
prompt_messages, stop = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=model_config,
|
||||
prompt_template_entity=prompt_template_entity,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
)
|
||||
|
||||
prompt_tokens = model_instance.get_llm_num_tokens(prompt_messages)
|
||||
|
||||
rest_tokens: int = model_context_tokens - max_tokens - prompt_tokens
|
||||
if rest_tokens < 0:
|
||||
raise InvokeBadRequestError(
|
||||
"Query or prefix prompt is too long, you can reduce the prefix prompt, "
|
||||
"or shrink the max token, or switch to a llm with a larger token limit size."
|
||||
)
|
||||
|
||||
return rest_tokens
|
||||
|
||||
def recalc_llm_max_tokens(
|
||||
self, model_config: ModelConfigWithCredentialsEntity, prompt_messages: list[PromptMessage]
|
||||
):
|
||||
# recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
|
||||
)
|
||||
|
||||
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
|
||||
|
||||
max_tokens = 0
|
||||
for parameter_rule in model_config.model_schema.parameter_rules:
|
||||
if parameter_rule.name == "max_tokens" or (
|
||||
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
|
||||
):
|
||||
max_tokens = (
|
||||
model_config.parameters.get(parameter_rule.name)
|
||||
or model_config.parameters.get(parameter_rule.use_template or "")
|
||||
) or 0
|
||||
|
||||
if model_context_tokens is None:
|
||||
return -1
|
||||
|
||||
if max_tokens is None:
|
||||
max_tokens = 0
|
||||
|
||||
prompt_tokens = model_instance.get_llm_num_tokens(prompt_messages)
|
||||
|
||||
if prompt_tokens + max_tokens > model_context_tokens:
|
||||
max_tokens = max(model_context_tokens - prompt_tokens, 16)
|
||||
|
||||
for parameter_rule in model_config.model_schema.parameter_rules:
|
||||
if parameter_rule.name == "max_tokens" or (
|
||||
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
|
||||
):
|
||||
model_config.parameters[parameter_rule.name] = max_tokens
|
||||
|
||||
def organize_prompt_messages(
|
||||
self,
|
||||
app_record: App,
|
||||
|
@ -50,20 +50,6 @@ class ChatAppRunner(AppRunner):
|
||||
query = application_generate_entity.query
|
||||
files = application_generate_entity.files
|
||||
|
||||
# Pre-calculate the number of tokens of the prompt messages,
|
||||
# and return the rest number of tokens by model context token size limit and max token size limit.
|
||||
# If the rest number of tokens is not enough, raise exception.
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# Not Include: memory, external data, dataset context
|
||||
self.get_pre_calculate_rest_tokens(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
)
|
||||
|
||||
memory = None
|
||||
if application_generate_entity.conversation_id:
|
||||
# get memory of conversation (read-only)
|
||||
@ -194,9 +180,6 @@ class ChatAppRunner(AppRunner):
|
||||
if hosting_moderation_result:
|
||||
return
|
||||
|
||||
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
|
||||
self.recalc_llm_max_tokens(model_config=application_generate_entity.model_conf, prompt_messages=prompt_messages)
|
||||
|
||||
# Invoke model
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
|
||||
|
@ -43,20 +43,6 @@ class CompletionAppRunner(AppRunner):
|
||||
query = application_generate_entity.query
|
||||
files = application_generate_entity.files
|
||||
|
||||
# Pre-calculate the number of tokens of the prompt messages,
|
||||
# and return the rest number of tokens by model context token size limit and max token size limit.
|
||||
# If the rest number of tokens is not enough, raise exception.
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# Not Include: memory, external data, dataset context
|
||||
self.get_pre_calculate_rest_tokens(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
)
|
||||
|
||||
# organize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
prompt_messages, stop = self.organize_prompt_messages(
|
||||
@ -152,9 +138,6 @@ class CompletionAppRunner(AppRunner):
|
||||
if hosting_moderation_result:
|
||||
return
|
||||
|
||||
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
|
||||
self.recalc_llm_max_tokens(model_config=application_generate_entity.model_conf, prompt_messages=prompt_messages)
|
||||
|
||||
# Invoke model
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
|
||||
|
@ -26,7 +26,7 @@ class TokenBufferMemory:
|
||||
self.model_instance = model_instance
|
||||
|
||||
def get_history_prompt_messages(
|
||||
self, max_token_limit: int = 2000, message_limit: Optional[int] = None
|
||||
self, max_token_limit: int = 100000, message_limit: Optional[int] = None
|
||||
) -> Sequence[PromptMessage]:
|
||||
"""
|
||||
Get history prompt messages.
|
||||
|
@ -1057,7 +1057,7 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
||||
model = "gpt-4o"
|
||||
|
||||
try:
|
||||
encoding = tiktoken.encoding_for_model(model)
|
||||
encoding = tiktoken.get_encoding(model)
|
||||
except KeyError:
|
||||
logger.warning("Warning: model not found. Using cl100k_base encoding.")
|
||||
model = "cl100k_base"
|
||||
|
@ -968,14 +968,12 @@ def _handle_memory_chat_mode(
|
||||
*,
|
||||
memory: TokenBufferMemory | None,
|
||||
memory_config: MemoryConfig | None,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
model_config: ModelConfigWithCredentialsEntity, # TODO(-LAN-): Needs to remove
|
||||
) -> Sequence[PromptMessage]:
|
||||
memory_messages: Sequence[PromptMessage] = []
|
||||
# Get messages from memory for chat model
|
||||
if memory and memory_config:
|
||||
rest_tokens = _calculate_rest_token(prompt_messages=[], model_config=model_config)
|
||||
memory_messages = memory.get_history_prompt_messages(
|
||||
max_token_limit=rest_tokens,
|
||||
message_limit=memory_config.window.size if memory_config.window.enabled else None,
|
||||
)
|
||||
return memory_messages
|
||||
|
66
api/poetry.lock
generated
66
api/poetry.lock
generated
@ -10473,44 +10473,44 @@ client = ["SQLAlchemy (>=1.4,<3)"]
|
||||
|
||||
[[package]]
|
||||
name = "tiktoken"
|
||||
version = "0.8.0"
|
||||
version = "0.9.0"
|
||||
description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models"
|
||||
optional = false
|
||||
python-versions = ">=3.9"
|
||||
groups = ["main"]
|
||||
markers = "python_version == \"3.11\" or python_version >= \"3.12\""
|
||||
files = [
|
||||
{file = "tiktoken-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b07e33283463089c81ef1467180e3e00ab00d46c2c4bbcef0acab5f771d6695e"},
|
||||
{file = "tiktoken-0.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9269348cb650726f44dd3bbb3f9110ac19a8dcc8f54949ad3ef652ca22a38e21"},
|
||||
{file = "tiktoken-0.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25e13f37bc4ef2d012731e93e0fef21dc3b7aea5bb9009618de9a4026844e560"},
|
||||
{file = "tiktoken-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f13d13c981511331eac0d01a59b5df7c0d4060a8be1e378672822213da51e0a2"},
|
||||
{file = "tiktoken-0.8.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:6b2ddbc79a22621ce8b1166afa9f9a888a664a579350dc7c09346a3b5de837d9"},
|
||||
{file = "tiktoken-0.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:d8c2d0e5ba6453a290b86cd65fc51fedf247e1ba170191715b049dac1f628005"},
|
||||
{file = "tiktoken-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d622d8011e6d6f239297efa42a2657043aaed06c4f68833550cac9e9bc723ef1"},
|
||||
{file = "tiktoken-0.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2efaf6199717b4485031b4d6edb94075e4d79177a172f38dd934d911b588d54a"},
|
||||
{file = "tiktoken-0.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5637e425ce1fc49cf716d88df3092048359a4b3bbb7da762840426e937ada06d"},
|
||||
{file = "tiktoken-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb0e352d1dbe15aba082883058b3cce9e48d33101bdaac1eccf66424feb5b47"},
|
||||
{file = "tiktoken-0.8.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:56edfefe896c8f10aba372ab5706b9e3558e78db39dd497c940b47bf228bc419"},
|
||||
{file = "tiktoken-0.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:326624128590def898775b722ccc327e90b073714227175ea8febbc920ac0a99"},
|
||||
{file = "tiktoken-0.8.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:881839cfeae051b3628d9823b2e56b5cc93a9e2efb435f4cf15f17dc45f21586"},
|
||||
{file = "tiktoken-0.8.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:fe9399bdc3f29d428f16a2f86c3c8ec20be3eac5f53693ce4980371c3245729b"},
|
||||
{file = "tiktoken-0.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a58deb7075d5b69237a3ff4bb51a726670419db6ea62bdcd8bd80c78497d7ab"},
|
||||
{file = "tiktoken-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2908c0d043a7d03ebd80347266b0e58440bdef5564f84f4d29fb235b5df3b04"},
|
||||
{file = "tiktoken-0.8.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:294440d21a2a51e12d4238e68a5972095534fe9878be57d905c476017bff99fc"},
|
||||
{file = "tiktoken-0.8.0-cp312-cp312-win_amd64.whl", hash = "sha256:d8f3192733ac4d77977432947d563d7e1b310b96497acd3c196c9bddb36ed9db"},
|
||||
{file = "tiktoken-0.8.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:02be1666096aff7da6cbd7cdaa8e7917bfed3467cd64b38b1f112e96d3b06a24"},
|
||||
{file = "tiktoken-0.8.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:c94ff53c5c74b535b2cbf431d907fc13c678bbd009ee633a2aca269a04389f9a"},
|
||||
{file = "tiktoken-0.8.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b231f5e8982c245ee3065cd84a4712d64692348bc609d84467c57b4b72dcbc5"},
|
||||
{file = "tiktoken-0.8.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4177faa809bd55f699e88c96d9bb4635d22e3f59d635ba6fd9ffedf7150b9953"},
|
||||
{file = "tiktoken-0.8.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:5376b6f8dc4753cd81ead935c5f518fa0fbe7e133d9e25f648d8c4dabdd4bad7"},
|
||||
{file = "tiktoken-0.8.0-cp313-cp313-win_amd64.whl", hash = "sha256:18228d624807d66c87acd8f25fc135665617cab220671eb65b50f5d70fa51f69"},
|
||||
{file = "tiktoken-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7e17807445f0cf1f25771c9d86496bd8b5c376f7419912519699f3cc4dc5c12e"},
|
||||
{file = "tiktoken-0.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:886f80bd339578bbdba6ed6d0567a0d5c6cfe198d9e587ba6c447654c65b8edc"},
|
||||
{file = "tiktoken-0.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6adc8323016d7758d6de7313527f755b0fc6c72985b7d9291be5d96d73ecd1e1"},
|
||||
{file = "tiktoken-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b591fb2b30d6a72121a80be24ec7a0e9eb51c5500ddc7e4c2496516dd5e3816b"},
|
||||
{file = "tiktoken-0.8.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:845287b9798e476b4d762c3ebda5102be87ca26e5d2c9854002825d60cdb815d"},
|
||||
{file = "tiktoken-0.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:1473cfe584252dc3fa62adceb5b1c763c1874e04511b197da4e6de51d6ce5a02"},
|
||||
{file = "tiktoken-0.8.0.tar.gz", hash = "sha256:9ccbb2740f24542534369c5635cfd9b2b3c2490754a78ac8831d99f89f94eeb2"},
|
||||
{file = "tiktoken-0.9.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:586c16358138b96ea804c034b8acf3f5d3f0258bd2bc3b0227af4af5d622e382"},
|
||||
{file = "tiktoken-0.9.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d9c59ccc528c6c5dd51820b3474402f69d9a9e1d656226848ad68a8d5b2e5108"},
|
||||
{file = "tiktoken-0.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0968d5beeafbca2a72c595e8385a1a1f8af58feaebb02b227229b69ca5357fd"},
|
||||
{file = "tiktoken-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a5fb085a6a3b7350b8fc838baf493317ca0e17bd95e8642f95fc69ecfed1de"},
|
||||
{file = "tiktoken-0.9.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:15a2752dea63d93b0332fb0ddb05dd909371ededa145fe6a3242f46724fa7990"},
|
||||
{file = "tiktoken-0.9.0-cp310-cp310-win_amd64.whl", hash = "sha256:26113fec3bd7a352e4b33dbaf1bd8948de2507e30bd95a44e2b1156647bc01b4"},
|
||||
{file = "tiktoken-0.9.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:f32cc56168eac4851109e9b5d327637f15fd662aa30dd79f964b7c39fbadd26e"},
|
||||
{file = "tiktoken-0.9.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:45556bc41241e5294063508caf901bf92ba52d8ef9222023f83d2483a3055348"},
|
||||
{file = "tiktoken-0.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03935988a91d6d3216e2ec7c645afbb3d870b37bcb67ada1943ec48678e7ee33"},
|
||||
{file = "tiktoken-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b3d80aad8d2c6b9238fc1a5524542087c52b860b10cbf952429ffb714bc1136"},
|
||||
{file = "tiktoken-0.9.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b2a21133be05dc116b1d0372af051cd2c6aa1d2188250c9b553f9fa49301b336"},
|
||||
{file = "tiktoken-0.9.0-cp311-cp311-win_amd64.whl", hash = "sha256:11a20e67fdf58b0e2dea7b8654a288e481bb4fc0289d3ad21291f8d0849915fb"},
|
||||
{file = "tiktoken-0.9.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:e88f121c1c22b726649ce67c089b90ddda8b9662545a8aeb03cfef15967ddd03"},
|
||||
{file = "tiktoken-0.9.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a6600660f2f72369acb13a57fb3e212434ed38b045fd8cc6cdd74947b4b5d210"},
|
||||
{file = "tiktoken-0.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:95e811743b5dfa74f4b227927ed86cbc57cad4df859cb3b643be797914e41794"},
|
||||
{file = "tiktoken-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99376e1370d59bcf6935c933cb9ba64adc29033b7e73f5f7569f3aad86552b22"},
|
||||
{file = "tiktoken-0.9.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:badb947c32739fb6ddde173e14885fb3de4d32ab9d8c591cbd013c22b4c31dd2"},
|
||||
{file = "tiktoken-0.9.0-cp312-cp312-win_amd64.whl", hash = "sha256:5a62d7a25225bafed786a524c1b9f0910a1128f4232615bf3f8257a73aaa3b16"},
|
||||
{file = "tiktoken-0.9.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:2b0e8e05a26eda1249e824156d537015480af7ae222ccb798e5234ae0285dbdb"},
|
||||
{file = "tiktoken-0.9.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:27d457f096f87685195eea0165a1807fae87b97b2161fe8c9b1df5bd74ca6f63"},
|
||||
{file = "tiktoken-0.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2cf8ded49cddf825390e36dd1ad35cd49589e8161fdcb52aa25f0583e90a3e01"},
|
||||
{file = "tiktoken-0.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc156cb314119a8bb9748257a2eaebd5cc0753b6cb491d26694ed42fc7cb3139"},
|
||||
{file = "tiktoken-0.9.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:cd69372e8c9dd761f0ab873112aba55a0e3e506332dd9f7522ca466e817b1b7a"},
|
||||
{file = "tiktoken-0.9.0-cp313-cp313-win_amd64.whl", hash = "sha256:5ea0edb6f83dc56d794723286215918c1cde03712cbbafa0348b33448faf5b95"},
|
||||
{file = "tiktoken-0.9.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:c6386ca815e7d96ef5b4ac61e0048cd32ca5a92d5781255e13b31381d28667dc"},
|
||||
{file = "tiktoken-0.9.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:75f6d5db5bc2c6274b674ceab1615c1778e6416b14705827d19b40e6355f03e0"},
|
||||
{file = "tiktoken-0.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e15b16f61e6f4625a57a36496d28dd182a8a60ec20a534c5343ba3cafa156ac7"},
|
||||
{file = "tiktoken-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ebcec91babf21297022882344c3f7d9eed855931466c3311b1ad6b64befb3df"},
|
||||
{file = "tiktoken-0.9.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e5fd49e7799579240f03913447c0cdfa1129625ebd5ac440787afc4345990427"},
|
||||
{file = "tiktoken-0.9.0-cp39-cp39-win_amd64.whl", hash = "sha256:26242ca9dc8b58e875ff4ca078b9a94d2f0813e6a535dcd2205df5d49d927cc7"},
|
||||
{file = "tiktoken-0.9.0.tar.gz", hash = "sha256:d02a5ca6a938e0490e1ff957bc48c8b078c88cb83977be1625b1fd8aac792c5d"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -12389,4 +12389,4 @@ cffi = ["cffi (>=1.11)"]
|
||||
[metadata]
|
||||
lock-version = "2.1"
|
||||
python-versions = ">=3.11,<3.13"
|
||||
content-hash = "d197cdff507a70323c1d6aca11609188f54970f67715af744fe6def15b7776fd"
|
||||
content-hash = "0df8aef68385b6596306fd18af317a835023d648eb5028cd57ec463f176e4c0f"
|
||||
|
@ -85,7 +85,7 @@ sentry-sdk = { version = "~1.44.1", extras = ["flask"] }
|
||||
sqlalchemy = "~2.0.29"
|
||||
starlette = "0.41.0"
|
||||
tencentcloud-sdk-python-hunyuan = "~3.0.1294"
|
||||
tiktoken = "~0.8.0"
|
||||
tiktoken = "^0.9.0"
|
||||
tokenizers = "~0.15.0"
|
||||
transformers = "~4.35.0"
|
||||
unstructured = { version = "~0.16.1", extras = ["docx", "epub", "md", "msg", "ppt", "pptx"] }
|
||||
|
Loading…
x
Reference in New Issue
Block a user