fix:Knowledge Base with Parent-Child segment mode not support in Agent (#13663)

This commit is contained in:
呆萌闷油瓶 2025-02-14 14:34:59 +08:00 committed by GitHub
parent 4e7e172ff3
commit 62079991b7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -3,11 +3,13 @@ from typing import Any
from pydantic import BaseModel, Field
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.entities.context_entities import DocumentContext
from core.rag.models.document import Document as RetrievalDocument
from core.rag.retrieval.retrieval_methods import RetrievalMethod
from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
from extensions.ext_database import db
from models.dataset import Dataset, Document, DocumentSegment
from models.dataset import Dataset
from models.dataset import Document as DatasetDocument
from services.external_knowledge_service import ExternalDatasetService
default_retrieval_model = {
@ -54,7 +56,6 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
if not dataset:
return ""
for hit_callback in self.hit_callbacks:
hit_callback.on_query(query, dataset.id)
if dataset.provider == "external":
@ -125,7 +126,6 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
)
else:
documents = []
for hit_callback in self.hit_callbacks:
hit_callback.on_tool_end(documents)
document_score_list = {}
@ -134,50 +134,46 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
if item.metadata is not None and item.metadata.get("score"):
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
document_context_list = []
index_node_ids = [document.metadata["doc_id"] for document in documents]
segments = DocumentSegment.query.filter(
DocumentSegment.dataset_id == self.dataset_id,
DocumentSegment.completed_at.isnot(None),
DocumentSegment.status == "completed",
DocumentSegment.enabled == True,
DocumentSegment.index_node_id.in_(index_node_ids),
).all()
if segments:
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
sorted_segments = sorted(
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
)
for segment in sorted_segments:
records = RetrievalService.format_retrieval_documents(documents)
if records:
for record in records:
segment = record.segment
if segment.answer:
document_context_list.append(
f"question:{segment.get_sign_content()} answer:{segment.answer}"
DocumentContext(
content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
score=record.score,
)
)
else:
document_context_list.append(segment.get_sign_content())
document_context_list.append(
DocumentContext(
content=segment.get_sign_content(),
score=record.score,
)
)
retrieval_resource_list = []
if self.return_resource:
context_list = []
resource_number = 1
for segment in sorted_segments:
document_segment = Document.query.filter(
Document.id == segment.document_id,
Document.enabled == True,
Document.archived == False,
for record in records:
segment = record.segment
dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
document = DatasetDocument.query.filter(
DatasetDocument.id == segment.document_id,
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).first()
if not document_segment:
continue
if dataset and document_segment:
if dataset and document:
source = {
"position": resource_number,
"dataset_id": dataset.id,
"dataset_name": dataset.name,
"document_id": document_segment.id,
"document_name": document_segment.name,
"data_source_type": document_segment.data_source_type,
"document_id": document.id, # type: ignore
"document_name": document.name, # type: ignore
"data_source_type": document.data_source_type, # type: ignore
"segment_id": segment.id,
"retriever_from": self.retriever_from,
"score": document_score_list.get(segment.index_node_id, None),
"score": record.score or 0.0,
}
if self.retriever_from == "dev":
source["hit_count"] = segment.hit_count
source["word_count"] = segment.word_count
@ -187,10 +183,19 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
else:
source["content"] = segment.content
context_list.append(source)
resource_number += 1
retrieval_resource_list.append(source)
for hit_callback in self.hit_callbacks:
hit_callback.return_retriever_resource_info(context_list)
return str("\n".join(document_context_list))
if self.return_resource and retrieval_resource_list:
retrieval_resource_list = sorted(
retrieval_resource_list,
key=lambda x: x.get("score") or 0.0,
reverse=True,
)
for position, item in enumerate(retrieval_resource_list, start=1): # type: ignore
item["position"] = position # type: ignore
for hit_callback in self.hit_callbacks:
hit_callback.return_retriever_resource_info(retrieval_resource_list)
if document_context_list:
document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
return str("\n".join([document_context.content for document_context in document_context_list]))
return ""