mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-16 16:06:06 +08:00
feat(workflow): integrate workflow entry with workflow app
This commit is contained in:
parent
674af04c39
commit
6f6b32e1ee
@ -33,7 +33,8 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
def generate(
|
||||
self, app_model: App,
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: dict,
|
||||
@ -120,6 +121,65 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
conversation=conversation,
|
||||
stream=stream
|
||||
)
|
||||
|
||||
def single_iteration_generate(self, app_model: App,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user: Account,
|
||||
args: dict,
|
||||
stream: bool = True) \
|
||||
-> dict[str, Any] | Generator[str, Any, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param invoke_from: invoke from source
|
||||
:param stream: is stream
|
||||
"""
|
||||
if not node_id:
|
||||
raise ValueError('node_id is required')
|
||||
|
||||
if args.get('inputs') is None:
|
||||
raise ValueError('inputs is required')
|
||||
|
||||
# convert to app config
|
||||
app_config = AdvancedChatAppConfigManager.get_app_config(
|
||||
app_model=app_model,
|
||||
workflow=workflow
|
||||
)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = AdvancedChatAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
conversation_id=None,
|
||||
inputs={},
|
||||
query='',
|
||||
files=[],
|
||||
user_id=user.id,
|
||||
stream=stream,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
extras={
|
||||
"auto_generate_conversation_name": False
|
||||
},
|
||||
single_iteration_run=AdvancedChatAppGenerateEntity.SingleIterationRunEntity(
|
||||
node_id=node_id,
|
||||
inputs=args['inputs']
|
||||
)
|
||||
)
|
||||
contexts.tenant_id.set(application_generate_entity.app_config.tenant_id)
|
||||
|
||||
return self._generate(
|
||||
workflow=workflow,
|
||||
user=user,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
application_generate_entity=application_generate_entity,
|
||||
conversation=None,
|
||||
stream=stream
|
||||
)
|
||||
|
||||
def _generate(self, *,
|
||||
workflow: Workflow,
|
||||
@ -129,6 +189,16 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
conversation: Optional[Conversation] = None,
|
||||
stream: bool = True) \
|
||||
-> dict[str, Any] | Generator[str, Any, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param workflow: Workflow
|
||||
:param user: account or end user
|
||||
:param invoke_from: invoke from source
|
||||
:param application_generate_entity: application generate entity
|
||||
:param conversation: conversation
|
||||
:param stream: is stream
|
||||
"""
|
||||
is_first_conversation = False
|
||||
if not conversation:
|
||||
is_first_conversation = True
|
||||
|
@ -1,14 +1,14 @@
|
||||
import logging
|
||||
import os
|
||||
from collections.abc import Mapping
|
||||
from typing import Any, Optional, cast
|
||||
from typing import Any, cast
|
||||
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfig
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.base_app_runner import AppRunner
|
||||
from core.app.apps.workflow_app_runner import WorkflowBasedAppRunner
|
||||
from core.app.apps.workflow_logging_callback import WorkflowLoggingCallback
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
AdvancedChatAppGenerateEntity,
|
||||
@ -17,52 +17,22 @@ from core.app.entities.app_invoke_entities import (
|
||||
from core.app.entities.queue_entities import (
|
||||
AppQueueEvent,
|
||||
QueueAnnotationReplyEvent,
|
||||
QueueIterationCompletedEvent,
|
||||
QueueIterationNextEvent,
|
||||
QueueIterationStartEvent,
|
||||
QueueNodeFailedEvent,
|
||||
QueueNodeStartedEvent,
|
||||
QueueNodeSucceededEvent,
|
||||
QueueParallelBranchRunFailedEvent,
|
||||
QueueParallelBranchRunStartedEvent,
|
||||
QueueRetrieverResourcesEvent,
|
||||
QueueStopEvent,
|
||||
QueueTextChunkEvent,
|
||||
QueueWorkflowFailedEvent,
|
||||
QueueWorkflowStartedEvent,
|
||||
QueueWorkflowSucceededEvent,
|
||||
)
|
||||
from core.moderation.base import ModerationException
|
||||
from core.workflow.callbacks.base_workflow_callback import WorkflowCallback
|
||||
from core.workflow.entities.node_entities import SystemVariable, UserFrom
|
||||
from core.workflow.entities.variable_pool import VariablePool
|
||||
from core.workflow.graph_engine.entities.event import (
|
||||
GraphEngineEvent,
|
||||
GraphRunFailedEvent,
|
||||
GraphRunStartedEvent,
|
||||
GraphRunSucceededEvent,
|
||||
IterationRunFailedEvent,
|
||||
IterationRunNextEvent,
|
||||
IterationRunStartedEvent,
|
||||
IterationRunSucceededEvent,
|
||||
NodeRunFailedEvent,
|
||||
NodeRunRetrieverResourceEvent,
|
||||
NodeRunStartedEvent,
|
||||
NodeRunStreamChunkEvent,
|
||||
NodeRunSucceededEvent,
|
||||
ParallelBranchRunFailedEvent,
|
||||
ParallelBranchRunStartedEvent,
|
||||
ParallelBranchRunSucceededEvent,
|
||||
)
|
||||
from core.workflow.workflow_entry import WorkflowEntry
|
||||
from extensions.ext_database import db
|
||||
from models.model import App, Conversation, EndUser, Message
|
||||
from models.workflow import ConversationVariable, Workflow
|
||||
from models.workflow import ConversationVariable
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AdvancedChatAppRunner(AppRunner):
|
||||
class AdvancedChatAppRunner(WorkflowBasedAppRunner):
|
||||
"""
|
||||
AdvancedChat Application Runner
|
||||
"""
|
||||
@ -80,8 +50,9 @@ class AdvancedChatAppRunner(AppRunner):
|
||||
:param conversation: conversation
|
||||
:param message: message
|
||||
"""
|
||||
super().__init__(queue_manager)
|
||||
|
||||
self.application_generate_entity = application_generate_entity
|
||||
self.queue_manager = queue_manager
|
||||
self.conversation = conversation
|
||||
self.message = message
|
||||
|
||||
@ -101,10 +72,6 @@ class AdvancedChatAppRunner(AppRunner):
|
||||
if not workflow:
|
||||
raise ValueError('Workflow not initialized')
|
||||
|
||||
inputs = self.application_generate_entity.inputs
|
||||
query = self.application_generate_entity.query
|
||||
files = self.application_generate_entity.files
|
||||
|
||||
user_id = None
|
||||
if self.application_generate_entity.invoke_from in [InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API]:
|
||||
end_user = db.session.query(EndUser).filter(EndUser.id == self.application_generate_entity.user_id).first()
|
||||
@ -113,6 +80,32 @@ class AdvancedChatAppRunner(AppRunner):
|
||||
else:
|
||||
user_id = self.application_generate_entity.user_id
|
||||
|
||||
workflow_callbacks: list[WorkflowCallback] = []
|
||||
if bool(os.environ.get("DEBUG", 'False').lower() == 'true'):
|
||||
workflow_callbacks.append(WorkflowLoggingCallback())
|
||||
|
||||
# if only single iteration run is requested
|
||||
if self.application_generate_entity.single_iteration_run:
|
||||
node_id = self.application_generate_entity.single_iteration_run.node_id
|
||||
user_inputs = self.application_generate_entity.single_iteration_run.inputs
|
||||
|
||||
generator = WorkflowEntry.single_step_run_iteration(
|
||||
workflow=workflow,
|
||||
node_id=node_id,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_inputs=user_inputs,
|
||||
callbacks=workflow_callbacks
|
||||
)
|
||||
|
||||
for event in generator:
|
||||
# TODO
|
||||
self._handle_event(workflow_entry, event)
|
||||
return
|
||||
|
||||
inputs = self.application_generate_entity.inputs
|
||||
query = self.application_generate_entity.query
|
||||
files = self.application_generate_entity.files
|
||||
|
||||
# moderation
|
||||
if self.handle_input_moderation(
|
||||
app_record=app_record,
|
||||
@ -134,20 +127,16 @@ class AdvancedChatAppRunner(AppRunner):
|
||||
|
||||
db.session.close()
|
||||
|
||||
workflow_callbacks: list[WorkflowCallback] = []
|
||||
if bool(os.environ.get("DEBUG", 'False').lower() == 'true'):
|
||||
workflow_callbacks.append(WorkflowLoggingCallback())
|
||||
|
||||
# Init conversation variables
|
||||
stmt = select(ConversationVariable).where(
|
||||
ConversationVariable.app_id == conversation.app_id, ConversationVariable.conversation_id == conversation.id
|
||||
ConversationVariable.app_id == self.conversation.app_id, ConversationVariable.conversation_id == self.conversation.id
|
||||
)
|
||||
with Session(db.engine) as session:
|
||||
conversation_variables = session.scalars(stmt).all()
|
||||
if not conversation_variables:
|
||||
conversation_variables = [
|
||||
ConversationVariable.from_variable(
|
||||
app_id=conversation.app_id, conversation_id=conversation.id, variable=variable
|
||||
app_id=self.conversation.app_id, conversation_id=self.conversation.id, variable=variable
|
||||
)
|
||||
for variable in workflow.conversation_variables
|
||||
]
|
||||
@ -160,9 +149,11 @@ class AdvancedChatAppRunner(AppRunner):
|
||||
system_inputs = {
|
||||
SystemVariable.QUERY: query,
|
||||
SystemVariable.FILES: files,
|
||||
SystemVariable.CONVERSATION_ID: conversation.id,
|
||||
SystemVariable.CONVERSATION_ID: self.conversation.id,
|
||||
SystemVariable.USER_ID: user_id,
|
||||
}
|
||||
|
||||
# init variable pool
|
||||
variable_pool = VariablePool(
|
||||
system_variables=system_inputs,
|
||||
user_inputs=inputs,
|
||||
@ -174,9 +165,11 @@ class AdvancedChatAppRunner(AppRunner):
|
||||
workflow_entry = WorkflowEntry(
|
||||
workflow=workflow,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=UserFrom.ACCOUNT
|
||||
if self.application_generate_entity.invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER]
|
||||
else UserFrom.END_USER,
|
||||
user_from=(
|
||||
UserFrom.ACCOUNT
|
||||
if self.application_generate_entity.invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER]
|
||||
else UserFrom.END_USER
|
||||
),
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
call_depth=self.application_generate_entity.call_depth,
|
||||
variable_pool=variable_pool,
|
||||
@ -189,181 +182,6 @@ class AdvancedChatAppRunner(AppRunner):
|
||||
for event in generator:
|
||||
self._handle_event(workflow_entry, event)
|
||||
|
||||
def _handle_event(self, workflow_entry: WorkflowEntry, event: GraphEngineEvent) -> None:
|
||||
"""
|
||||
Handle event
|
||||
:param workflow_entry: workflow entry
|
||||
:param event: event
|
||||
"""
|
||||
if isinstance(event, GraphRunStartedEvent):
|
||||
self._publish_event(
|
||||
QueueWorkflowStartedEvent(
|
||||
graph_runtime_state=workflow_entry.graph_engine.graph_runtime_state
|
||||
)
|
||||
)
|
||||
elif isinstance(event, GraphRunSucceededEvent):
|
||||
self._publish_event(
|
||||
QueueWorkflowSucceededEvent(outputs=event.outputs)
|
||||
)
|
||||
elif isinstance(event, GraphRunFailedEvent):
|
||||
self._publish_event(
|
||||
QueueWorkflowFailedEvent(error=event.error)
|
||||
)
|
||||
elif isinstance(event, NodeRunStartedEvent):
|
||||
self._publish_event(
|
||||
QueueNodeStartedEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_data=event.node_data,
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id,
|
||||
start_at=event.route_node_state.start_at,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
predecessor_node_id=event.predecessor_node_id
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunSucceededEvent):
|
||||
self._publish_event(
|
||||
QueueNodeSucceededEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_data=event.node_data,
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id,
|
||||
start_at=event.route_node_state.start_at,
|
||||
inputs=event.route_node_state.node_run_result.inputs
|
||||
if event.route_node_state.node_run_result else {},
|
||||
process_data=event.route_node_state.node_run_result.process_data
|
||||
if event.route_node_state.node_run_result else {},
|
||||
outputs=event.route_node_state.node_run_result.outputs
|
||||
if event.route_node_state.node_run_result else {},
|
||||
execution_metadata=event.route_node_state.node_run_result.metadata
|
||||
if event.route_node_state.node_run_result else {},
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunFailedEvent):
|
||||
self._publish_event(
|
||||
QueueNodeFailedEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_data=event.node_data,
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id,
|
||||
start_at=event.route_node_state.start_at,
|
||||
inputs=event.route_node_state.node_run_result.inputs
|
||||
if event.route_node_state.node_run_result else {},
|
||||
process_data=event.route_node_state.node_run_result.process_data
|
||||
if event.route_node_state.node_run_result else {},
|
||||
outputs=event.route_node_state.node_run_result.outputs
|
||||
if event.route_node_state.node_run_result else {},
|
||||
error=event.route_node_state.node_run_result.error
|
||||
if event.route_node_state.node_run_result
|
||||
and event.route_node_state.node_run_result.error
|
||||
else "Unknown error"
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunStreamChunkEvent):
|
||||
self._publish_event(
|
||||
QueueTextChunkEvent(
|
||||
text=event.chunk_content
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunRetrieverResourceEvent):
|
||||
self._publish_event(
|
||||
QueueRetrieverResourcesEvent(
|
||||
retriever_resources=event.retriever_resources
|
||||
)
|
||||
)
|
||||
elif isinstance(event, ParallelBranchRunStartedEvent):
|
||||
self._publish_event(
|
||||
QueueParallelBranchRunStartedEvent(
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id
|
||||
)
|
||||
)
|
||||
elif isinstance(event, ParallelBranchRunSucceededEvent):
|
||||
self._publish_event(
|
||||
QueueParallelBranchRunStartedEvent(
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id
|
||||
)
|
||||
)
|
||||
elif isinstance(event, ParallelBranchRunFailedEvent):
|
||||
self._publish_event(
|
||||
QueueParallelBranchRunFailedEvent(
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id,
|
||||
error=event.error
|
||||
)
|
||||
)
|
||||
elif isinstance(event, IterationRunStartedEvent):
|
||||
self._publish_event(
|
||||
QueueIterationStartEvent(
|
||||
node_execution_id=event.iteration_id,
|
||||
node_id=event.iteration_node_id,
|
||||
node_type=event.iteration_node_type,
|
||||
node_data=event.iteration_node_data,
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id,
|
||||
start_at=event.start_at,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
inputs=event.inputs,
|
||||
predecessor_node_id=event.predecessor_node_id,
|
||||
metadata=event.metadata
|
||||
)
|
||||
)
|
||||
elif isinstance(event, IterationRunNextEvent):
|
||||
self._publish_event(
|
||||
QueueIterationNextEvent(
|
||||
node_execution_id=event.iteration_id,
|
||||
node_id=event.iteration_node_id,
|
||||
node_type=event.iteration_node_type,
|
||||
node_data=event.iteration_node_data,
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id,
|
||||
index=event.index,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
output=event.pre_iteration_output,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, (IterationRunSucceededEvent | IterationRunFailedEvent)):
|
||||
self._publish_event(
|
||||
QueueIterationCompletedEvent(
|
||||
node_execution_id=event.iteration_id,
|
||||
node_id=event.iteration_node_id,
|
||||
node_type=event.iteration_node_type,
|
||||
node_data=event.iteration_node_data,
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id,
|
||||
start_at=event.start_at,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
inputs=event.inputs,
|
||||
outputs=event.outputs,
|
||||
metadata=event.metadata,
|
||||
steps=event.steps,
|
||||
error=event.error if isinstance(event, IterationRunFailedEvent) else None
|
||||
)
|
||||
)
|
||||
|
||||
def get_workflow(self, app_model: App, workflow_id: str) -> Optional[Workflow]:
|
||||
"""
|
||||
Get workflow
|
||||
"""
|
||||
# fetch workflow by workflow_id
|
||||
workflow = (
|
||||
db.session.query(Workflow)
|
||||
.filter(
|
||||
Workflow.tenant_id == app_model.tenant_id, Workflow.app_id == app_model.id, Workflow.id == workflow_id
|
||||
)
|
||||
.first()
|
||||
)
|
||||
|
||||
# return workflow
|
||||
return workflow
|
||||
|
||||
def handle_input_moderation(
|
||||
self,
|
||||
app_record: App,
|
||||
@ -450,9 +268,3 @@ class AdvancedChatAppRunner(AppRunner):
|
||||
self._publish_event(
|
||||
QueueStopEvent(stopped_by=stopped_by)
|
||||
)
|
||||
|
||||
def _publish_event(self, event: AppQueueEvent) -> None:
|
||||
self.queue_manager.publish(
|
||||
event,
|
||||
PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
@ -240,11 +240,8 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
||||
graph_runtime_state = None
|
||||
workflow_run = None
|
||||
|
||||
for message in self._queue_manager.listen():
|
||||
if tts_publisher:
|
||||
tts_publisher.publish(message=message)
|
||||
|
||||
event = message.event
|
||||
for queue_message in self._queue_manager.listen():
|
||||
event = queue_message.event
|
||||
|
||||
if isinstance(event, QueuePingEvent):
|
||||
yield self._ping_stream_response()
|
||||
@ -433,6 +430,10 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
||||
if should_direct_answer:
|
||||
continue
|
||||
|
||||
# only publish tts message at text chunk streaming
|
||||
if tts_publisher:
|
||||
tts_publisher.publish(message=queue_message)
|
||||
|
||||
self._task_state.answer += delta_text
|
||||
yield self._message_to_stream_response(delta_text, self._message.id)
|
||||
elif isinstance(event, QueueMessageReplaceEvent):
|
||||
@ -454,6 +455,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
||||
else:
|
||||
continue
|
||||
|
||||
# publish None when task finished
|
||||
if tts_publisher:
|
||||
tts_publisher.publish(None)
|
||||
|
||||
|
@ -4,7 +4,7 @@ import os
|
||||
import threading
|
||||
import uuid
|
||||
from collections.abc import Generator
|
||||
from typing import Union
|
||||
from typing import Any, Union
|
||||
|
||||
from flask import Flask, current_app
|
||||
from pydantic import ValidationError
|
||||
@ -33,7 +33,8 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class WorkflowAppGenerator(BaseAppGenerator):
|
||||
def generate(
|
||||
self, app_model: App,
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: dict,
|
||||
@ -101,13 +102,14 @@ class WorkflowAppGenerator(BaseAppGenerator):
|
||||
)
|
||||
|
||||
def _generate(
|
||||
self, app_model: App,
|
||||
self, *,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
application_generate_entity: WorkflowAppGenerateEntity,
|
||||
invoke_from: InvokeFrom,
|
||||
stream: bool = True,
|
||||
) -> Union[dict, Generator[dict, None, None]]:
|
||||
) -> dict[str, Any] | Generator[str, Any, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
@ -128,7 +130,7 @@ class WorkflowAppGenerator(BaseAppGenerator):
|
||||
|
||||
# new thread
|
||||
worker_thread = threading.Thread(target=self._generate_worker, kwargs={
|
||||
'flask_app': current_app._get_current_object(),
|
||||
'flask_app': current_app._get_current_object(), # type: ignore
|
||||
'application_generate_entity': application_generate_entity,
|
||||
'queue_manager': queue_manager,
|
||||
'context': contextvars.copy_context()
|
||||
@ -155,7 +157,7 @@ class WorkflowAppGenerator(BaseAppGenerator):
|
||||
node_id: str,
|
||||
user: Account,
|
||||
args: dict,
|
||||
stream: bool = True):
|
||||
stream: bool = True) -> dict[str, Any] | Generator[str, Any, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
@ -172,10 +174,6 @@ class WorkflowAppGenerator(BaseAppGenerator):
|
||||
if args.get('inputs') is None:
|
||||
raise ValueError('inputs is required')
|
||||
|
||||
extras = {
|
||||
"auto_generate_conversation_name": False
|
||||
}
|
||||
|
||||
# convert to app config
|
||||
app_config = WorkflowAppConfigManager.get_app_config(
|
||||
app_model=app_model,
|
||||
@ -191,7 +189,9 @@ class WorkflowAppGenerator(BaseAppGenerator):
|
||||
user_id=user.id,
|
||||
stream=stream,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
extras=extras,
|
||||
extras={
|
||||
"auto_generate_conversation_name": False
|
||||
},
|
||||
single_iteration_run=WorkflowAppGenerateEntity.SingleIterationRunEntity(
|
||||
node_id=node_id,
|
||||
inputs=args['inputs']
|
||||
@ -224,22 +224,12 @@ class WorkflowAppGenerator(BaseAppGenerator):
|
||||
with flask_app.app_context():
|
||||
try:
|
||||
# workflow app
|
||||
runner = WorkflowAppRunner()
|
||||
if application_generate_entity.single_iteration_run:
|
||||
single_iteration_run = application_generate_entity.single_iteration_run
|
||||
runner.single_iteration_run(
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
workflow_id=application_generate_entity.app_config.workflow_id,
|
||||
queue_manager=queue_manager,
|
||||
inputs=single_iteration_run.inputs,
|
||||
node_id=single_iteration_run.node_id,
|
||||
user_id=application_generate_entity.user_id
|
||||
)
|
||||
else:
|
||||
runner.run(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager
|
||||
)
|
||||
runner = WorkflowAppRunner(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager
|
||||
)
|
||||
|
||||
runner.run()
|
||||
except GenerateTaskStoppedException:
|
||||
pass
|
||||
except InvokeAuthorizationError:
|
||||
@ -251,14 +241,14 @@ class WorkflowAppGenerator(BaseAppGenerator):
|
||||
logger.exception("Validation Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except (ValueError, InvokeError) as e:
|
||||
if os.environ.get("DEBUG") and os.environ.get("DEBUG").lower() == 'true':
|
||||
if os.environ.get("DEBUG") and os.environ.get("DEBUG", "false").lower() == 'true':
|
||||
logger.exception("Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except Exception as e:
|
||||
logger.exception("Unknown Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
finally:
|
||||
db.session.remove()
|
||||
db.session.close()
|
||||
|
||||
def _handle_response(self, application_generate_entity: WorkflowAppGenerateEntity,
|
||||
workflow: Workflow,
|
||||
|
@ -1,9 +1,10 @@
|
||||
import logging
|
||||
import os
|
||||
from typing import Optional, cast
|
||||
from typing import cast
|
||||
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
from core.app.apps.workflow.app_config_manager import WorkflowAppConfig
|
||||
from core.app.apps.workflow_app_runner import WorkflowBasedAppRunner
|
||||
from core.app.apps.workflow_logging_callback import WorkflowLoggingCallback
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
InvokeFrom,
|
||||
@ -15,33 +16,44 @@ from core.workflow.entities.variable_pool import VariablePool
|
||||
from core.workflow.workflow_entry import WorkflowEntry
|
||||
from extensions.ext_database import db
|
||||
from models.model import App, EndUser
|
||||
from models.workflow import Workflow
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkflowAppRunner:
|
||||
class WorkflowAppRunner(WorkflowBasedAppRunner):
|
||||
"""
|
||||
Workflow Application Runner
|
||||
"""
|
||||
|
||||
def run(self, application_generate_entity: WorkflowAppGenerateEntity, queue_manager: AppQueueManager) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
application_generate_entity: WorkflowAppGenerateEntity,
|
||||
queue_manager: AppQueueManager
|
||||
) -> None:
|
||||
"""
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: application queue manager
|
||||
"""
|
||||
self.application_generate_entity = application_generate_entity
|
||||
self.queue_manager = queue_manager
|
||||
|
||||
def run(self) -> None:
|
||||
"""
|
||||
Run application
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: application queue manager
|
||||
:return:
|
||||
"""
|
||||
app_config = application_generate_entity.app_config
|
||||
app_config = self.application_generate_entity.app_config
|
||||
app_config = cast(WorkflowAppConfig, app_config)
|
||||
|
||||
user_id = None
|
||||
if application_generate_entity.invoke_from in [InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API]:
|
||||
end_user = db.session.query(EndUser).filter(EndUser.id == application_generate_entity.user_id).first()
|
||||
if self.application_generate_entity.invoke_from in [InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API]:
|
||||
end_user = db.session.query(EndUser).filter(EndUser.id == self.application_generate_entity.user_id).first()
|
||||
if end_user:
|
||||
user_id = end_user.session_id
|
||||
else:
|
||||
user_id = application_generate_entity.user_id
|
||||
user_id = self.application_generate_entity.user_id
|
||||
|
||||
app_record = db.session.query(App).filter(App.id == app_config.app_id).first()
|
||||
if not app_record:
|
||||
@ -51,82 +63,63 @@ class WorkflowAppRunner:
|
||||
if not workflow:
|
||||
raise ValueError('Workflow not initialized')
|
||||
|
||||
inputs = application_generate_entity.inputs
|
||||
files = application_generate_entity.files
|
||||
|
||||
db.session.close()
|
||||
|
||||
workflow_callbacks: list[WorkflowCallback] = []
|
||||
|
||||
if bool(os.environ.get('DEBUG', 'False').lower() == 'true'):
|
||||
workflow_callbacks.append(WorkflowLoggingCallback())
|
||||
|
||||
# if only single iteration run is requested
|
||||
if self.application_generate_entity.single_iteration_run:
|
||||
node_id = self.application_generate_entity.single_iteration_run.node_id
|
||||
user_inputs = self.application_generate_entity.single_iteration_run.inputs
|
||||
|
||||
generator = WorkflowEntry.single_step_run_iteration(
|
||||
workflow=workflow,
|
||||
node_id=node_id,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_inputs=user_inputs,
|
||||
callbacks=workflow_callbacks
|
||||
)
|
||||
|
||||
for event in generator:
|
||||
# TODO
|
||||
self._handle_event(workflow_entry, event)
|
||||
return
|
||||
|
||||
inputs = self.application_generate_entity.inputs
|
||||
files = self.application_generate_entity.files
|
||||
|
||||
# Create a variable pool.
|
||||
system_inputs = {
|
||||
SystemVariable.FILES: files,
|
||||
SystemVariable.USER_ID: user_id,
|
||||
}
|
||||
|
||||
variable_pool = VariablePool(
|
||||
system_variables=system_inputs,
|
||||
user_inputs=inputs,
|
||||
environment_variables=workflow.environment_variables,
|
||||
conversation_variables=[],
|
||||
)
|
||||
|
||||
|
||||
# RUN WORKFLOW
|
||||
workflow_entry = WorkflowEntry()
|
||||
workflow_entry.run(
|
||||
workflow_entry = WorkflowEntry(
|
||||
workflow=workflow,
|
||||
user_id=application_generate_entity.user_id,
|
||||
user_from=UserFrom.ACCOUNT
|
||||
if application_generate_entity.invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER]
|
||||
else UserFrom.END_USER,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
callbacks=workflow_callbacks,
|
||||
call_depth=application_generate_entity.call_depth,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=(
|
||||
UserFrom.ACCOUNT
|
||||
if self.application_generate_entity.invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER]
|
||||
else UserFrom.END_USER
|
||||
),
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
call_depth=self.application_generate_entity.call_depth,
|
||||
variable_pool=variable_pool,
|
||||
)
|
||||
|
||||
def single_iteration_run(
|
||||
self, app_id: str, workflow_id: str, queue_manager: AppQueueManager, inputs: dict, node_id: str, user_id: str
|
||||
) -> None:
|
||||
"""
|
||||
Single iteration run
|
||||
"""
|
||||
app_record = db.session.query(App).filter(App.id == app_id).first()
|
||||
if not app_record:
|
||||
raise ValueError('App not found')
|
||||
|
||||
if not app_record.workflow_id:
|
||||
raise ValueError('Workflow not initialized')
|
||||
|
||||
workflow = self.get_workflow(app_model=app_record, workflow_id=workflow_id)
|
||||
if not workflow:
|
||||
raise ValueError("Workflow not initialized")
|
||||
|
||||
workflow_callbacks = []
|
||||
|
||||
workflow_entry = WorkflowEntry()
|
||||
workflow_entry.single_step_run_iteration_workflow_node(
|
||||
workflow=workflow,
|
||||
node_id=node_id,
|
||||
user_id=user_id,
|
||||
user_inputs=inputs,
|
||||
generator = workflow_entry.run(
|
||||
callbacks=workflow_callbacks
|
||||
)
|
||||
|
||||
def get_workflow(self, app_model: App, workflow_id: str) -> Optional[Workflow]:
|
||||
"""
|
||||
Get workflow
|
||||
"""
|
||||
# fetch workflow by workflow_id
|
||||
workflow = (
|
||||
db.session.query(Workflow)
|
||||
.filter(
|
||||
Workflow.tenant_id == app_model.tenant_id, Workflow.app_id == app_model.id, Workflow.id == workflow_id
|
||||
)
|
||||
.first()
|
||||
)
|
||||
|
||||
# return workflow
|
||||
return workflow
|
||||
for event in generator:
|
||||
self._handle_event(workflow_entry, event)
|
||||
|
@ -1,3 +1,4 @@
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Generator
|
||||
@ -15,7 +16,6 @@ from core.app.entities.queue_entities import (
|
||||
QueueIterationCompletedEvent,
|
||||
QueueIterationNextEvent,
|
||||
QueueIterationStartEvent,
|
||||
QueueMessageReplaceEvent,
|
||||
QueueNodeFailedEvent,
|
||||
QueueNodeStartedEvent,
|
||||
QueueNodeSucceededEvent,
|
||||
@ -32,10 +32,10 @@ from core.app.entities.task_entities import (
|
||||
MessageAudioStreamResponse,
|
||||
StreamResponse,
|
||||
TextChunkStreamResponse,
|
||||
TextReplaceStreamResponse,
|
||||
WorkflowAppBlockingResponse,
|
||||
WorkflowAppStreamResponse,
|
||||
WorkflowFinishStreamResponse,
|
||||
WorkflowStartStreamResponse,
|
||||
WorkflowTaskState,
|
||||
)
|
||||
from core.app.task_pipeline.based_generate_task_pipeline import BasedGenerateTaskPipeline
|
||||
@ -120,24 +120,20 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
||||
if isinstance(stream_response, ErrorStreamResponse):
|
||||
raise stream_response.err
|
||||
elif isinstance(stream_response, WorkflowFinishStreamResponse):
|
||||
workflow_run = self._task_state.workflow_run
|
||||
if not workflow_run:
|
||||
raise Exception('Workflow run not found.')
|
||||
|
||||
response = WorkflowAppBlockingResponse(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run_id=workflow_run.id,
|
||||
workflow_run_id=stream_response.data.id,
|
||||
data=WorkflowAppBlockingResponse.Data(
|
||||
id=workflow_run.id,
|
||||
workflow_id=workflow_run.workflow_id,
|
||||
status=workflow_run.status,
|
||||
outputs=workflow_run.outputs_dict,
|
||||
error=workflow_run.error,
|
||||
elapsed_time=workflow_run.elapsed_time,
|
||||
total_tokens=workflow_run.total_tokens,
|
||||
total_steps=workflow_run.total_steps,
|
||||
created_at=int(workflow_run.created_at.timestamp()),
|
||||
finished_at=int(workflow_run.finished_at.timestamp())
|
||||
id=stream_response.data.id,
|
||||
workflow_id=stream_response.data.workflow_id,
|
||||
status=stream_response.data.status,
|
||||
outputs=stream_response.data.outputs,
|
||||
error=stream_response.data.error,
|
||||
elapsed_time=stream_response.data.elapsed_time,
|
||||
total_tokens=stream_response.data.total_tokens,
|
||||
total_steps=stream_response.data.total_steps,
|
||||
created_at=int(stream_response.data.created_at),
|
||||
finished_at=int(stream_response.data.finished_at)
|
||||
)
|
||||
)
|
||||
|
||||
@ -153,12 +149,13 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
||||
To stream response.
|
||||
:return:
|
||||
"""
|
||||
workflow_run_id = None
|
||||
for stream_response in generator:
|
||||
if not self._task_state.workflow_run:
|
||||
raise Exception('Workflow run not found.')
|
||||
if isinstance(stream_response, WorkflowStartStreamResponse):
|
||||
workflow_run_id = stream_response.workflow_run_id
|
||||
|
||||
yield WorkflowAppStreamResponse(
|
||||
workflow_run_id=self._task_state.workflow_run.id,
|
||||
workflow_run_id=workflow_run_id,
|
||||
stream_response=stream_response
|
||||
)
|
||||
|
||||
@ -173,17 +170,18 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
||||
def _wrapper_process_stream_response(self, trace_manager: Optional[TraceQueueManager] = None) -> \
|
||||
Generator[StreamResponse, None, None]:
|
||||
|
||||
publisher = None
|
||||
tts_publisher = None
|
||||
task_id = self._application_generate_entity.task_id
|
||||
tenant_id = self._application_generate_entity.app_config.tenant_id
|
||||
features_dict = self._workflow.features_dict
|
||||
|
||||
if features_dict.get('text_to_speech') and features_dict['text_to_speech'].get('enabled') and features_dict[
|
||||
'text_to_speech'].get('autoPlay') == 'enabled':
|
||||
publisher = AppGeneratorTTSPublisher(tenant_id, features_dict['text_to_speech'].get('voice'))
|
||||
for response in self._process_stream_response(publisher=publisher, trace_manager=trace_manager):
|
||||
tts_publisher = AppGeneratorTTSPublisher(tenant_id, features_dict['text_to_speech'].get('voice'))
|
||||
|
||||
for response in self._process_stream_response(tts_publisher=tts_publisher, trace_manager=trace_manager):
|
||||
while True:
|
||||
audio_response = self._listenAudioMsg(publisher, task_id=task_id)
|
||||
audio_response = self._listenAudioMsg(tts_publisher, task_id=task_id)
|
||||
if audio_response:
|
||||
yield audio_response
|
||||
else:
|
||||
@ -193,9 +191,9 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
||||
start_listener_time = time.time()
|
||||
while (time.time() - start_listener_time) < TTS_AUTO_PLAY_TIMEOUT:
|
||||
try:
|
||||
if not publisher:
|
||||
if not tts_publisher:
|
||||
break
|
||||
audio_trunk = publisher.checkAndGetAudio()
|
||||
audio_trunk = tts_publisher.checkAndGetAudio()
|
||||
if audio_trunk is None:
|
||||
# release cpu
|
||||
# sleep 20 ms ( 40ms => 1280 byte audio file,20ms => 640 byte audio file)
|
||||
@ -213,55 +211,105 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
||||
|
||||
def _process_stream_response(
|
||||
self,
|
||||
publisher: AppGeneratorTTSPublisher,
|
||||
tts_publisher: Optional[AppGeneratorTTSPublisher] = None,
|
||||
trace_manager: Optional[TraceQueueManager] = None
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""
|
||||
Process stream response.
|
||||
:return:
|
||||
"""
|
||||
for message in self._queue_manager.listen():
|
||||
if publisher:
|
||||
publisher.publish(message=message)
|
||||
event = message.event
|
||||
graph_runtime_state = None
|
||||
workflow_run = None
|
||||
|
||||
if isinstance(event, QueueErrorEvent):
|
||||
for queue_message in self._queue_manager.listen():
|
||||
event = queue_message.event
|
||||
|
||||
if isinstance(event, QueuePingEvent):
|
||||
yield self._ping_stream_response()
|
||||
elif isinstance(event, QueueErrorEvent):
|
||||
err = self._handle_error(event)
|
||||
yield self._error_to_stream_response(err)
|
||||
break
|
||||
elif isinstance(event, QueueWorkflowStartedEvent):
|
||||
# override graph runtime state
|
||||
graph_runtime_state = event.graph_runtime_state
|
||||
|
||||
# init workflow run
|
||||
workflow_run = self._handle_workflow_run_start()
|
||||
yield self._workflow_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run=workflow_run
|
||||
)
|
||||
elif isinstance(event, QueueNodeStartedEvent):
|
||||
workflow_node_execution = self._handle_execution_node_start(event)
|
||||
if not workflow_run:
|
||||
raise Exception('Workflow run not initialized.')
|
||||
|
||||
workflow_node_execution = self._handle_node_execution_start(
|
||||
workflow_run=workflow_run,
|
||||
event=event
|
||||
)
|
||||
|
||||
yield self._workflow_node_start_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution
|
||||
)
|
||||
elif isinstance(event, QueueNodeSucceededEvent | QueueNodeFailedEvent):
|
||||
workflow_node_execution = self._handle_node_finished(event)
|
||||
elif isinstance(event, QueueNodeSucceededEvent):
|
||||
workflow_node_execution = self._handle_workflow_node_execution_success(event)
|
||||
|
||||
yield self._workflow_node_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution
|
||||
)
|
||||
elif isinstance(event, QueueNodeFailedEvent):
|
||||
workflow_node_execution = self._handle_workflow_node_execution_failed(event)
|
||||
|
||||
if isinstance(event, QueueNodeFailedEvent):
|
||||
yield from self._handle_iteration_exception(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
error=f'Child node failed: {event.error}'
|
||||
)
|
||||
elif isinstance(event, QueueIterationStartEvent | QueueIterationNextEvent | QueueIterationCompletedEvent):
|
||||
yield self._handle_iteration_to_stream_response(self._application_generate_entity.task_id, event)
|
||||
self._handle_iteration_operation(event)
|
||||
yield self._workflow_node_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_node_execution=workflow_node_execution
|
||||
)
|
||||
elif isinstance(event, QueueIterationStartEvent):
|
||||
if not workflow_run:
|
||||
raise Exception('Workflow run not initialized.')
|
||||
|
||||
yield self._workflow_iteration_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run=workflow_run,
|
||||
event=event
|
||||
)
|
||||
elif isinstance(event, QueueIterationNextEvent):
|
||||
if not workflow_run:
|
||||
raise Exception('Workflow run not initialized.')
|
||||
|
||||
yield self._workflow_iteration_next_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run=workflow_run,
|
||||
event=event
|
||||
)
|
||||
elif isinstance(event, QueueIterationCompletedEvent):
|
||||
if not workflow_run:
|
||||
raise Exception('Workflow run not initialized.')
|
||||
|
||||
yield self._workflow_iteration_completed_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run=workflow_run,
|
||||
event=event
|
||||
)
|
||||
elif isinstance(event, QueueStopEvent | QueueWorkflowSucceededEvent | QueueWorkflowFailedEvent):
|
||||
workflow_run = self._handle_workflow_finished(
|
||||
event, trace_manager=trace_manager
|
||||
if not workflow_run:
|
||||
raise Exception('Workflow run not initialized.')
|
||||
|
||||
if not graph_runtime_state:
|
||||
raise Exception('Graph runtime state not initialized.')
|
||||
|
||||
workflow_run = self._handle_workflow_run_success(
|
||||
workflow_run=workflow_run,
|
||||
start_at=graph_runtime_state.start_at,
|
||||
total_tokens=graph_runtime_state.total_tokens,
|
||||
total_steps=graph_runtime_state.node_run_steps,
|
||||
outputs=json.dumps(event.outputs) if isinstance(event, QueueWorkflowSucceededEvent) and event.outputs else None,
|
||||
conversation_id=None,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
# save workflow app log
|
||||
@ -276,17 +324,17 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
||||
if delta_text is None:
|
||||
continue
|
||||
|
||||
# only publish tts message at text chunk streaming
|
||||
if tts_publisher:
|
||||
tts_publisher.publish(message=queue_message)
|
||||
|
||||
self._task_state.answer += delta_text
|
||||
yield self._text_chunk_to_stream_response(delta_text)
|
||||
elif isinstance(event, QueueMessageReplaceEvent):
|
||||
yield self._text_replace_to_stream_response(event.text)
|
||||
elif isinstance(event, QueuePingEvent):
|
||||
yield self._ping_stream_response()
|
||||
else:
|
||||
continue
|
||||
|
||||
if publisher:
|
||||
publisher.publish(None)
|
||||
if tts_publisher:
|
||||
tts_publisher.publish(None)
|
||||
|
||||
|
||||
def _save_workflow_app_log(self, workflow_run: WorkflowRun) -> None:
|
||||
@ -305,15 +353,15 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
||||
# not save log for debugging
|
||||
return
|
||||
|
||||
workflow_app_log = WorkflowAppLog(
|
||||
tenant_id=workflow_run.tenant_id,
|
||||
app_id=workflow_run.app_id,
|
||||
workflow_id=workflow_run.workflow_id,
|
||||
workflow_run_id=workflow_run.id,
|
||||
created_from=created_from.value,
|
||||
created_by_role=('account' if isinstance(self._user, Account) else 'end_user'),
|
||||
created_by=self._user.id,
|
||||
)
|
||||
workflow_app_log = WorkflowAppLog()
|
||||
workflow_app_log.tenant_id = workflow_run.tenant_id
|
||||
workflow_app_log.app_id = workflow_run.app_id
|
||||
workflow_app_log.workflow_id = workflow_run.workflow_id
|
||||
workflow_app_log.workflow_run_id = workflow_run.id
|
||||
workflow_app_log.created_from = created_from.value
|
||||
workflow_app_log.created_by_role = 'account' if isinstance(self._user, Account) else 'end_user'
|
||||
workflow_app_log.created_by = self._user.id
|
||||
|
||||
db.session.add(workflow_app_log)
|
||||
db.session.commit()
|
||||
db.session.close()
|
||||
@ -330,14 +378,3 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
def _text_replace_to_stream_response(self, text: str) -> TextReplaceStreamResponse:
|
||||
"""
|
||||
Text replace to stream response.
|
||||
:param text: text
|
||||
:return:
|
||||
"""
|
||||
return TextReplaceStreamResponse(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
text=TextReplaceStreamResponse.Data(text=text)
|
||||
)
|
||||
|
228
api/core/app/apps/workflow_app_runner.py
Normal file
228
api/core/app/apps/workflow_app_runner.py
Normal file
@ -0,0 +1,228 @@
|
||||
from typing import Optional
|
||||
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.base_app_runner import AppRunner
|
||||
from core.app.entities.queue_entities import (
|
||||
AppQueueEvent,
|
||||
QueueIterationCompletedEvent,
|
||||
QueueIterationNextEvent,
|
||||
QueueIterationStartEvent,
|
||||
QueueNodeFailedEvent,
|
||||
QueueNodeStartedEvent,
|
||||
QueueNodeSucceededEvent,
|
||||
QueueParallelBranchRunFailedEvent,
|
||||
QueueParallelBranchRunStartedEvent,
|
||||
QueueRetrieverResourcesEvent,
|
||||
QueueTextChunkEvent,
|
||||
QueueWorkflowFailedEvent,
|
||||
QueueWorkflowStartedEvent,
|
||||
QueueWorkflowSucceededEvent,
|
||||
)
|
||||
from core.workflow.graph_engine.entities.event import (
|
||||
GraphEngineEvent,
|
||||
GraphRunFailedEvent,
|
||||
GraphRunStartedEvent,
|
||||
GraphRunSucceededEvent,
|
||||
IterationRunFailedEvent,
|
||||
IterationRunNextEvent,
|
||||
IterationRunStartedEvent,
|
||||
IterationRunSucceededEvent,
|
||||
NodeRunFailedEvent,
|
||||
NodeRunRetrieverResourceEvent,
|
||||
NodeRunStartedEvent,
|
||||
NodeRunStreamChunkEvent,
|
||||
NodeRunSucceededEvent,
|
||||
ParallelBranchRunFailedEvent,
|
||||
ParallelBranchRunStartedEvent,
|
||||
ParallelBranchRunSucceededEvent,
|
||||
)
|
||||
from core.workflow.workflow_entry import WorkflowEntry
|
||||
from extensions.ext_database import db
|
||||
from models.model import App
|
||||
from models.workflow import Workflow
|
||||
|
||||
|
||||
class WorkflowBasedAppRunner(AppRunner):
|
||||
def __init__(self, queue_manager: AppQueueManager):
|
||||
self.queue_manager = queue_manager
|
||||
|
||||
def _handle_event(self, workflow_entry: WorkflowEntry, event: GraphEngineEvent) -> None:
|
||||
"""
|
||||
Handle event
|
||||
:param workflow_entry: workflow entry
|
||||
:param event: event
|
||||
"""
|
||||
if isinstance(event, GraphRunStartedEvent):
|
||||
self._publish_event(
|
||||
QueueWorkflowStartedEvent(
|
||||
graph_runtime_state=workflow_entry.graph_engine.graph_runtime_state
|
||||
)
|
||||
)
|
||||
elif isinstance(event, GraphRunSucceededEvent):
|
||||
self._publish_event(
|
||||
QueueWorkflowSucceededEvent(outputs=event.outputs)
|
||||
)
|
||||
elif isinstance(event, GraphRunFailedEvent):
|
||||
self._publish_event(
|
||||
QueueWorkflowFailedEvent(error=event.error)
|
||||
)
|
||||
elif isinstance(event, NodeRunStartedEvent):
|
||||
self._publish_event(
|
||||
QueueNodeStartedEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_data=event.node_data,
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id,
|
||||
start_at=event.route_node_state.start_at,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
predecessor_node_id=event.predecessor_node_id
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunSucceededEvent):
|
||||
self._publish_event(
|
||||
QueueNodeSucceededEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_data=event.node_data,
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id,
|
||||
start_at=event.route_node_state.start_at,
|
||||
inputs=event.route_node_state.node_run_result.inputs
|
||||
if event.route_node_state.node_run_result else {},
|
||||
process_data=event.route_node_state.node_run_result.process_data
|
||||
if event.route_node_state.node_run_result else {},
|
||||
outputs=event.route_node_state.node_run_result.outputs
|
||||
if event.route_node_state.node_run_result else {},
|
||||
execution_metadata=event.route_node_state.node_run_result.metadata
|
||||
if event.route_node_state.node_run_result else {},
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunFailedEvent):
|
||||
self._publish_event(
|
||||
QueueNodeFailedEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_data=event.node_data,
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id,
|
||||
start_at=event.route_node_state.start_at,
|
||||
inputs=event.route_node_state.node_run_result.inputs
|
||||
if event.route_node_state.node_run_result else {},
|
||||
process_data=event.route_node_state.node_run_result.process_data
|
||||
if event.route_node_state.node_run_result else {},
|
||||
outputs=event.route_node_state.node_run_result.outputs
|
||||
if event.route_node_state.node_run_result else {},
|
||||
error=event.route_node_state.node_run_result.error
|
||||
if event.route_node_state.node_run_result
|
||||
and event.route_node_state.node_run_result.error
|
||||
else "Unknown error"
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunStreamChunkEvent):
|
||||
self._publish_event(
|
||||
QueueTextChunkEvent(
|
||||
text=event.chunk_content
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunRetrieverResourceEvent):
|
||||
self._publish_event(
|
||||
QueueRetrieverResourcesEvent(
|
||||
retriever_resources=event.retriever_resources
|
||||
)
|
||||
)
|
||||
elif isinstance(event, ParallelBranchRunStartedEvent):
|
||||
self._publish_event(
|
||||
QueueParallelBranchRunStartedEvent(
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id
|
||||
)
|
||||
)
|
||||
elif isinstance(event, ParallelBranchRunSucceededEvent):
|
||||
self._publish_event(
|
||||
QueueParallelBranchRunStartedEvent(
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id
|
||||
)
|
||||
)
|
||||
elif isinstance(event, ParallelBranchRunFailedEvent):
|
||||
self._publish_event(
|
||||
QueueParallelBranchRunFailedEvent(
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id,
|
||||
error=event.error
|
||||
)
|
||||
)
|
||||
elif isinstance(event, IterationRunStartedEvent):
|
||||
self._publish_event(
|
||||
QueueIterationStartEvent(
|
||||
node_execution_id=event.iteration_id,
|
||||
node_id=event.iteration_node_id,
|
||||
node_type=event.iteration_node_type,
|
||||
node_data=event.iteration_node_data,
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id,
|
||||
start_at=event.start_at,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
inputs=event.inputs,
|
||||
predecessor_node_id=event.predecessor_node_id,
|
||||
metadata=event.metadata
|
||||
)
|
||||
)
|
||||
elif isinstance(event, IterationRunNextEvent):
|
||||
self._publish_event(
|
||||
QueueIterationNextEvent(
|
||||
node_execution_id=event.iteration_id,
|
||||
node_id=event.iteration_node_id,
|
||||
node_type=event.iteration_node_type,
|
||||
node_data=event.iteration_node_data,
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id,
|
||||
index=event.index,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
output=event.pre_iteration_output,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, (IterationRunSucceededEvent | IterationRunFailedEvent)):
|
||||
self._publish_event(
|
||||
QueueIterationCompletedEvent(
|
||||
node_execution_id=event.iteration_id,
|
||||
node_id=event.iteration_node_id,
|
||||
node_type=event.iteration_node_type,
|
||||
node_data=event.iteration_node_data,
|
||||
parallel_id=event.parallel_id,
|
||||
parallel_start_node_id=event.parallel_start_node_id,
|
||||
start_at=event.start_at,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
inputs=event.inputs,
|
||||
outputs=event.outputs,
|
||||
metadata=event.metadata,
|
||||
steps=event.steps,
|
||||
error=event.error if isinstance(event, IterationRunFailedEvent) else None
|
||||
)
|
||||
)
|
||||
|
||||
def get_workflow(self, app_model: App, workflow_id: str) -> Optional[Workflow]:
|
||||
"""
|
||||
Get workflow
|
||||
"""
|
||||
# fetch workflow by workflow_id
|
||||
workflow = (
|
||||
db.session.query(Workflow)
|
||||
.filter(
|
||||
Workflow.tenant_id == app_model.tenant_id, Workflow.app_id == app_model.id, Workflow.id == workflow_id
|
||||
)
|
||||
.first()
|
||||
)
|
||||
|
||||
# return workflow
|
||||
return workflow
|
||||
|
||||
def _publish_event(self, event: AppQueueEvent) -> None:
|
||||
self.queue_manager.publish(
|
||||
event,
|
||||
PublishFrom.APPLICATION_MANAGER
|
||||
)
|
@ -438,7 +438,7 @@ class WorkflowAppStreamResponse(AppStreamResponse):
|
||||
"""
|
||||
WorkflowAppStreamResponse entity
|
||||
"""
|
||||
workflow_run_id: str
|
||||
workflow_run_id: Optional[str] = None
|
||||
|
||||
|
||||
class AppBlockingResponse(BaseModel):
|
||||
|
@ -50,7 +50,7 @@ class BasedGenerateTaskPipeline:
|
||||
self._output_moderation_handler = self._init_output_moderation()
|
||||
self._stream = stream
|
||||
|
||||
def _handle_error(self, event: QueueErrorEvent, message: Message) -> Exception:
|
||||
def _handle_error(self, event: QueueErrorEvent, message: Optional[Message] = None) -> Exception:
|
||||
"""
|
||||
Handle error event.
|
||||
:param event: event
|
||||
|
@ -1,10 +1,9 @@
|
||||
from core.workflow.entities.node_entities import NodeType
|
||||
from core.workflow.nodes.base_node import BaseNode
|
||||
|
||||
|
||||
class WorkflowNodeRunFailedError(Exception):
|
||||
def __init__(self, node_id: str, node_type: NodeType, node_title: str, error: str):
|
||||
self.node_id = node_id
|
||||
self.node_type = node_type
|
||||
self.node_title = node_title
|
||||
def __init__(self, node_instance: BaseNode, error: str):
|
||||
self.node_instance = node_instance
|
||||
self.error = error
|
||||
super().__init__(f"Node {node_title} run failed: {error}")
|
||||
super().__init__(f"Node {node_instance.node_data.title} run failed: {error}")
|
||||
|
@ -1,7 +1,8 @@
|
||||
from typing import cast
|
||||
from typing import Any, Mapping, Sequence, cast
|
||||
|
||||
from core.workflow.entities.base_node_data_entities import BaseNodeData
|
||||
from core.workflow.entities.node_entities import NodeRunResult, NodeType
|
||||
from core.workflow.graph_engine.entities.graph import Graph
|
||||
from core.workflow.nodes.answer.answer_stream_generate_router import AnswerStreamGeneratorRouter
|
||||
from core.workflow.nodes.answer.entities import (
|
||||
AnswerNodeData,
|
||||
@ -52,9 +53,16 @@ class AnswerNode(BaseNode):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(cls, node_data: BaseNodeData) -> dict[str, list[str]]:
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
graph_config: Mapping[str, Any],
|
||||
node_id: str,
|
||||
node_data: AnswerNodeData
|
||||
) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
:param graph_config: graph config
|
||||
:param node_id: node id
|
||||
:param node_data: node data
|
||||
:return:
|
||||
"""
|
||||
@ -66,6 +74,6 @@ class AnswerNode(BaseNode):
|
||||
|
||||
variable_mapping = {}
|
||||
for variable_selector in variable_selectors:
|
||||
variable_mapping[variable_selector.variable] = variable_selector.value_selector
|
||||
variable_mapping[node_id + '.' + variable_selector.variable] = variable_selector.value_selector
|
||||
|
||||
return variable_mapping
|
||||
|
@ -67,19 +67,35 @@ class BaseNode(ABC):
|
||||
yield from result
|
||||
|
||||
@classmethod
|
||||
def extract_variable_selector_to_variable_mapping(cls, config: dict):
|
||||
def extract_variable_selector_to_variable_mapping(cls, graph_config: Mapping[str, Any], config: dict) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
:param graph_config: graph config
|
||||
:param config: node config
|
||||
:return:
|
||||
"""
|
||||
node_id = config.get("id")
|
||||
if not node_id:
|
||||
raise ValueError("Node ID is required when extracting variable selector to variable mapping.")
|
||||
|
||||
node_data = cls._node_data_cls(**config.get("data", {}))
|
||||
return cls._extract_variable_selector_to_variable_mapping(node_data)
|
||||
return cls._extract_variable_selector_to_variable_mapping(
|
||||
graph_config=graph_config,
|
||||
node_id=node_id,
|
||||
node_data=node_data
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(cls, node_data: BaseNodeData) -> Mapping[str, Sequence[str]]:
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
graph_config: Mapping[str, Any],
|
||||
node_id: str,
|
||||
node_data: BaseNodeData
|
||||
) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
:param graph_config: graph config
|
||||
:param node_id: node id
|
||||
:param node_data: node data
|
||||
:return:
|
||||
"""
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import Optional, Union, cast
|
||||
from typing import Any, Mapping, Optional, Sequence, Union, cast
|
||||
|
||||
from configs import dify_config
|
||||
from core.helper.code_executor.code_executor import CodeExecutionException, CodeExecutor, CodeLanguage
|
||||
@ -314,13 +314,19 @@ class CodeNode(BaseNode):
|
||||
return transformed_result
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(cls, node_data: CodeNodeData) -> dict[str, list[str]]:
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
graph_config: Mapping[str, Any],
|
||||
node_id: str,
|
||||
node_data: CodeNodeData
|
||||
) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
:param graph_config: graph config
|
||||
:param node_id: node id
|
||||
:param node_data: node data
|
||||
:return:
|
||||
"""
|
||||
|
||||
return {
|
||||
variable_selector.variable: variable_selector.value_selector for variable_selector in node_data.variables
|
||||
node_id + '.' + variable_selector.variable: variable_selector.value_selector for variable_selector in node_data.variables
|
||||
}
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import cast
|
||||
from typing import Any, Mapping, Sequence, cast
|
||||
|
||||
from core.workflow.entities.base_node_data_entities import BaseNodeData
|
||||
from core.workflow.entities.node_entities import NodeRunResult, NodeType
|
||||
@ -32,9 +32,16 @@ class EndNode(BaseNode):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(cls, node_data: BaseNodeData) -> dict[str, list[str]]:
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
graph_config: Mapping[str, Any],
|
||||
node_id: str,
|
||||
node_data: EndNodeData
|
||||
) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
:param graph_config: graph config
|
||||
:param node_id: node id
|
||||
:param node_data: node data
|
||||
:return:
|
||||
"""
|
||||
|
@ -1,7 +1,7 @@
|
||||
import logging
|
||||
from mimetypes import guess_extension
|
||||
from os import path
|
||||
from typing import cast
|
||||
from typing import Any, Mapping, Sequence, cast
|
||||
|
||||
from core.app.segments import parser
|
||||
from core.file.file_obj import FileTransferMethod, FileType, FileVar
|
||||
@ -107,13 +107,19 @@ class HttpRequestNode(BaseNode):
|
||||
return timeout
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(cls, node_data: BaseNodeData) -> dict[str, list[str]]:
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
graph_config: Mapping[str, Any],
|
||||
node_id: str,
|
||||
node_data: HttpRequestNodeData
|
||||
) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
:param graph_config: graph config
|
||||
:param node_id: node id
|
||||
:param node_data: node data
|
||||
:return:
|
||||
"""
|
||||
node_data = cast(HttpRequestNodeData, node_data)
|
||||
try:
|
||||
http_executor = HttpExecutor(node_data=node_data, timeout=HTTP_REQUEST_DEFAULT_TIMEOUT)
|
||||
|
||||
@ -121,7 +127,7 @@ class HttpRequestNode(BaseNode):
|
||||
|
||||
variable_mapping = {}
|
||||
for variable_selector in variable_selectors:
|
||||
variable_mapping[variable_selector.variable] = variable_selector.value_selector
|
||||
variable_mapping[node_id + '.' + variable_selector.variable] = variable_selector.value_selector
|
||||
|
||||
return variable_mapping
|
||||
except Exception as e:
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import cast
|
||||
from typing import Any, Mapping, Sequence, cast
|
||||
|
||||
from core.workflow.entities.base_node_data_entities import BaseNodeData
|
||||
from core.workflow.entities.node_entities import NodeRunResult, NodeType
|
||||
@ -99,9 +99,16 @@ class IfElseNode(BaseNode):
|
||||
return data
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(cls, node_data: BaseNodeData) -> dict[str, list[str]]:
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
graph_config: Mapping[str, Any],
|
||||
node_id: str,
|
||||
node_data: IfElseNodeData
|
||||
) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
:param graph_config: graph config
|
||||
:param node_id: node id
|
||||
:param node_data: node data
|
||||
:return:
|
||||
"""
|
||||
|
@ -1,10 +1,11 @@
|
||||
import logging
|
||||
from collections.abc import Generator
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, cast
|
||||
|
||||
from configs import dify_config
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.workflow.entities.base_node_data_entities import BaseNodeData
|
||||
from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult, NodeType
|
||||
from core.workflow.graph_engine.entities.event import (
|
||||
BaseGraphEvent,
|
||||
@ -287,12 +288,67 @@ class IterationNode(BaseNode):
|
||||
variable_pool.remove([self.node_id, 'item'])
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(cls, node_data: IterationNodeData) -> dict[str, list[str]]:
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
graph_config: Mapping[str, Any],
|
||||
node_id: str,
|
||||
node_data: IterationNodeData
|
||||
) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
:param graph_config: graph config
|
||||
:param node_id: node id
|
||||
:param node_data: node data
|
||||
:return:
|
||||
"""
|
||||
return {
|
||||
'input_selector': node_data.iterator_selector,
|
||||
variable_mapping = {
|
||||
f'{node_id}.input_selector': node_data.iterator_selector,
|
||||
}
|
||||
|
||||
# init graph
|
||||
iteration_graph = Graph.init(
|
||||
graph_config=graph_config,
|
||||
root_node_id=node_data.start_node_id
|
||||
)
|
||||
|
||||
if not iteration_graph:
|
||||
raise ValueError('iteration graph not found')
|
||||
|
||||
for sub_node_id, sub_node_config in iteration_graph.node_id_config_mapping.items():
|
||||
if sub_node_config.get('data', {}).get('iteration_id') != node_id:
|
||||
continue
|
||||
|
||||
# variable selector to variable mapping
|
||||
try:
|
||||
# Get node class
|
||||
from core.workflow.nodes.node_mapping import node_classes
|
||||
node_type = NodeType.value_of(sub_node_config.get('data', {}).get('type'))
|
||||
node_cls = node_classes.get(node_type)
|
||||
if not node_cls:
|
||||
continue
|
||||
|
||||
node_cls = cast(BaseNode, node_cls)
|
||||
|
||||
sub_node_variable_mapping = node_cls.extract_variable_selector_to_variable_mapping(
|
||||
graph_config=graph_config,
|
||||
config=sub_node_config
|
||||
)
|
||||
sub_node_variable_mapping = cast(dict[str, list[str]], sub_node_variable_mapping)
|
||||
except NotImplementedError:
|
||||
sub_node_variable_mapping = {}
|
||||
|
||||
# remove iteration variables
|
||||
sub_node_variable_mapping = {
|
||||
sub_node_id + '.' + key: value for key, value in sub_node_variable_mapping.items()
|
||||
if value[0] != node_id
|
||||
}
|
||||
|
||||
variable_mapping.update(sub_node_variable_mapping)
|
||||
|
||||
# remove variable out from iteration
|
||||
variable_mapping = {
|
||||
key: value for key, value in variable_mapping.items()
|
||||
if value[0] not in iteration_graph.node_ids
|
||||
}
|
||||
|
||||
return variable_mapping
|
||||
|
@ -1,5 +1,5 @@
|
||||
import logging
|
||||
from typing import Any, cast
|
||||
from typing import Any, Mapping, Sequence, cast
|
||||
|
||||
from sqlalchemy import func
|
||||
|
||||
@ -232,11 +232,21 @@ class KnowledgeRetrievalNode(BaseNode):
|
||||
return context_list
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(cls, node_data: BaseNodeData) -> dict[str, list[str]]:
|
||||
node_data = node_data
|
||||
node_data = cast(cls._node_data_cls, node_data)
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
graph_config: Mapping[str, Any],
|
||||
node_id: str,
|
||||
node_data: KnowledgeRetrievalNodeData
|
||||
) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
:param graph_config: graph config
|
||||
:param node_id: node id
|
||||
:param node_data: node data
|
||||
:return:
|
||||
"""
|
||||
variable_mapping = {}
|
||||
variable_mapping['query'] = node_data.query_variable_selector
|
||||
variable_mapping[node_id + '.query'] = node_data.query_variable_selector
|
||||
return variable_mapping
|
||||
|
||||
def _fetch_model_config(self, node_data: KnowledgeRetrievalNodeData) -> tuple[
|
||||
|
@ -1,7 +1,7 @@
|
||||
import json
|
||||
from collections.abc import Generator
|
||||
from copy import deepcopy
|
||||
from typing import Optional, cast
|
||||
from typing import Any, Mapping, Optional, Sequence, cast
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
@ -678,13 +678,19 @@ class LLMNode(BaseNode):
|
||||
db.session.commit()
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(cls, node_data: BaseNodeData) -> dict[str, list[str]]:
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
graph_config: Mapping[str, Any],
|
||||
node_id: str,
|
||||
node_data: LLMNodeData
|
||||
) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
:param graph_config: graph config
|
||||
:param node_id: node id
|
||||
:param node_data: node data
|
||||
:return:
|
||||
"""
|
||||
node_data = cast(LLMNodeData, node_data)
|
||||
prompt_template = node_data.prompt_template
|
||||
|
||||
variable_selectors = []
|
||||
@ -734,6 +740,10 @@ class LLMNode(BaseNode):
|
||||
for variable_selector in node_data.prompt_config.jinja2_variables or []:
|
||||
variable_mapping[variable_selector.variable] = variable_selector.value_selector
|
||||
|
||||
variable_mapping = {
|
||||
node_id + '.' + key: value for key, value in variable_mapping.items()
|
||||
}
|
||||
|
||||
return variable_mapping
|
||||
|
||||
@classmethod
|
||||
|
@ -1,6 +1,6 @@
|
||||
import json
|
||||
import uuid
|
||||
from typing import Optional, cast
|
||||
from typing import Any, Mapping, Optional, Sequence, cast
|
||||
|
||||
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
@ -701,15 +701,19 @@ class ParameterExtractorNode(LLMNode):
|
||||
return self._model_instance, self._model_config
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(cls, node_data: ParameterExtractorNodeData) -> dict[
|
||||
str, list[str]]:
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
graph_config: Mapping[str, Any],
|
||||
node_id: str,
|
||||
node_data: ParameterExtractorNodeData
|
||||
) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
:param graph_config: graph config
|
||||
:param node_id: node id
|
||||
:param node_data: node data
|
||||
:return:
|
||||
"""
|
||||
node_data = node_data
|
||||
|
||||
variable_mapping = {
|
||||
'query': node_data.query
|
||||
}
|
||||
@ -719,4 +723,8 @@ class ParameterExtractorNode(LLMNode):
|
||||
for selector in variable_template_parser.extract_variable_selectors():
|
||||
variable_mapping[selector.variable] = selector.value_selector
|
||||
|
||||
variable_mapping = {
|
||||
node_id + '.' + key: value for key, value in variable_mapping.items()
|
||||
}
|
||||
|
||||
return variable_mapping
|
||||
|
@ -1,6 +1,6 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import Optional, Union, cast
|
||||
from typing import Any, Mapping, Optional, Sequence, Union, cast
|
||||
|
||||
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
@ -137,9 +137,19 @@ class QuestionClassifierNode(LLMNode):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(cls, node_data: BaseNodeData) -> dict[str, list[str]]:
|
||||
node_data = node_data
|
||||
node_data = cast(cls._node_data_cls, node_data)
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
graph_config: Mapping[str, Any],
|
||||
node_id: str,
|
||||
node_data: QuestionClassifierNodeData
|
||||
) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
:param graph_config: graph config
|
||||
:param node_id: node id
|
||||
:param node_data: node data
|
||||
:return:
|
||||
"""
|
||||
variable_mapping = {'query': node_data.query_variable_selector}
|
||||
variable_selectors = []
|
||||
if node_data.instruction:
|
||||
@ -147,6 +157,11 @@ class QuestionClassifierNode(LLMNode):
|
||||
variable_selectors.extend(variable_template_parser.extract_variable_selectors())
|
||||
for variable_selector in variable_selectors:
|
||||
variable_mapping[variable_selector.variable] = variable_selector.value_selector
|
||||
|
||||
variable_mapping = {
|
||||
node_id + '.' + key: value for key, value in variable_mapping.items()
|
||||
}
|
||||
|
||||
return variable_mapping
|
||||
|
||||
@classmethod
|
||||
|
@ -1,4 +1,5 @@
|
||||
|
||||
from typing import Any, Mapping, Sequence
|
||||
from core.workflow.entities.base_node_data_entities import BaseNodeData
|
||||
from core.workflow.entities.node_entities import NodeRunResult, NodeType
|
||||
from core.workflow.nodes.base_node import BaseNode
|
||||
@ -28,9 +29,16 @@ class StartNode(BaseNode):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(cls, node_data: BaseNodeData) -> dict[str, list[str]]:
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
graph_config: Mapping[str, Any],
|
||||
node_id: str,
|
||||
node_data: StartNodeData
|
||||
) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
:param graph_config: graph config
|
||||
:param node_id: node id
|
||||
:param node_data: node data
|
||||
:return:
|
||||
"""
|
||||
|
@ -1,5 +1,5 @@
|
||||
import os
|
||||
from typing import Optional, cast
|
||||
from typing import Any, Mapping, Optional, Sequence, cast
|
||||
|
||||
from core.helper.code_executor.code_executor import CodeExecutionException, CodeExecutor, CodeLanguage
|
||||
from core.workflow.entities.node_entities import NodeRunResult, NodeType
|
||||
@ -77,13 +77,19 @@ class TemplateTransformNode(BaseNode):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(cls, node_data: TemplateTransformNodeData) -> dict[
|
||||
str, list[str]]:
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
graph_config: Mapping[str, Any],
|
||||
node_id: str,
|
||||
node_data: TemplateTransformNodeData
|
||||
) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
:param graph_config: graph config
|
||||
:param node_id: node id
|
||||
:param node_data: node data
|
||||
:return:
|
||||
"""
|
||||
return {
|
||||
variable_selector.variable: variable_selector.value_selector for variable_selector in node_data.variables
|
||||
node_id + '.' + variable_selector.variable: variable_selector.value_selector for variable_selector in node_data.variables
|
||||
}
|
||||
|
@ -221,9 +221,16 @@ class ToolNode(BaseNode):
|
||||
return [message.message for message in tool_response if message.type == ToolInvokeMessage.MessageType.JSON]
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(cls, node_data: ToolNodeData) -> dict[str, list[str]]:
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
graph_config: Mapping[str, Any],
|
||||
node_id: str,
|
||||
node_data: ToolNodeData
|
||||
) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
:param graph_config: graph config
|
||||
:param node_id: node id
|
||||
:param node_data: node data
|
||||
:return:
|
||||
"""
|
||||
@ -239,4 +246,8 @@ class ToolNode(BaseNode):
|
||||
elif input.type == 'constant':
|
||||
pass
|
||||
|
||||
result = {
|
||||
node_id + '.' + key: value for key, value in result.items()
|
||||
}
|
||||
|
||||
return result
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import cast
|
||||
from typing import Any, Mapping, Sequence, cast
|
||||
|
||||
from core.workflow.entities.base_node_data_entities import BaseNodeData
|
||||
from core.workflow.entities.node_entities import NodeRunResult, NodeType
|
||||
@ -48,5 +48,17 @@ class VariableAggregatorNode(BaseNode):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(cls, node_data: BaseNodeData) -> dict[str, list[str]]:
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
graph_config: Mapping[str, Any],
|
||||
node_id: str,
|
||||
node_data: VariableAssignerNodeData
|
||||
) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
:param graph_config: graph config
|
||||
:param node_id: node id
|
||||
:param node_data: node data
|
||||
:return:
|
||||
"""
|
||||
return {}
|
||||
|
@ -1,6 +1,8 @@
|
||||
import logging
|
||||
import time
|
||||
import uuid
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from typing import Any, Optional, cast
|
||||
from typing import Any, Optional, Type, cast
|
||||
|
||||
from configs import dify_config
|
||||
from core.app.app_config.entities import FileExtraConfig
|
||||
@ -8,13 +10,18 @@ from core.app.apps.base_app_queue_manager import GenerateTaskStoppedException
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.file.file_obj import FileTransferMethod, FileType, FileVar
|
||||
from core.workflow.callbacks.base_workflow_callback import WorkflowCallback
|
||||
from core.workflow.entities.node_entities import NodeRunResult, NodeType, SystemVariable, UserFrom
|
||||
from core.workflow.entities.base_node_data_entities import BaseNodeData
|
||||
from core.workflow.entities.node_entities import NodeRunResult, NodeType, UserFrom
|
||||
from core.workflow.entities.variable_pool import VariablePool
|
||||
from core.workflow.errors import WorkflowNodeRunFailedError
|
||||
from core.workflow.graph_engine.entities.event import GraphEngineEvent, GraphRunFailedEvent
|
||||
from core.workflow.graph_engine.entities.event import GraphEngineEvent, GraphRunFailedEvent, InNodeEvent
|
||||
from core.workflow.graph_engine.entities.graph import Graph
|
||||
from core.workflow.graph_engine.entities.graph_init_params import GraphInitParams
|
||||
from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeState
|
||||
from core.workflow.graph_engine.graph_engine import GraphEngine
|
||||
from core.workflow.nodes.base_node import BaseNode
|
||||
from core.workflow.nodes.event import RunCompletedEvent, RunEvent
|
||||
from core.workflow.nodes.iteration.entities import IterationNodeData
|
||||
from core.workflow.nodes.llm.entities import LLMNodeData
|
||||
from core.workflow.nodes.node_mapping import node_classes
|
||||
from models.workflow import (
|
||||
@ -32,18 +39,17 @@ class WorkflowEntry:
|
||||
user_id: str,
|
||||
user_from: UserFrom,
|
||||
invoke_from: InvokeFrom,
|
||||
user_inputs: Mapping[str, Any],
|
||||
system_inputs: Mapping[SystemVariable, Any],
|
||||
call_depth: int = 0
|
||||
call_depth: int,
|
||||
variable_pool: VariablePool
|
||||
) -> None:
|
||||
"""
|
||||
:param workflow: Workflow instance
|
||||
:param user_id: user id
|
||||
:param user_from: user from
|
||||
:param invoke_from: invoke from service-api, web-app, debugger, explore
|
||||
:param user_inputs: user variables inputs
|
||||
:param system_inputs: system inputs, like: query, files
|
||||
:param call_depth: call depth
|
||||
:param variable_pool: variable pool
|
||||
:param single_step_run_iteration_id: single step run iteration id
|
||||
"""
|
||||
# fetch workflow graph
|
||||
graph_config = workflow.graph_dict
|
||||
@ -71,13 +77,6 @@ class WorkflowEntry:
|
||||
if not graph:
|
||||
raise ValueError('graph not found in workflow')
|
||||
|
||||
# init variable pool
|
||||
variable_pool = VariablePool(
|
||||
system_variables=system_inputs,
|
||||
user_inputs=user_inputs,
|
||||
environment_variables=workflow.environment_variables,
|
||||
)
|
||||
|
||||
# init workflow run state
|
||||
self.graph_engine = GraphEngine(
|
||||
tenant_id=workflow.tenant_id,
|
||||
@ -134,10 +133,160 @@ class WorkflowEntry:
|
||||
)
|
||||
return
|
||||
|
||||
def single_step_run(self, workflow: Workflow,
|
||||
node_id: str,
|
||||
user_id: str,
|
||||
user_inputs: dict) -> tuple[BaseNode, NodeRunResult]:
|
||||
@classmethod
|
||||
def single_step_run_iteration(
|
||||
cls,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user_id: str,
|
||||
user_inputs: dict,
|
||||
callbacks: Sequence[WorkflowCallback],
|
||||
) -> Generator[GraphEngineEvent, None, None]:
|
||||
"""
|
||||
Single step run workflow node iteration
|
||||
:param workflow: Workflow instance
|
||||
:param node_id: node id
|
||||
:param user_id: user id
|
||||
:param user_inputs: user inputs
|
||||
:return:
|
||||
"""
|
||||
# fetch workflow graph
|
||||
graph_config = workflow.graph_dict
|
||||
if not graph_config:
|
||||
raise ValueError('workflow graph not found')
|
||||
|
||||
graph_config = cast(dict[str, Any], graph_config)
|
||||
|
||||
if 'nodes' not in graph_config or 'edges' not in graph_config:
|
||||
raise ValueError('nodes or edges not found in workflow graph')
|
||||
|
||||
if not isinstance(graph_config.get('nodes'), list):
|
||||
raise ValueError('nodes in workflow graph must be a list')
|
||||
|
||||
if not isinstance(graph_config.get('edges'), list):
|
||||
raise ValueError('edges in workflow graph must be a list')
|
||||
|
||||
# filter nodes only in iteration
|
||||
node_configs = [
|
||||
node for node in graph_config.get('nodes', [])
|
||||
if node.get('id') == node_id or node.get('data', {}).get('iteration_id', '') == node_id
|
||||
]
|
||||
|
||||
graph_config['nodes'] = node_configs
|
||||
|
||||
node_ids = [node.get('id') for node in node_configs]
|
||||
|
||||
# filter edges only in iteration
|
||||
edge_configs = [
|
||||
edge for edge in graph_config.get('edges', [])
|
||||
if (edge.get('source') is None or edge.get('source') in node_ids)
|
||||
and (edge.get('target') is None or edge.get('target') in node_ids)
|
||||
]
|
||||
|
||||
graph_config['edges'] = edge_configs
|
||||
|
||||
# init graph
|
||||
graph = Graph.init(
|
||||
graph_config=graph_config,
|
||||
root_node_id=node_id
|
||||
)
|
||||
|
||||
if not graph:
|
||||
raise ValueError('graph not found in workflow')
|
||||
|
||||
# fetch node config from node id
|
||||
iteration_node_config = None
|
||||
for node in node_configs:
|
||||
if node.get('id') == node_id:
|
||||
iteration_node_config = node
|
||||
break
|
||||
|
||||
if not iteration_node_config:
|
||||
raise ValueError('iteration node id not found in workflow graph')
|
||||
|
||||
# Get node class
|
||||
node_type = NodeType.value_of(iteration_node_config.get('data', {}).get('type'))
|
||||
node_cls = node_classes.get(node_type)
|
||||
node_cls = cast(type[BaseNode], node_cls)
|
||||
|
||||
# init variable pool
|
||||
variable_pool = VariablePool(
|
||||
system_variables={},
|
||||
user_inputs={},
|
||||
environment_variables=workflow.environment_variables,
|
||||
)
|
||||
|
||||
try:
|
||||
variable_mapping = node_cls.extract_variable_selector_to_variable_mapping(
|
||||
graph_config=workflow.graph_dict,
|
||||
config=iteration_node_config
|
||||
)
|
||||
except NotImplementedError:
|
||||
variable_mapping = {}
|
||||
|
||||
cls._mapping_user_inputs_to_variable_pool(
|
||||
variable_mapping=variable_mapping,
|
||||
user_inputs=user_inputs,
|
||||
variable_pool=variable_pool,
|
||||
tenant_id=workflow.tenant_id,
|
||||
node_type=node_type,
|
||||
node_data=IterationNodeData(**iteration_node_config.get('data', {}))
|
||||
)
|
||||
|
||||
# init workflow run state
|
||||
graph_engine = GraphEngine(
|
||||
tenant_id=workflow.tenant_id,
|
||||
app_id=workflow.app_id,
|
||||
workflow_type=WorkflowType.value_of(workflow.type),
|
||||
workflow_id=workflow.id,
|
||||
user_id=user_id,
|
||||
user_from=UserFrom.ACCOUNT,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
call_depth=1,
|
||||
graph=graph,
|
||||
graph_config=graph_config,
|
||||
variable_pool=variable_pool,
|
||||
max_execution_steps=dify_config.WORKFLOW_MAX_EXECUTION_STEPS,
|
||||
max_execution_time=dify_config.WORKFLOW_MAX_EXECUTION_TIME
|
||||
)
|
||||
|
||||
try:
|
||||
# run workflow
|
||||
generator = graph_engine.run()
|
||||
for event in generator:
|
||||
if callbacks:
|
||||
for callback in callbacks:
|
||||
callback.on_event(
|
||||
graph=graph_engine.graph,
|
||||
graph_init_params=graph_engine.init_params,
|
||||
graph_runtime_state=graph_engine.graph_runtime_state,
|
||||
event=event
|
||||
)
|
||||
yield event
|
||||
except GenerateTaskStoppedException:
|
||||
pass
|
||||
except Exception as e:
|
||||
logger.exception("Unknown Error when workflow entry running")
|
||||
if callbacks:
|
||||
for callback in callbacks:
|
||||
callback.on_event(
|
||||
graph=graph_engine.graph,
|
||||
graph_init_params=graph_engine.init_params,
|
||||
graph_runtime_state=graph_engine.graph_runtime_state,
|
||||
event=GraphRunFailedEvent(
|
||||
error=str(e)
|
||||
)
|
||||
)
|
||||
return
|
||||
|
||||
@classmethod
|
||||
def single_step_run(
|
||||
cls,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user_id: str,
|
||||
user_inputs: dict
|
||||
) -> tuple[BaseNode, Generator[RunEvent | InNodeEvent, None, None]]:
|
||||
"""
|
||||
Single step run workflow node
|
||||
:param workflow: Workflow instance
|
||||
@ -168,61 +317,74 @@ class WorkflowEntry:
|
||||
# Get node class
|
||||
node_type = NodeType.value_of(node_config.get('data', {}).get('type'))
|
||||
node_cls = node_classes.get(node_type)
|
||||
node_cls = cast(type[BaseNode], node_cls)
|
||||
|
||||
if not node_cls:
|
||||
raise ValueError(f'Node class not found for node type {node_type}')
|
||||
|
||||
# init variable pool
|
||||
variable_pool = VariablePool(
|
||||
system_variables={},
|
||||
user_inputs={},
|
||||
environment_variables=workflow.environment_variables,
|
||||
)
|
||||
|
||||
# init graph
|
||||
graph = Graph.init(
|
||||
graph_config=workflow.graph_dict
|
||||
)
|
||||
|
||||
# init workflow run state
|
||||
node_instance = node_cls(
|
||||
tenant_id=workflow.tenant_id,
|
||||
app_id=workflow.app_id,
|
||||
workflow_id=workflow.id,
|
||||
user_id=user_id,
|
||||
user_from=UserFrom.ACCOUNT,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
node_instance: BaseNode = node_cls(
|
||||
id=str(uuid.uuid4()),
|
||||
config=node_config,
|
||||
workflow_call_depth=0
|
||||
graph_init_params=GraphInitParams(
|
||||
tenant_id=workflow.tenant_id,
|
||||
app_id=workflow.app_id,
|
||||
workflow_type=WorkflowType.value_of(workflow.type),
|
||||
workflow_id=workflow.id,
|
||||
graph_config=workflow.graph_dict,
|
||||
user_id=user_id,
|
||||
user_from=UserFrom.ACCOUNT,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
call_depth=0
|
||||
),
|
||||
graph=graph,
|
||||
graph_runtime_state=GraphRuntimeState(
|
||||
variable_pool=variable_pool,
|
||||
start_at=time.perf_counter()
|
||||
)
|
||||
)
|
||||
|
||||
try:
|
||||
# init variable pool
|
||||
variable_pool = VariablePool(
|
||||
system_variables={},
|
||||
user_inputs={},
|
||||
environment_variables=workflow.environment_variables,
|
||||
)
|
||||
|
||||
# variable selector to variable mapping
|
||||
try:
|
||||
variable_mapping = node_cls.extract_variable_selector_to_variable_mapping(node_config)
|
||||
variable_mapping = node_cls.extract_variable_selector_to_variable_mapping(
|
||||
graph_config=workflow.graph_dict,
|
||||
config=node_config
|
||||
)
|
||||
except NotImplementedError:
|
||||
variable_mapping = {}
|
||||
|
||||
self._mapping_user_inputs_to_variable_pool(
|
||||
cls._mapping_user_inputs_to_variable_pool(
|
||||
variable_mapping=variable_mapping,
|
||||
user_inputs=user_inputs,
|
||||
variable_pool=variable_pool,
|
||||
tenant_id=workflow.tenant_id,
|
||||
node_instance=node_instance
|
||||
node_type=node_type,
|
||||
node_data=node_instance.node_data
|
||||
)
|
||||
|
||||
# run node
|
||||
node_run_result = node_instance.run(
|
||||
variable_pool=variable_pool
|
||||
)
|
||||
generator = node_instance.run()
|
||||
|
||||
# sign output files
|
||||
node_run_result.outputs = self.handle_special_values(node_run_result.outputs)
|
||||
return node_instance, generator
|
||||
except Exception as e:
|
||||
raise WorkflowNodeRunFailedError(
|
||||
node_id=node_instance.node_id,
|
||||
node_type=node_instance.node_type,
|
||||
node_title=node_instance.node_data.title,
|
||||
node_instance=node_instance,
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
return node_instance, node_run_result
|
||||
|
||||
@classmethod
|
||||
def handle_special_values(cls, value: Optional[Mapping[str, Any]]) -> Optional[dict]:
|
||||
"""
|
||||
@ -250,33 +412,49 @@ class WorkflowEntry:
|
||||
|
||||
return new_value
|
||||
|
||||
def _mapping_user_inputs_to_variable_pool(self,
|
||||
variable_mapping: dict,
|
||||
user_inputs: dict,
|
||||
variable_pool: VariablePool,
|
||||
tenant_id: str,
|
||||
node_instance: BaseNode):
|
||||
for variable_key, variable_selector in variable_mapping.items():
|
||||
if variable_key not in user_inputs and not variable_pool.get(variable_selector):
|
||||
raise ValueError(f'Variable key {variable_key} not found in user inputs.')
|
||||
@classmethod
|
||||
def _mapping_user_inputs_to_variable_pool(
|
||||
cls,
|
||||
variable_mapping: Mapping[str, Sequence[str]],
|
||||
user_inputs: dict,
|
||||
variable_pool: VariablePool,
|
||||
tenant_id: str,
|
||||
node_type: NodeType,
|
||||
node_data: BaseNodeData
|
||||
) -> None:
|
||||
for node_variable, variable_selector in variable_mapping.items():
|
||||
# fetch node id and variable key from node_variable
|
||||
node_variable_list = node_variable.split('.')
|
||||
if len(node_variable_list) < 1:
|
||||
raise ValueError(f'Invalid node variable {node_variable}')
|
||||
|
||||
node_variable_key = node_variable_list[1:]
|
||||
|
||||
if (
|
||||
node_variable_key not in user_inputs
|
||||
or node_variable not in user_inputs
|
||||
) and not variable_pool.get(variable_selector):
|
||||
raise ValueError(f'Variable key {node_variable} not found in user inputs.')
|
||||
|
||||
# fetch variable node id from variable selector
|
||||
variable_node_id = variable_selector[0]
|
||||
variable_key_list = variable_selector[1:]
|
||||
variable_key_list = cast(list[str], variable_key_list)
|
||||
|
||||
# get value
|
||||
value = user_inputs.get(variable_key)
|
||||
# get input value
|
||||
input_value = user_inputs.get(node_variable)
|
||||
if not input_value:
|
||||
input_value = user_inputs.get(node_variable_key)
|
||||
|
||||
# FIXME: temp fix for image type
|
||||
if node_instance.node_type == NodeType.LLM:
|
||||
if node_type == NodeType.LLM:
|
||||
new_value = []
|
||||
if isinstance(value, list):
|
||||
node_data = node_instance.node_data
|
||||
if isinstance(input_value, list):
|
||||
node_data = cast(LLMNodeData, node_data)
|
||||
|
||||
detail = node_data.vision.configs.detail if node_data.vision.configs else None
|
||||
|
||||
for item in value:
|
||||
for item in input_value:
|
||||
if isinstance(item, dict) and 'type' in item and item['type'] == 'image':
|
||||
transfer_method = FileTransferMethod.value_of(item.get('transfer_method'))
|
||||
file = FileVar(
|
||||
@ -294,4 +472,4 @@ class WorkflowEntry:
|
||||
value = new_value
|
||||
|
||||
# append variable and value to variable pool
|
||||
variable_pool.add([variable_node_id] + variable_key_list, value)
|
||||
variable_pool.add([variable_node_id] + variable_key_list, input_value)
|
||||
|
@ -10,6 +10,7 @@ from core.app.apps.workflow.app_generator import WorkflowAppGenerator
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.features.rate_limiting import RateLimit
|
||||
from models.model import Account, App, AppMode, EndUser
|
||||
from models.workflow import Workflow
|
||||
from services.workflow_service import WorkflowService
|
||||
|
||||
|
||||
@ -95,11 +96,10 @@ class AppGenerateService:
|
||||
|
||||
@classmethod
|
||||
def generate_single_iteration(cls, app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
user: Account,
|
||||
node_id: str,
|
||||
args: Any,
|
||||
streaming: bool = True):
|
||||
# TODO
|
||||
if app_model.mode == AppMode.ADVANCED_CHAT.value:
|
||||
workflow = cls._get_workflow(app_model, InvokeFrom.DEBUGGER)
|
||||
return AdvancedChatAppGenerator().single_iteration_generate(
|
||||
@ -145,7 +145,7 @@ class AppGenerateService:
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _get_workflow(cls, app_model: App, invoke_from: InvokeFrom) -> Any:
|
||||
def _get_workflow(cls, app_model: App, invoke_from: InvokeFrom) -> Workflow:
|
||||
"""
|
||||
Get workflow
|
||||
:param app_model: app model
|
||||
|
@ -8,8 +8,9 @@ from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfig
|
||||
from core.app.apps.workflow.app_config_manager import WorkflowAppConfigManager
|
||||
from core.app.segments import Variable
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.workflow.entities.node_entities import NodeType
|
||||
from core.workflow.entities.node_entities import NodeRunResult, NodeType
|
||||
from core.workflow.errors import WorkflowNodeRunFailedError
|
||||
from core.workflow.nodes.event import RunCompletedEvent
|
||||
from core.workflow.nodes.node_mapping import node_classes
|
||||
from core.workflow.workflow_entry import WorkflowEntry
|
||||
from events.app_event import app_draft_workflow_was_synced, app_published_workflow_was_updated
|
||||
@ -213,81 +214,62 @@ class WorkflowService:
|
||||
raise ValueError('Workflow not initialized')
|
||||
|
||||
# run draft workflow node
|
||||
workflow_entry = WorkflowEntry()
|
||||
start_at = time.perf_counter()
|
||||
|
||||
try:
|
||||
node_instance, node_run_result = workflow_entry.single_step_run(
|
||||
node_instance, generator = WorkflowEntry.single_step_run(
|
||||
workflow=draft_workflow,
|
||||
node_id=node_id,
|
||||
user_inputs=user_inputs,
|
||||
user_id=account.id,
|
||||
)
|
||||
|
||||
node_run_result: NodeRunResult | None = None
|
||||
for event in generator:
|
||||
if isinstance(event, RunCompletedEvent):
|
||||
node_run_result = event.run_result
|
||||
|
||||
# sign output files
|
||||
node_run_result.outputs = WorkflowEntry.handle_special_values(node_run_result.outputs)
|
||||
break
|
||||
|
||||
if not node_run_result:
|
||||
raise ValueError('Node run failed with no run result')
|
||||
|
||||
run_succeeded = True if node_run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED else False
|
||||
error = node_run_result.error if not run_succeeded else None
|
||||
except WorkflowNodeRunFailedError as e:
|
||||
workflow_node_execution = WorkflowNodeExecution(
|
||||
tenant_id=app_model.tenant_id,
|
||||
app_id=app_model.id,
|
||||
workflow_id=draft_workflow.id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP.value,
|
||||
index=1,
|
||||
node_id=e.node_id,
|
||||
node_type=e.node_type.value,
|
||||
title=e.node_title,
|
||||
status=WorkflowNodeExecutionStatus.FAILED.value,
|
||||
error=e.error,
|
||||
elapsed_time=time.perf_counter() - start_at,
|
||||
created_by_role=CreatedByRole.ACCOUNT.value,
|
||||
created_by=account.id,
|
||||
created_at=datetime.now(timezone.utc).replace(tzinfo=None),
|
||||
finished_at=datetime.now(timezone.utc).replace(tzinfo=None)
|
||||
)
|
||||
db.session.add(workflow_node_execution)
|
||||
db.session.commit()
|
||||
node_instance = e.node_instance
|
||||
run_succeeded = False
|
||||
node_run_result = None
|
||||
error = e.error
|
||||
|
||||
return workflow_node_execution
|
||||
workflow_node_execution = WorkflowNodeExecution()
|
||||
workflow_node_execution.tenant_id = app_model.tenant_id
|
||||
workflow_node_execution.app_id = app_model.id
|
||||
workflow_node_execution.workflow_id = draft_workflow.id
|
||||
workflow_node_execution.triggered_from = WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP.value
|
||||
workflow_node_execution.index = 1
|
||||
workflow_node_execution.node_id = node_id
|
||||
workflow_node_execution.node_type = node_instance.node_type.value
|
||||
workflow_node_execution.title = node_instance.node_data.title
|
||||
workflow_node_execution.elapsed_time = time.perf_counter() - start_at
|
||||
workflow_node_execution.created_by_role = CreatedByRole.ACCOUNT.value
|
||||
workflow_node_execution.created_by = account.id
|
||||
workflow_node_execution.created_at = datetime.now(timezone.utc).replace(tzinfo=None)
|
||||
workflow_node_execution.finished_at = datetime.now(timezone.utc).replace(tzinfo=None)
|
||||
|
||||
if node_run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED:
|
||||
if run_succeeded and node_run_result:
|
||||
# create workflow node execution
|
||||
workflow_node_execution = WorkflowNodeExecution(
|
||||
tenant_id=app_model.tenant_id,
|
||||
app_id=app_model.id,
|
||||
workflow_id=draft_workflow.id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP.value,
|
||||
index=1,
|
||||
node_id=node_id,
|
||||
node_type=node_instance.node_type.value,
|
||||
title=node_instance.node_data.title,
|
||||
inputs=json.dumps(node_run_result.inputs) if node_run_result.inputs else None,
|
||||
process_data=json.dumps(node_run_result.process_data) if node_run_result.process_data else None,
|
||||
outputs=json.dumps(jsonable_encoder(node_run_result.outputs)) if node_run_result.outputs else None,
|
||||
execution_metadata=(json.dumps(jsonable_encoder(node_run_result.metadata))
|
||||
if node_run_result.metadata else None),
|
||||
status=WorkflowNodeExecutionStatus.SUCCEEDED.value,
|
||||
elapsed_time=time.perf_counter() - start_at,
|
||||
created_by_role=CreatedByRole.ACCOUNT.value,
|
||||
created_by=account.id,
|
||||
created_at=datetime.now(timezone.utc).replace(tzinfo=None),
|
||||
finished_at=datetime.now(timezone.utc).replace(tzinfo=None)
|
||||
)
|
||||
workflow_node_execution.inputs = json.dumps(node_run_result.inputs) if node_run_result.inputs else None
|
||||
workflow_node_execution.process_data = json.dumps(node_run_result.process_data) if node_run_result.process_data else None
|
||||
workflow_node_execution.outputs = json.dumps(jsonable_encoder(node_run_result.outputs)) if node_run_result.outputs else None
|
||||
workflow_node_execution.execution_metadata = json.dumps(jsonable_encoder(node_run_result.metadata)) if node_run_result.metadata else None
|
||||
workflow_node_execution.status = WorkflowNodeExecutionStatus.SUCCEEDED.value
|
||||
else:
|
||||
# create workflow node execution
|
||||
workflow_node_execution = WorkflowNodeExecution(
|
||||
tenant_id=app_model.tenant_id,
|
||||
app_id=app_model.id,
|
||||
workflow_id=draft_workflow.id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP.value,
|
||||
index=1,
|
||||
node_id=node_id,
|
||||
node_type=node_instance.node_type.value,
|
||||
title=node_instance.node_data.title,
|
||||
status=node_run_result.status.value,
|
||||
error=node_run_result.error,
|
||||
elapsed_time=time.perf_counter() - start_at,
|
||||
created_by_role=CreatedByRole.ACCOUNT.value,
|
||||
created_by=account.id,
|
||||
created_at=datetime.now(timezone.utc).replace(tzinfo=None),
|
||||
finished_at=datetime.now(timezone.utc).replace(tzinfo=None)
|
||||
)
|
||||
workflow_node_execution.status = WorkflowNodeExecutionStatus.FAILED.value
|
||||
workflow_node_execution.error = error
|
||||
|
||||
db.session.add(workflow_node_execution)
|
||||
db.session.commit()
|
||||
|
@ -22,6 +22,7 @@ def test_execute_code(setup_code_executor_mock):
|
||||
# trim first 4 spaces at the beginning of each line
|
||||
code = '\n'.join([line[4:] for line in code.split('\n')])
|
||||
node = CodeNode(
|
||||
id='test',
|
||||
tenant_id='1',
|
||||
app_id='1',
|
||||
workflow_id='1',
|
||||
|
Loading…
x
Reference in New Issue
Block a user