fix: better memory usage from 800+ to 500+ (#11796)

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
This commit is contained in:
yihong 2024-12-20 14:51:43 +08:00 committed by GitHub
parent 52201d95b1
commit 7b03a0316d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 56 additions and 26 deletions

View File

@ -4,11 +4,10 @@ import json
import logging
import time
from collections.abc import Generator
from typing import Optional, Union, cast
from typing import TYPE_CHECKING, Optional, Union, cast
import google.auth.transport.requests
import requests
import vertexai.generative_models as glm
from anthropic import AnthropicVertex, Stream
from anthropic.types import (
ContentBlockDeltaEvent,
@ -19,8 +18,6 @@ from anthropic.types import (
MessageStreamEvent,
)
from google.api_core import exceptions
from google.cloud import aiplatform
from google.oauth2 import service_account
from PIL import Image
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
@ -47,6 +44,9 @@ from core.model_runtime.errors.invoke import (
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
if TYPE_CHECKING:
import vertexai.generative_models as glm
logger = logging.getLogger(__name__)
@ -102,6 +102,8 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
:param stream: is stream response
:return: full response or stream response chunk generator result
"""
from google.oauth2 import service_account
# use Anthropic official SDK references
# - https://github.com/anthropics/anthropic-sdk-python
service_account_key = credentials.get("vertex_service_account_key", "")
@ -406,13 +408,15 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
return text.rstrip()
def _convert_tools_to_glm_tool(self, tools: list[PromptMessageTool]) -> glm.Tool:
def _convert_tools_to_glm_tool(self, tools: list[PromptMessageTool]) -> "glm.Tool":
"""
Convert tool messages to glm tools
:param tools: tool messages
:return: glm tools
"""
import vertexai.generative_models as glm
return glm.Tool(
function_declarations=[
glm.FunctionDeclaration(
@ -473,6 +477,10 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
:param user: unique user id
:return: full response or stream response chunk generator result
"""
import vertexai.generative_models as glm
from google.cloud import aiplatform
from google.oauth2 import service_account
config_kwargs = model_parameters.copy()
config_kwargs["max_output_tokens"] = config_kwargs.pop("max_tokens_to_sample", None)
@ -522,7 +530,7 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
return self._handle_generate_response(model, credentials, response, prompt_messages)
def _handle_generate_response(
self, model: str, credentials: dict, response: glm.GenerationResponse, prompt_messages: list[PromptMessage]
self, model: str, credentials: dict, response: "glm.GenerationResponse", prompt_messages: list[PromptMessage]
) -> LLMResult:
"""
Handle llm response
@ -554,7 +562,7 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
return result
def _handle_generate_stream_response(
self, model: str, credentials: dict, response: glm.GenerationResponse, prompt_messages: list[PromptMessage]
self, model: str, credentials: dict, response: "glm.GenerationResponse", prompt_messages: list[PromptMessage]
) -> Generator:
"""
Handle llm stream response
@ -638,13 +646,15 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
return message_text
def _format_message_to_glm_content(self, message: PromptMessage) -> glm.Content:
def _format_message_to_glm_content(self, message: PromptMessage) -> "glm.Content":
"""
Format a single message into glm.Content for Google API
:param message: one PromptMessage
:return: glm Content representation of message
"""
import vertexai.generative_models as glm
if isinstance(message, UserPromptMessage):
glm_content = glm.Content(role="user", parts=[])

View File

@ -2,12 +2,9 @@ import base64
import json
import time
from decimal import Decimal
from typing import Optional
from typing import TYPE_CHECKING, Optional
import tiktoken
from google.cloud import aiplatform
from google.oauth2 import service_account
from vertexai.language_models import TextEmbeddingModel as VertexTextEmbeddingModel
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
@ -24,6 +21,11 @@ from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from core.model_runtime.model_providers.vertex_ai._common import _CommonVertexAi
if TYPE_CHECKING:
from vertexai.language_models import TextEmbeddingModel as VertexTextEmbeddingModel
else:
VertexTextEmbeddingModel = None
class VertexAiTextEmbeddingModel(_CommonVertexAi, TextEmbeddingModel):
"""
@ -48,6 +50,10 @@ class VertexAiTextEmbeddingModel(_CommonVertexAi, TextEmbeddingModel):
:param input_type: input type
:return: embeddings result
"""
from google.cloud import aiplatform
from google.oauth2 import service_account
from vertexai.language_models import TextEmbeddingModel as VertexTextEmbeddingModel
service_account_key = credentials.get("vertex_service_account_key", "")
project_id = credentials["vertex_project_id"]
location = credentials["vertex_location"]
@ -100,6 +106,10 @@ class VertexAiTextEmbeddingModel(_CommonVertexAi, TextEmbeddingModel):
:param credentials: model credentials
:return:
"""
from google.cloud import aiplatform
from google.oauth2 import service_account
from vertexai.language_models import TextEmbeddingModel as VertexTextEmbeddingModel
try:
service_account_key = credentials.get("vertex_service_account_key", "")
project_id = credentials["vertex_project_id"]

View File

@ -1,18 +1,19 @@
import re
from typing import Optional
import jieba
from jieba.analyse import default_tfidf
from core.rag.datasource.keyword.jieba.stopwords import STOPWORDS
class JiebaKeywordTableHandler:
def __init__(self):
default_tfidf.stop_words = STOPWORDS
import jieba.analyse
from core.rag.datasource.keyword.jieba.stopwords import STOPWORDS
jieba.analyse.default_tfidf.stop_words = STOPWORDS
def extract_keywords(self, text: str, max_keywords_per_chunk: Optional[int] = 10) -> set[str]:
"""Extract keywords with JIEBA tfidf."""
import jieba
keywords = jieba.analyse.extract_tags(
sentence=text,
topK=max_keywords_per_chunk,
@ -22,6 +23,8 @@ class JiebaKeywordTableHandler:
def _expand_tokens_with_subtokens(self, tokens: set[str]) -> set[str]:
"""Get subtokens from a list of tokens., filtering for stopwords."""
from core.rag.datasource.keyword.jieba.stopwords import STOPWORDS
results = set()
for token in tokens:
results.add(token)

View File

@ -6,10 +6,8 @@ from contextlib import contextmanager
from typing import Any
import jieba.posseg as pseg
import nltk
import numpy
import oracledb
from nltk.corpus import stopwords
from pydantic import BaseModel, model_validator
from configs import dify_config
@ -202,6 +200,10 @@ class OracleVector(BaseVector):
return docs
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
# lazy import
import nltk
from nltk.corpus import stopwords
top_k = kwargs.get("top_k", 5)
# just not implement fetch by score_threshold now, may be later
score_threshold = float(kwargs.get("score_threshold") or 0.0)

View File

@ -8,12 +8,6 @@ import docx
import pandas as pd
import pypdfium2 # type: ignore
import yaml # type: ignore
from unstructured.partition.api import partition_via_api
from unstructured.partition.email import partition_email
from unstructured.partition.epub import partition_epub
from unstructured.partition.msg import partition_msg
from unstructured.partition.ppt import partition_ppt
from unstructured.partition.pptx import partition_pptx
from configs import dify_config
from core.file import File, FileTransferMethod, file_manager
@ -256,6 +250,8 @@ def _extract_text_from_excel(file_content: bytes) -> str:
def _extract_text_from_ppt(file_content: bytes) -> str:
from unstructured.partition.ppt import partition_ppt
try:
with io.BytesIO(file_content) as file:
elements = partition_ppt(file=file)
@ -265,6 +261,9 @@ def _extract_text_from_ppt(file_content: bytes) -> str:
def _extract_text_from_pptx(file_content: bytes) -> str:
from unstructured.partition.api import partition_via_api
from unstructured.partition.pptx import partition_pptx
try:
if dify_config.UNSTRUCTURED_API_URL and dify_config.UNSTRUCTURED_API_KEY:
with tempfile.NamedTemporaryFile(suffix=".pptx", delete=False) as temp_file:
@ -287,6 +286,8 @@ def _extract_text_from_pptx(file_content: bytes) -> str:
def _extract_text_from_epub(file_content: bytes) -> str:
from unstructured.partition.epub import partition_epub
try:
with io.BytesIO(file_content) as file:
elements = partition_epub(file=file)
@ -296,6 +297,8 @@ def _extract_text_from_epub(file_content: bytes) -> str:
def _extract_text_from_eml(file_content: bytes) -> str:
from unstructured.partition.email import partition_email
try:
with io.BytesIO(file_content) as file:
elements = partition_email(file=file)
@ -305,6 +308,8 @@ def _extract_text_from_eml(file_content: bytes) -> str:
def _extract_text_from_msg(file_content: bytes) -> str:
from unstructured.partition.msg import partition_msg
try:
with io.BytesIO(file_content) as file:
elements = partition_msg(file=file)