-----BEGIN PGP SIGNATURE-----
 
 iQGzBAABCAAdFiEEFK5K98uJ0hmL9JLza6DRCN7QEf8FAmgPMZ8ACgkQa6DRCN7Q
 Ef+gkgv/Ved5ez/UgKHiGyxMM9MWiO9JDWKBrZP+NbhqSIz2B7efCg7PcEWveqCR
 ma5pD2T83z9lYsI4VYB/08HRdF4w5FbFbZXg5zy7R9OMc/5oEZ1tyxiOp/RLzOqi
 kCDhHX5CVadUjC98oy9q41S+AmlpV5hjjl5ZQHH9XIx/Uy/0LZMdhB4EOhDwNqj2
 MU0xekTEaouJFeIe1ewyVBZd2GC18EDjqv9ABiBeaJwx97SQ93pCNhjxnn2wm5cT
 Q96qkkNb/E3JoaOPhws5/pGLM+5SK0dYFTZkwWER1GUfrh+5wzLWbzAKwoewDRaV
 g62waOORvaYphXKh7KxmrC3Gb9eGMrK9haRwJfyfxzHCwqtI4+SFnv+izapU7hlm
 c24s73p2v9sFzjHBWEPqHvuJ7F5Q8odR40ECGhBmzgJVnXdDDu+h69MYWDq2LPAl
 3295Wa4zjF9krC9R9BU+ra7DLw90TA53Cf3yXdMyuoOpU41uqtj/7iF8p2axnIxL
 srqhqJWw
 =3gSn
 -----END PGP SIGNATURE-----

Merge tag '0.15.7' into e-260

0.15.7
This commit is contained in:
Garfield Dai 2025-04-28 17:17:26 +08:00
commit 849994d35e
26 changed files with 319 additions and 215 deletions

3
.markdownlint.json Normal file
View File

@ -0,0 +1,3 @@
{
"MD024": false
}

View File

@ -5,6 +5,20 @@ All notable changes to Dify will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.15.7] - 2025-04-27
### Added
- Added support for GPT-4.1 in model providers (#18912)
- Added support for Amazon Bedrock DeepSeek-R1 model (#18908)
- Added support for Amazon Bedrock Claude Sonnet 3.7 model (#18788)
- Refined version compatibility logic in app DSL service
### Fixed
- Fixed issue with creating apps from template categories (#18807, #18868)
- Fixed DSL version check when creating apps from explore templates (#18872, #18878)
## [0.15.6] - 2025-04-22 ## [0.15.6] - 2025-04-22
### Security ### Security

View File

@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
CURRENT_VERSION: str = Field( CURRENT_VERSION: str = Field(
description="Dify version", description="Dify version",
default="0.15.6", default="0.15.7",
) )
COMMIT_SHA: str = Field( COMMIT_SHA: str = Field(

View File

@ -6,13 +6,9 @@ from flask_restful import Resource, reqparse # type: ignore
from constants.languages import languages from constants.languages import languages
from controllers.console import api from controllers.console import api
from controllers.console.auth.error import (EmailCodeError, InvalidEmailError, from controllers.console.auth.error import EmailCodeError, InvalidEmailError, InvalidTokenError, PasswordMismatchError
InvalidTokenError, from controllers.console.error import AccountInFreezeError, AccountNotFound, EmailSendIpLimitError
PasswordMismatchError) from controllers.console.wraps import email_password_login_enabled, setup_required
from controllers.console.error import (AccountInFreezeError, AccountNotFound,
EmailSendIpLimitError)
from controllers.console.wraps import (email_password_login_enabled,
setup_required)
from events.tenant_event import tenant_was_created from events.tenant_event import tenant_was_created
from extensions.ext_database import db from extensions.ext_database import db
from libs.helper import email, extract_remote_ip from libs.helper import email, extract_remote_ip

View File

@ -11,8 +11,7 @@ from models.model import DifySetup
from services.feature_service import FeatureService, LicenseStatus from services.feature_service import FeatureService, LicenseStatus
from services.operation_service import OperationService from services.operation_service import OperationService
from .error import (NotInitValidateError, NotSetupError, from .error import NotInitValidateError, NotSetupError, UnauthorizedAndForceLogout
UnauthorizedAndForceLogout)
def account_initialization_required(view): def account_initialization_required(view):

View File

@ -104,7 +104,6 @@ class CotAgentRunner(BaseAgentRunner, ABC):
# recalc llm max tokens # recalc llm max tokens
prompt_messages = self._organize_prompt_messages() prompt_messages = self._organize_prompt_messages()
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model # invoke model
chunks = model_instance.invoke_llm( chunks = model_instance.invoke_llm(
prompt_messages=prompt_messages, prompt_messages=prompt_messages,

View File

@ -84,7 +84,6 @@ class FunctionCallAgentRunner(BaseAgentRunner):
# recalc llm max tokens # recalc llm max tokens
prompt_messages = self._organize_prompt_messages() prompt_messages = self._organize_prompt_messages()
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model # invoke model
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm( chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
prompt_messages=prompt_messages, prompt_messages=prompt_messages,

View File

@ -55,20 +55,6 @@ class AgentChatAppRunner(AppRunner):
query = application_generate_entity.query query = application_generate_entity.query
files = application_generate_entity.files files = application_generate_entity.files
# Pre-calculate the number of tokens of the prompt messages,
# and return the rest number of tokens by model context token size limit and max token size limit.
# If the rest number of tokens is not enough, raise exception.
# Include: prompt template, inputs, query(optional), files(optional)
# Not Include: memory, external data, dataset context
self.get_pre_calculate_rest_tokens(
app_record=app_record,
model_config=application_generate_entity.model_conf,
prompt_template_entity=app_config.prompt_template,
inputs=inputs,
files=files,
query=query,
)
memory = None memory = None
if application_generate_entity.conversation_id: if application_generate_entity.conversation_id:
# get memory of conversation (read-only) # get memory of conversation (read-only)

View File

@ -15,10 +15,8 @@ from core.app.features.annotation_reply.annotation_reply import AnnotationReplyF
from core.app.features.hosting_moderation.hosting_moderation import HostingModerationFeature from core.app.features.hosting_moderation.hosting_moderation import HostingModerationFeature
from core.external_data_tool.external_data_fetch import ExternalDataFetch from core.external_data_tool.external_data_fetch import ExternalDataFetch
from core.memory.token_buffer_memory import TokenBufferMemory from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import AssistantPromptMessage, PromptMessage from core.model_runtime.entities.message_entities import AssistantPromptMessage, PromptMessage
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.errors.invoke import InvokeBadRequestError from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.moderation.input_moderation import InputModeration from core.moderation.input_moderation import InputModeration
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
@ -31,106 +29,6 @@ if TYPE_CHECKING:
class AppRunner: class AppRunner:
def get_pre_calculate_rest_tokens(
self,
app_record: App,
model_config: ModelConfigWithCredentialsEntity,
prompt_template_entity: PromptTemplateEntity,
inputs: Mapping[str, str],
files: Sequence["File"],
query: Optional[str] = None,
) -> int:
"""
Get pre calculate rest tokens
:param app_record: app record
:param model_config: model config entity
:param prompt_template_entity: prompt template entity
:param inputs: inputs
:param files: files
:param query: query
:return:
"""
# Invoke model
model_instance = ModelInstance(
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
)
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
max_tokens = 0
for parameter_rule in model_config.model_schema.parameter_rules:
if parameter_rule.name == "max_tokens" or (
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
):
max_tokens = (
model_config.parameters.get(parameter_rule.name)
or model_config.parameters.get(parameter_rule.use_template or "")
) or 0
if model_context_tokens is None:
return -1
if max_tokens is None:
max_tokens = 0
# get prompt messages without memory and context
prompt_messages, stop = self.organize_prompt_messages(
app_record=app_record,
model_config=model_config,
prompt_template_entity=prompt_template_entity,
inputs=inputs,
files=files,
query=query,
)
prompt_tokens = model_instance.get_llm_num_tokens(prompt_messages)
rest_tokens: int = model_context_tokens - max_tokens - prompt_tokens
if rest_tokens < 0:
raise InvokeBadRequestError(
"Query or prefix prompt is too long, you can reduce the prefix prompt, "
"or shrink the max token, or switch to a llm with a larger token limit size."
)
return rest_tokens
def recalc_llm_max_tokens(
self, model_config: ModelConfigWithCredentialsEntity, prompt_messages: list[PromptMessage]
):
# recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
model_instance = ModelInstance(
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
)
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
max_tokens = 0
for parameter_rule in model_config.model_schema.parameter_rules:
if parameter_rule.name == "max_tokens" or (
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
):
max_tokens = (
model_config.parameters.get(parameter_rule.name)
or model_config.parameters.get(parameter_rule.use_template or "")
) or 0
if model_context_tokens is None:
return -1
if max_tokens is None:
max_tokens = 0
prompt_tokens = model_instance.get_llm_num_tokens(prompt_messages)
if prompt_tokens + max_tokens > model_context_tokens:
max_tokens = max(model_context_tokens - prompt_tokens, 16)
for parameter_rule in model_config.model_schema.parameter_rules:
if parameter_rule.name == "max_tokens" or (
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
):
model_config.parameters[parameter_rule.name] = max_tokens
def organize_prompt_messages( def organize_prompt_messages(
self, self,
app_record: App, app_record: App,

View File

@ -50,20 +50,6 @@ class ChatAppRunner(AppRunner):
query = application_generate_entity.query query = application_generate_entity.query
files = application_generate_entity.files files = application_generate_entity.files
# Pre-calculate the number of tokens of the prompt messages,
# and return the rest number of tokens by model context token size limit and max token size limit.
# If the rest number of tokens is not enough, raise exception.
# Include: prompt template, inputs, query(optional), files(optional)
# Not Include: memory, external data, dataset context
self.get_pre_calculate_rest_tokens(
app_record=app_record,
model_config=application_generate_entity.model_conf,
prompt_template_entity=app_config.prompt_template,
inputs=inputs,
files=files,
query=query,
)
memory = None memory = None
if application_generate_entity.conversation_id: if application_generate_entity.conversation_id:
# get memory of conversation (read-only) # get memory of conversation (read-only)
@ -194,9 +180,6 @@ class ChatAppRunner(AppRunner):
if hosting_moderation_result: if hosting_moderation_result:
return return
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
self.recalc_llm_max_tokens(model_config=application_generate_entity.model_conf, prompt_messages=prompt_messages)
# Invoke model # Invoke model
model_instance = ModelInstance( model_instance = ModelInstance(
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle, provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,

View File

@ -43,20 +43,6 @@ class CompletionAppRunner(AppRunner):
query = application_generate_entity.query query = application_generate_entity.query
files = application_generate_entity.files files = application_generate_entity.files
# Pre-calculate the number of tokens of the prompt messages,
# and return the rest number of tokens by model context token size limit and max token size limit.
# If the rest number of tokens is not enough, raise exception.
# Include: prompt template, inputs, query(optional), files(optional)
# Not Include: memory, external data, dataset context
self.get_pre_calculate_rest_tokens(
app_record=app_record,
model_config=application_generate_entity.model_conf,
prompt_template_entity=app_config.prompt_template,
inputs=inputs,
files=files,
query=query,
)
# organize all inputs and template to prompt messages # organize all inputs and template to prompt messages
# Include: prompt template, inputs, query(optional), files(optional) # Include: prompt template, inputs, query(optional), files(optional)
prompt_messages, stop = self.organize_prompt_messages( prompt_messages, stop = self.organize_prompt_messages(
@ -152,9 +138,6 @@ class CompletionAppRunner(AppRunner):
if hosting_moderation_result: if hosting_moderation_result:
return return
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
self.recalc_llm_max_tokens(model_config=application_generate_entity.model_conf, prompt_messages=prompt_messages)
# Invoke model # Invoke model
model_instance = ModelInstance( model_instance = ModelInstance(
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle, provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,

View File

@ -26,7 +26,7 @@ class TokenBufferMemory:
self.model_instance = model_instance self.model_instance = model_instance
def get_history_prompt_messages( def get_history_prompt_messages(
self, max_token_limit: int = 2000, message_limit: Optional[int] = None self, max_token_limit: int = 100000, message_limit: Optional[int] = None
) -> Sequence[PromptMessage]: ) -> Sequence[PromptMessage]:
""" """
Get history prompt messages. Get history prompt messages.

View File

@ -0,0 +1,115 @@
model: us.anthropic.claude-3-7-sonnet-20250219-v1:0
label:
en_US: Claude 3.7 Sonnet(US.Cross Region Inference)
icon: icon_s_en.svg
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 200000
# docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
parameter_rules:
- name: enable_cache
label:
zh_Hans: 启用提示缓存
en_US: Enable Prompt Cache
type: boolean
required: false
default: true
help:
zh_Hans: 启用提示缓存可以提高性能并降低成本。Claude 3.7 Sonnet支持在system、messages和tools字段中使用缓存检查点。
en_US: Enable prompt caching to improve performance and reduce costs. Claude 3.7 Sonnet supports cache checkpoints in system, messages, and tools fields.
- name: reasoning_type
label:
zh_Hans: 推理配置
en_US: Reasoning Type
type: boolean
required: false
default: false
placeholder:
zh_Hans: 设置推理配置
en_US: Set reasoning configuration
help:
zh_Hans: 控制模型的推理能力。启用时temperature将固定为1且top_p将被禁用。
en_US: Controls the model's reasoning capability. When enabled, temperature will be fixed to 1 and top_p will be disabled.
- name: reasoning_budget
show_on:
- variable: reasoning_type
value: true
label:
zh_Hans: 推理预算
en_US: Reasoning Budget
type: int
default: 1024
min: 0
max: 128000
help:
zh_Hans: 推理的预算限制最小1024必须小于max_tokens。仅在推理类型为enabled时可用。
en_US: Budget limit for reasoning (minimum 1024), must be less than max_tokens. Only available when reasoning type is enabled.
- name: max_tokens
use_template: max_tokens
required: true
label:
zh_Hans: 最大token数
en_US: Max Tokens
type: int
default: 8192
min: 1
max: 128000
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
label:
zh_Hans: 模型温度
en_US: Model Temperature
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。当推理功能启用时该值将被固定为1。
en_US: The amount of randomness injected into the response. When reasoning is enabled, this value will be fixed to 1.
- name: top_p
show_on:
- variable: reasoning_type
value: disabled
use_template: top_p
label:
zh_Hans: Top P
en_US: Top P
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中的概率阈值。当推理功能启用时,该参数将被禁用。
en_US: The probability threshold in nucleus sampling. When reasoning is enabled, this parameter will be disabled.
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.003'
output: '0.015'
unit: '0.001'
currency: USD

View File

@ -58,6 +58,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
# TODO There is invoke issue: context limit on Cohere Model, will add them after fixed. # TODO There is invoke issue: context limit on Cohere Model, will add them after fixed.
CONVERSE_API_ENABLED_MODEL_INFO = [ CONVERSE_API_ENABLED_MODEL_INFO = [
{"prefix": "anthropic.claude-v2", "support_system_prompts": True, "support_tool_use": False}, {"prefix": "anthropic.claude-v2", "support_system_prompts": True, "support_tool_use": False},
{"prefix": "us.deepseek", "support_system_prompts": True, "support_tool_use": False},
{"prefix": "anthropic.claude-v1", "support_system_prompts": True, "support_tool_use": False}, {"prefix": "anthropic.claude-v1", "support_system_prompts": True, "support_tool_use": False},
{"prefix": "us.anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True}, {"prefix": "us.anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},
{"prefix": "eu.anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True}, {"prefix": "eu.anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},

View File

@ -0,0 +1,63 @@
model: us.deepseek.r1-v1:0
label:
en_US: DeepSeek-R1(US.Cross Region Inference)
icon: icon_s_en.svg
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
label:
zh_Hans: 最大token数
en_US: Max Tokens
type: int
default: 8192
min: 1
max: 128000
help:
zh_Hans: 停止前生成的最大令牌数。
en_US: The maximum number of tokens to generate before stopping.
- name: temperature
use_template: temperature
required: false
label:
zh_Hans: 模型温度
en_US: Model Temperature
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。当推理功能启用时该值将被固定为1。
en_US: The amount of randomness injected into the response. When reasoning is enabled, this value will be fixed to 1.
- name: top_p
show_on:
- variable: reasoning_type
value: disabled
use_template: top_p
label:
zh_Hans: Top P
en_US: Top P
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中的概率阈值。当推理功能启用时,该参数将被禁用。
en_US: The probability threshold in nucleus sampling. When reasoning is enabled, this parameter will be disabled.
- name: response_format
use_template: response_format
pricing:
input: '0.001'
output: '0.005'
unit: '0.001'
currency: USD

View File

@ -1,3 +1,4 @@
- gpt-4.1
- o1 - o1
- o1-2024-12-17 - o1-2024-12-17
- o1-mini - o1-mini

View File

@ -0,0 +1,60 @@
model: gpt-4.1
label:
zh_Hans: gpt-4.1
en_US: gpt-4.1
model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
- vision
model_properties:
mode: chat
context_size: 1047576
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 32768
- name: reasoning_effort
label:
zh_Hans: 推理工作
en_US: Reasoning Effort
type: string
help:
zh_Hans: 限制推理模型的推理工作
en_US: Constrains effort on reasoning for reasoning models
required: false
options:
- low
- medium
- high
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
- json_schema
- name: json_schema
use_template: json_schema
pricing:
input: '2.00'
output: '8.00'
unit: '0.000001'
currency: USD

View File

@ -1057,7 +1057,7 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
model = "gpt-4o" model = "gpt-4o"
try: try:
encoding = tiktoken.encoding_for_model(model) encoding = tiktoken.get_encoding(model)
except KeyError: except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.") logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base" model = "cl100k_base"

View File

@ -195,7 +195,7 @@ class CodeNode(BaseNode[CodeNodeData]):
if output_config.type == "object": if output_config.type == "object":
# check if output is object # check if output is object
if not isinstance(result.get(output_name), dict): if not isinstance(result.get(output_name), dict):
if isinstance(result.get(output_name), type(None)): if result.get(output_name) is None:
transformed_result[output_name] = None transformed_result[output_name] = None
else: else:
raise OutputValidationError( raise OutputValidationError(
@ -223,7 +223,7 @@ class CodeNode(BaseNode[CodeNodeData]):
elif output_config.type == "array[number]": elif output_config.type == "array[number]":
# check if array of number available # check if array of number available
if not isinstance(result[output_name], list): if not isinstance(result[output_name], list):
if isinstance(result[output_name], type(None)): if result[output_name] is None:
transformed_result[output_name] = None transformed_result[output_name] = None
else: else:
raise OutputValidationError( raise OutputValidationError(
@ -244,7 +244,7 @@ class CodeNode(BaseNode[CodeNodeData]):
elif output_config.type == "array[string]": elif output_config.type == "array[string]":
# check if array of string available # check if array of string available
if not isinstance(result[output_name], list): if not isinstance(result[output_name], list):
if isinstance(result[output_name], type(None)): if result[output_name] is None:
transformed_result[output_name] = None transformed_result[output_name] = None
else: else:
raise OutputValidationError( raise OutputValidationError(
@ -265,7 +265,7 @@ class CodeNode(BaseNode[CodeNodeData]):
elif output_config.type == "array[object]": elif output_config.type == "array[object]":
# check if array of object available # check if array of object available
if not isinstance(result[output_name], list): if not isinstance(result[output_name], list):
if isinstance(result[output_name], type(None)): if result[output_name] is None:
transformed_result[output_name] = None transformed_result[output_name] = None
else: else:
raise OutputValidationError( raise OutputValidationError(

View File

@ -968,14 +968,12 @@ def _handle_memory_chat_mode(
*, *,
memory: TokenBufferMemory | None, memory: TokenBufferMemory | None,
memory_config: MemoryConfig | None, memory_config: MemoryConfig | None,
model_config: ModelConfigWithCredentialsEntity, model_config: ModelConfigWithCredentialsEntity, # TODO(-LAN-): Needs to remove
) -> Sequence[PromptMessage]: ) -> Sequence[PromptMessage]:
memory_messages: Sequence[PromptMessage] = [] memory_messages: Sequence[PromptMessage] = []
# Get messages from memory for chat model # Get messages from memory for chat model
if memory and memory_config: if memory and memory_config:
rest_tokens = _calculate_rest_token(prompt_messages=[], model_config=model_config)
memory_messages = memory.get_history_prompt_messages( memory_messages = memory.get_history_prompt_messages(
max_token_limit=rest_tokens,
message_limit=memory_config.window.size if memory_config.window.enabled else None, message_limit=memory_config.window.size if memory_config.window.enabled else None,
) )
return memory_messages return memory_messages

66
api/poetry.lock generated
View File

@ -10473,44 +10473,44 @@ client = ["SQLAlchemy (>=1.4,<3)"]
[[package]] [[package]]
name = "tiktoken" name = "tiktoken"
version = "0.8.0" version = "0.9.0"
description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models" description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models"
optional = false optional = false
python-versions = ">=3.9" python-versions = ">=3.9"
groups = ["main"] groups = ["main"]
markers = "python_version == \"3.11\" or python_version >= \"3.12\"" markers = "python_version == \"3.11\" or python_version >= \"3.12\""
files = [ files = [
{file = "tiktoken-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b07e33283463089c81ef1467180e3e00ab00d46c2c4bbcef0acab5f771d6695e"}, {file = "tiktoken-0.9.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:586c16358138b96ea804c034b8acf3f5d3f0258bd2bc3b0227af4af5d622e382"},
{file = "tiktoken-0.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9269348cb650726f44dd3bbb3f9110ac19a8dcc8f54949ad3ef652ca22a38e21"}, {file = "tiktoken-0.9.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d9c59ccc528c6c5dd51820b3474402f69d9a9e1d656226848ad68a8d5b2e5108"},
{file = "tiktoken-0.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25e13f37bc4ef2d012731e93e0fef21dc3b7aea5bb9009618de9a4026844e560"}, {file = "tiktoken-0.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0968d5beeafbca2a72c595e8385a1a1f8af58feaebb02b227229b69ca5357fd"},
{file = "tiktoken-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f13d13c981511331eac0d01a59b5df7c0d4060a8be1e378672822213da51e0a2"}, {file = "tiktoken-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a5fb085a6a3b7350b8fc838baf493317ca0e17bd95e8642f95fc69ecfed1de"},
{file = "tiktoken-0.8.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:6b2ddbc79a22621ce8b1166afa9f9a888a664a579350dc7c09346a3b5de837d9"}, {file = "tiktoken-0.9.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:15a2752dea63d93b0332fb0ddb05dd909371ededa145fe6a3242f46724fa7990"},
{file = "tiktoken-0.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:d8c2d0e5ba6453a290b86cd65fc51fedf247e1ba170191715b049dac1f628005"}, {file = "tiktoken-0.9.0-cp310-cp310-win_amd64.whl", hash = "sha256:26113fec3bd7a352e4b33dbaf1bd8948de2507e30bd95a44e2b1156647bc01b4"},
{file = "tiktoken-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d622d8011e6d6f239297efa42a2657043aaed06c4f68833550cac9e9bc723ef1"}, {file = "tiktoken-0.9.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:f32cc56168eac4851109e9b5d327637f15fd662aa30dd79f964b7c39fbadd26e"},
{file = "tiktoken-0.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2efaf6199717b4485031b4d6edb94075e4d79177a172f38dd934d911b588d54a"}, {file = "tiktoken-0.9.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:45556bc41241e5294063508caf901bf92ba52d8ef9222023f83d2483a3055348"},
{file = "tiktoken-0.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5637e425ce1fc49cf716d88df3092048359a4b3bbb7da762840426e937ada06d"}, {file = "tiktoken-0.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03935988a91d6d3216e2ec7c645afbb3d870b37bcb67ada1943ec48678e7ee33"},
{file = "tiktoken-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb0e352d1dbe15aba082883058b3cce9e48d33101bdaac1eccf66424feb5b47"}, {file = "tiktoken-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b3d80aad8d2c6b9238fc1a5524542087c52b860b10cbf952429ffb714bc1136"},
{file = "tiktoken-0.8.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:56edfefe896c8f10aba372ab5706b9e3558e78db39dd497c940b47bf228bc419"}, {file = "tiktoken-0.9.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b2a21133be05dc116b1d0372af051cd2c6aa1d2188250c9b553f9fa49301b336"},
{file = "tiktoken-0.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:326624128590def898775b722ccc327e90b073714227175ea8febbc920ac0a99"}, {file = "tiktoken-0.9.0-cp311-cp311-win_amd64.whl", hash = "sha256:11a20e67fdf58b0e2dea7b8654a288e481bb4fc0289d3ad21291f8d0849915fb"},
{file = "tiktoken-0.8.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:881839cfeae051b3628d9823b2e56b5cc93a9e2efb435f4cf15f17dc45f21586"}, {file = "tiktoken-0.9.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:e88f121c1c22b726649ce67c089b90ddda8b9662545a8aeb03cfef15967ddd03"},
{file = "tiktoken-0.8.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:fe9399bdc3f29d428f16a2f86c3c8ec20be3eac5f53693ce4980371c3245729b"}, {file = "tiktoken-0.9.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a6600660f2f72369acb13a57fb3e212434ed38b045fd8cc6cdd74947b4b5d210"},
{file = "tiktoken-0.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a58deb7075d5b69237a3ff4bb51a726670419db6ea62bdcd8bd80c78497d7ab"}, {file = "tiktoken-0.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:95e811743b5dfa74f4b227927ed86cbc57cad4df859cb3b643be797914e41794"},
{file = "tiktoken-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2908c0d043a7d03ebd80347266b0e58440bdef5564f84f4d29fb235b5df3b04"}, {file = "tiktoken-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99376e1370d59bcf6935c933cb9ba64adc29033b7e73f5f7569f3aad86552b22"},
{file = "tiktoken-0.8.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:294440d21a2a51e12d4238e68a5972095534fe9878be57d905c476017bff99fc"}, {file = "tiktoken-0.9.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:badb947c32739fb6ddde173e14885fb3de4d32ab9d8c591cbd013c22b4c31dd2"},
{file = "tiktoken-0.8.0-cp312-cp312-win_amd64.whl", hash = "sha256:d8f3192733ac4d77977432947d563d7e1b310b96497acd3c196c9bddb36ed9db"}, {file = "tiktoken-0.9.0-cp312-cp312-win_amd64.whl", hash = "sha256:5a62d7a25225bafed786a524c1b9f0910a1128f4232615bf3f8257a73aaa3b16"},
{file = "tiktoken-0.8.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:02be1666096aff7da6cbd7cdaa8e7917bfed3467cd64b38b1f112e96d3b06a24"}, {file = "tiktoken-0.9.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:2b0e8e05a26eda1249e824156d537015480af7ae222ccb798e5234ae0285dbdb"},
{file = "tiktoken-0.8.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:c94ff53c5c74b535b2cbf431d907fc13c678bbd009ee633a2aca269a04389f9a"}, {file = "tiktoken-0.9.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:27d457f096f87685195eea0165a1807fae87b97b2161fe8c9b1df5bd74ca6f63"},
{file = "tiktoken-0.8.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b231f5e8982c245ee3065cd84a4712d64692348bc609d84467c57b4b72dcbc5"}, {file = "tiktoken-0.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2cf8ded49cddf825390e36dd1ad35cd49589e8161fdcb52aa25f0583e90a3e01"},
{file = "tiktoken-0.8.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4177faa809bd55f699e88c96d9bb4635d22e3f59d635ba6fd9ffedf7150b9953"}, {file = "tiktoken-0.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc156cb314119a8bb9748257a2eaebd5cc0753b6cb491d26694ed42fc7cb3139"},
{file = "tiktoken-0.8.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:5376b6f8dc4753cd81ead935c5f518fa0fbe7e133d9e25f648d8c4dabdd4bad7"}, {file = "tiktoken-0.9.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:cd69372e8c9dd761f0ab873112aba55a0e3e506332dd9f7522ca466e817b1b7a"},
{file = "tiktoken-0.8.0-cp313-cp313-win_amd64.whl", hash = "sha256:18228d624807d66c87acd8f25fc135665617cab220671eb65b50f5d70fa51f69"}, {file = "tiktoken-0.9.0-cp313-cp313-win_amd64.whl", hash = "sha256:5ea0edb6f83dc56d794723286215918c1cde03712cbbafa0348b33448faf5b95"},
{file = "tiktoken-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7e17807445f0cf1f25771c9d86496bd8b5c376f7419912519699f3cc4dc5c12e"}, {file = "tiktoken-0.9.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:c6386ca815e7d96ef5b4ac61e0048cd32ca5a92d5781255e13b31381d28667dc"},
{file = "tiktoken-0.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:886f80bd339578bbdba6ed6d0567a0d5c6cfe198d9e587ba6c447654c65b8edc"}, {file = "tiktoken-0.9.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:75f6d5db5bc2c6274b674ceab1615c1778e6416b14705827d19b40e6355f03e0"},
{file = "tiktoken-0.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6adc8323016d7758d6de7313527f755b0fc6c72985b7d9291be5d96d73ecd1e1"}, {file = "tiktoken-0.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e15b16f61e6f4625a57a36496d28dd182a8a60ec20a534c5343ba3cafa156ac7"},
{file = "tiktoken-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b591fb2b30d6a72121a80be24ec7a0e9eb51c5500ddc7e4c2496516dd5e3816b"}, {file = "tiktoken-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ebcec91babf21297022882344c3f7d9eed855931466c3311b1ad6b64befb3df"},
{file = "tiktoken-0.8.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:845287b9798e476b4d762c3ebda5102be87ca26e5d2c9854002825d60cdb815d"}, {file = "tiktoken-0.9.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e5fd49e7799579240f03913447c0cdfa1129625ebd5ac440787afc4345990427"},
{file = "tiktoken-0.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:1473cfe584252dc3fa62adceb5b1c763c1874e04511b197da4e6de51d6ce5a02"}, {file = "tiktoken-0.9.0-cp39-cp39-win_amd64.whl", hash = "sha256:26242ca9dc8b58e875ff4ca078b9a94d2f0813e6a535dcd2205df5d49d927cc7"},
{file = "tiktoken-0.8.0.tar.gz", hash = "sha256:9ccbb2740f24542534369c5635cfd9b2b3c2490754a78ac8831d99f89f94eeb2"}, {file = "tiktoken-0.9.0.tar.gz", hash = "sha256:d02a5ca6a938e0490e1ff957bc48c8b078c88cb83977be1625b1fd8aac792c5d"},
] ]
[package.dependencies] [package.dependencies]
@ -12389,4 +12389,4 @@ cffi = ["cffi (>=1.11)"]
[metadata] [metadata]
lock-version = "2.1" lock-version = "2.1"
python-versions = ">=3.11,<3.13" python-versions = ">=3.11,<3.13"
content-hash = "d197cdff507a70323c1d6aca11609188f54970f67715af744fe6def15b7776fd" content-hash = "0df8aef68385b6596306fd18af317a835023d648eb5028cd57ec463f176e4c0f"

View File

@ -85,7 +85,7 @@ sentry-sdk = { version = "~1.44.1", extras = ["flask"] }
sqlalchemy = "~2.0.29" sqlalchemy = "~2.0.29"
starlette = "0.41.0" starlette = "0.41.0"
tencentcloud-sdk-python-hunyuan = "~3.0.1294" tencentcloud-sdk-python-hunyuan = "~3.0.1294"
tiktoken = "~0.8.0" tiktoken = "^0.9.0"
tokenizers = "~0.15.0" tokenizers = "~0.15.0"
transformers = "~4.35.0" transformers = "~4.35.0"
unstructured = { version = "~0.16.1", extras = ["docx", "epub", "md", "msg", "ppt", "pptx"] } unstructured = { version = "~0.16.1", extras = ["docx", "epub", "md", "msg", "ppt", "pptx"] }

View File

@ -55,13 +55,19 @@ def _check_version_compatibility(imported_version: str) -> ImportStatus:
except version.InvalidVersion: except version.InvalidVersion:
return ImportStatus.FAILED return ImportStatus.FAILED
# Compare major version and minor version # If imported version is newer than current, always return PENDING
if current_ver.major != imported_ver.major or current_ver.minor != imported_ver.minor: if imported_ver > current_ver:
return ImportStatus.PENDING return ImportStatus.PENDING
if current_ver.micro != imported_ver.micro: # If imported version is older than current's major, return PENDING
if imported_ver.major < current_ver.major:
return ImportStatus.PENDING
# If imported version is older than current's minor, return COMPLETED_WITH_WARNINGS
if imported_ver.minor < current_ver.minor:
return ImportStatus.COMPLETED_WITH_WARNINGS return ImportStatus.COMPLETED_WITH_WARNINGS
# If imported version equals or is older than current's micro, return COMPLETED
return ImportStatus.COMPLETED return ImportStatus.COMPLETED

View File

@ -2,7 +2,7 @@ x-shared-env: &shared-api-worker-env
services: services:
# API service # API service
api: api:
image: langgenius/dify-api:0.15.6 image: langgenius/dify-api:0.15.7
restart: always restart: always
environment: environment:
# Use the shared environment variables. # Use the shared environment variables.
@ -25,7 +25,7 @@ services:
# worker service # worker service
# The Celery worker for processing the queue. # The Celery worker for processing the queue.
worker: worker:
image: langgenius/dify-api:0.15.6 image: langgenius/dify-api:0.15.7
restart: always restart: always
environment: environment:
# Use the shared environment variables. # Use the shared environment variables.
@ -47,7 +47,7 @@ services:
# Frontend web application. # Frontend web application.
web: web:
image: langgenius/dify-web:0.15.6 image: langgenius/dify-web:0.15.7
restart: always restart: always
environment: environment:
CONSOLE_API_URL: ${CONSOLE_API_URL:-} CONSOLE_API_URL: ${CONSOLE_API_URL:-}

View File

@ -394,7 +394,7 @@ x-shared-env: &shared-api-worker-env
services: services:
# API service # API service
api: api:
image: langgenius/dify-api:0.15.6 image: langgenius/dify-api:0.15.7
restart: always restart: always
environment: environment:
# Use the shared environment variables. # Use the shared environment variables.
@ -417,7 +417,7 @@ services:
# worker service # worker service
# The Celery worker for processing the queue. # The Celery worker for processing the queue.
worker: worker:
image: langgenius/dify-api:0.15.6 image: langgenius/dify-api:0.15.7
restart: always restart: always
environment: environment:
# Use the shared environment variables. # Use the shared environment variables.
@ -439,7 +439,7 @@ services:
# Frontend web application. # Frontend web application.
web: web:
image: langgenius/dify-web:0.15.6 image: langgenius/dify-web:0.15.7
restart: always restart: always
environment: environment:
CONSOLE_API_URL: ${CONSOLE_API_URL:-} CONSOLE_API_URL: ${CONSOLE_API_URL:-}

View File

@ -1,6 +1,6 @@
{ {
"name": "dify-web", "name": "dify-web",
"version": "0.15.6", "version": "0.15.7",
"private": true, "private": true,
"engines": { "engines": {
"node": ">=18.17.0" "node": ">=18.17.0"