mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-14 16:55:57 +08:00
0.15.7
-----BEGIN PGP SIGNATURE----- iQGzBAABCAAdFiEEFK5K98uJ0hmL9JLza6DRCN7QEf8FAmgPMZ8ACgkQa6DRCN7Q Ef+gkgv/Ved5ez/UgKHiGyxMM9MWiO9JDWKBrZP+NbhqSIz2B7efCg7PcEWveqCR ma5pD2T83z9lYsI4VYB/08HRdF4w5FbFbZXg5zy7R9OMc/5oEZ1tyxiOp/RLzOqi kCDhHX5CVadUjC98oy9q41S+AmlpV5hjjl5ZQHH9XIx/Uy/0LZMdhB4EOhDwNqj2 MU0xekTEaouJFeIe1ewyVBZd2GC18EDjqv9ABiBeaJwx97SQ93pCNhjxnn2wm5cT Q96qkkNb/E3JoaOPhws5/pGLM+5SK0dYFTZkwWER1GUfrh+5wzLWbzAKwoewDRaV g62waOORvaYphXKh7KxmrC3Gb9eGMrK9haRwJfyfxzHCwqtI4+SFnv+izapU7hlm c24s73p2v9sFzjHBWEPqHvuJ7F5Q8odR40ECGhBmzgJVnXdDDu+h69MYWDq2LPAl 3295Wa4zjF9krC9R9BU+ra7DLw90TA53Cf3yXdMyuoOpU41uqtj/7iF8p2axnIxL srqhqJWw =3gSn -----END PGP SIGNATURE----- Merge tag '0.15.7' into e-260 0.15.7
This commit is contained in:
commit
849994d35e
3
.markdownlint.json
Normal file
3
.markdownlint.json
Normal file
@ -0,0 +1,3 @@
|
||||
{
|
||||
"MD024": false
|
||||
}
|
14
CHANGELOG.md
14
CHANGELOG.md
@ -5,6 +5,20 @@ All notable changes to Dify will be documented in this file.
|
||||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
|
||||
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||
|
||||
## [0.15.7] - 2025-04-27
|
||||
|
||||
### Added
|
||||
|
||||
- Added support for GPT-4.1 in model providers (#18912)
|
||||
- Added support for Amazon Bedrock DeepSeek-R1 model (#18908)
|
||||
- Added support for Amazon Bedrock Claude Sonnet 3.7 model (#18788)
|
||||
- Refined version compatibility logic in app DSL service
|
||||
|
||||
### Fixed
|
||||
|
||||
- Fixed issue with creating apps from template categories (#18807, #18868)
|
||||
- Fixed DSL version check when creating apps from explore templates (#18872, #18878)
|
||||
|
||||
## [0.15.6] - 2025-04-22
|
||||
|
||||
### Security
|
||||
|
@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
|
||||
|
||||
CURRENT_VERSION: str = Field(
|
||||
description="Dify version",
|
||||
default="0.15.6",
|
||||
default="0.15.7",
|
||||
)
|
||||
|
||||
COMMIT_SHA: str = Field(
|
||||
|
@ -6,13 +6,9 @@ from flask_restful import Resource, reqparse # type: ignore
|
||||
|
||||
from constants.languages import languages
|
||||
from controllers.console import api
|
||||
from controllers.console.auth.error import (EmailCodeError, InvalidEmailError,
|
||||
InvalidTokenError,
|
||||
PasswordMismatchError)
|
||||
from controllers.console.error import (AccountInFreezeError, AccountNotFound,
|
||||
EmailSendIpLimitError)
|
||||
from controllers.console.wraps import (email_password_login_enabled,
|
||||
setup_required)
|
||||
from controllers.console.auth.error import EmailCodeError, InvalidEmailError, InvalidTokenError, PasswordMismatchError
|
||||
from controllers.console.error import AccountInFreezeError, AccountNotFound, EmailSendIpLimitError
|
||||
from controllers.console.wraps import email_password_login_enabled, setup_required
|
||||
from events.tenant_event import tenant_was_created
|
||||
from extensions.ext_database import db
|
||||
from libs.helper import email, extract_remote_ip
|
||||
|
@ -11,8 +11,7 @@ from models.model import DifySetup
|
||||
from services.feature_service import FeatureService, LicenseStatus
|
||||
from services.operation_service import OperationService
|
||||
|
||||
from .error import (NotInitValidateError, NotSetupError,
|
||||
UnauthorizedAndForceLogout)
|
||||
from .error import NotInitValidateError, NotSetupError, UnauthorizedAndForceLogout
|
||||
|
||||
|
||||
def account_initialization_required(view):
|
||||
|
@ -104,7 +104,6 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
|
||||
# recalc llm max tokens
|
||||
prompt_messages = self._organize_prompt_messages()
|
||||
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
||||
# invoke model
|
||||
chunks = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
|
@ -84,7 +84,6 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
|
||||
# recalc llm max tokens
|
||||
prompt_messages = self._organize_prompt_messages()
|
||||
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
||||
# invoke model
|
||||
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
|
@ -55,20 +55,6 @@ class AgentChatAppRunner(AppRunner):
|
||||
query = application_generate_entity.query
|
||||
files = application_generate_entity.files
|
||||
|
||||
# Pre-calculate the number of tokens of the prompt messages,
|
||||
# and return the rest number of tokens by model context token size limit and max token size limit.
|
||||
# If the rest number of tokens is not enough, raise exception.
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# Not Include: memory, external data, dataset context
|
||||
self.get_pre_calculate_rest_tokens(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
)
|
||||
|
||||
memory = None
|
||||
if application_generate_entity.conversation_id:
|
||||
# get memory of conversation (read-only)
|
||||
|
@ -15,10 +15,8 @@ from core.app.features.annotation_reply.annotation_reply import AnnotationReplyF
|
||||
from core.app.features.hosting_moderation.hosting_moderation import HostingModerationFeature
|
||||
from core.external_data_tool.external_data_fetch import ExternalDataFetch
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import AssistantPromptMessage, PromptMessage
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
from core.model_runtime.errors.invoke import InvokeBadRequestError
|
||||
from core.moderation.input_moderation import InputModeration
|
||||
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
|
||||
@ -31,106 +29,6 @@ if TYPE_CHECKING:
|
||||
|
||||
|
||||
class AppRunner:
|
||||
def get_pre_calculate_rest_tokens(
|
||||
self,
|
||||
app_record: App,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: Mapping[str, str],
|
||||
files: Sequence["File"],
|
||||
query: Optional[str] = None,
|
||||
) -> int:
|
||||
"""
|
||||
Get pre calculate rest tokens
|
||||
:param app_record: app record
|
||||
:param model_config: model config entity
|
||||
:param prompt_template_entity: prompt template entity
|
||||
:param inputs: inputs
|
||||
:param files: files
|
||||
:param query: query
|
||||
:return:
|
||||
"""
|
||||
# Invoke model
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
|
||||
)
|
||||
|
||||
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
|
||||
|
||||
max_tokens = 0
|
||||
for parameter_rule in model_config.model_schema.parameter_rules:
|
||||
if parameter_rule.name == "max_tokens" or (
|
||||
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
|
||||
):
|
||||
max_tokens = (
|
||||
model_config.parameters.get(parameter_rule.name)
|
||||
or model_config.parameters.get(parameter_rule.use_template or "")
|
||||
) or 0
|
||||
|
||||
if model_context_tokens is None:
|
||||
return -1
|
||||
|
||||
if max_tokens is None:
|
||||
max_tokens = 0
|
||||
|
||||
# get prompt messages without memory and context
|
||||
prompt_messages, stop = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=model_config,
|
||||
prompt_template_entity=prompt_template_entity,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
)
|
||||
|
||||
prompt_tokens = model_instance.get_llm_num_tokens(prompt_messages)
|
||||
|
||||
rest_tokens: int = model_context_tokens - max_tokens - prompt_tokens
|
||||
if rest_tokens < 0:
|
||||
raise InvokeBadRequestError(
|
||||
"Query or prefix prompt is too long, you can reduce the prefix prompt, "
|
||||
"or shrink the max token, or switch to a llm with a larger token limit size."
|
||||
)
|
||||
|
||||
return rest_tokens
|
||||
|
||||
def recalc_llm_max_tokens(
|
||||
self, model_config: ModelConfigWithCredentialsEntity, prompt_messages: list[PromptMessage]
|
||||
):
|
||||
# recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
|
||||
)
|
||||
|
||||
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
|
||||
|
||||
max_tokens = 0
|
||||
for parameter_rule in model_config.model_schema.parameter_rules:
|
||||
if parameter_rule.name == "max_tokens" or (
|
||||
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
|
||||
):
|
||||
max_tokens = (
|
||||
model_config.parameters.get(parameter_rule.name)
|
||||
or model_config.parameters.get(parameter_rule.use_template or "")
|
||||
) or 0
|
||||
|
||||
if model_context_tokens is None:
|
||||
return -1
|
||||
|
||||
if max_tokens is None:
|
||||
max_tokens = 0
|
||||
|
||||
prompt_tokens = model_instance.get_llm_num_tokens(prompt_messages)
|
||||
|
||||
if prompt_tokens + max_tokens > model_context_tokens:
|
||||
max_tokens = max(model_context_tokens - prompt_tokens, 16)
|
||||
|
||||
for parameter_rule in model_config.model_schema.parameter_rules:
|
||||
if parameter_rule.name == "max_tokens" or (
|
||||
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
|
||||
):
|
||||
model_config.parameters[parameter_rule.name] = max_tokens
|
||||
|
||||
def organize_prompt_messages(
|
||||
self,
|
||||
app_record: App,
|
||||
|
@ -50,20 +50,6 @@ class ChatAppRunner(AppRunner):
|
||||
query = application_generate_entity.query
|
||||
files = application_generate_entity.files
|
||||
|
||||
# Pre-calculate the number of tokens of the prompt messages,
|
||||
# and return the rest number of tokens by model context token size limit and max token size limit.
|
||||
# If the rest number of tokens is not enough, raise exception.
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# Not Include: memory, external data, dataset context
|
||||
self.get_pre_calculate_rest_tokens(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
)
|
||||
|
||||
memory = None
|
||||
if application_generate_entity.conversation_id:
|
||||
# get memory of conversation (read-only)
|
||||
@ -194,9 +180,6 @@ class ChatAppRunner(AppRunner):
|
||||
if hosting_moderation_result:
|
||||
return
|
||||
|
||||
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
|
||||
self.recalc_llm_max_tokens(model_config=application_generate_entity.model_conf, prompt_messages=prompt_messages)
|
||||
|
||||
# Invoke model
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
|
||||
|
@ -43,20 +43,6 @@ class CompletionAppRunner(AppRunner):
|
||||
query = application_generate_entity.query
|
||||
files = application_generate_entity.files
|
||||
|
||||
# Pre-calculate the number of tokens of the prompt messages,
|
||||
# and return the rest number of tokens by model context token size limit and max token size limit.
|
||||
# If the rest number of tokens is not enough, raise exception.
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# Not Include: memory, external data, dataset context
|
||||
self.get_pre_calculate_rest_tokens(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
)
|
||||
|
||||
# organize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
prompt_messages, stop = self.organize_prompt_messages(
|
||||
@ -152,9 +138,6 @@ class CompletionAppRunner(AppRunner):
|
||||
if hosting_moderation_result:
|
||||
return
|
||||
|
||||
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
|
||||
self.recalc_llm_max_tokens(model_config=application_generate_entity.model_conf, prompt_messages=prompt_messages)
|
||||
|
||||
# Invoke model
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
|
||||
|
@ -26,7 +26,7 @@ class TokenBufferMemory:
|
||||
self.model_instance = model_instance
|
||||
|
||||
def get_history_prompt_messages(
|
||||
self, max_token_limit: int = 2000, message_limit: Optional[int] = None
|
||||
self, max_token_limit: int = 100000, message_limit: Optional[int] = None
|
||||
) -> Sequence[PromptMessage]:
|
||||
"""
|
||||
Get history prompt messages.
|
||||
|
@ -0,0 +1,115 @@
|
||||
model: us.anthropic.claude-3-7-sonnet-20250219-v1:0
|
||||
label:
|
||||
en_US: Claude 3.7 Sonnet(US.Cross Region Inference)
|
||||
icon: icon_s_en.svg
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
- vision
|
||||
- tool-call
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 200000
|
||||
# docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
|
||||
parameter_rules:
|
||||
- name: enable_cache
|
||||
label:
|
||||
zh_Hans: 启用提示缓存
|
||||
en_US: Enable Prompt Cache
|
||||
type: boolean
|
||||
required: false
|
||||
default: true
|
||||
help:
|
||||
zh_Hans: 启用提示缓存可以提高性能并降低成本。Claude 3.7 Sonnet支持在system、messages和tools字段中使用缓存检查点。
|
||||
en_US: Enable prompt caching to improve performance and reduce costs. Claude 3.7 Sonnet supports cache checkpoints in system, messages, and tools fields.
|
||||
- name: reasoning_type
|
||||
label:
|
||||
zh_Hans: 推理配置
|
||||
en_US: Reasoning Type
|
||||
type: boolean
|
||||
required: false
|
||||
default: false
|
||||
placeholder:
|
||||
zh_Hans: 设置推理配置
|
||||
en_US: Set reasoning configuration
|
||||
help:
|
||||
zh_Hans: 控制模型的推理能力。启用时,temperature将固定为1且top_p将被禁用。
|
||||
en_US: Controls the model's reasoning capability. When enabled, temperature will be fixed to 1 and top_p will be disabled.
|
||||
- name: reasoning_budget
|
||||
show_on:
|
||||
- variable: reasoning_type
|
||||
value: true
|
||||
label:
|
||||
zh_Hans: 推理预算
|
||||
en_US: Reasoning Budget
|
||||
type: int
|
||||
default: 1024
|
||||
min: 0
|
||||
max: 128000
|
||||
help:
|
||||
zh_Hans: 推理的预算限制(最小1024),必须小于max_tokens。仅在推理类型为enabled时可用。
|
||||
en_US: Budget limit for reasoning (minimum 1024), must be less than max_tokens. Only available when reasoning type is enabled.
|
||||
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
label:
|
||||
zh_Hans: 最大token数
|
||||
en_US: Max Tokens
|
||||
type: int
|
||||
default: 8192
|
||||
min: 1
|
||||
max: 128000
|
||||
help:
|
||||
zh_Hans: 停止前生成的最大令牌数。请注意,Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
|
||||
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
required: false
|
||||
label:
|
||||
zh_Hans: 模型温度
|
||||
en_US: Model Temperature
|
||||
type: float
|
||||
default: 1
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
help:
|
||||
zh_Hans: 生成内容的随机性。当推理功能启用时,该值将被固定为1。
|
||||
en_US: The amount of randomness injected into the response. When reasoning is enabled, this value will be fixed to 1.
|
||||
- name: top_p
|
||||
show_on:
|
||||
- variable: reasoning_type
|
||||
value: disabled
|
||||
use_template: top_p
|
||||
label:
|
||||
zh_Hans: Top P
|
||||
en_US: Top P
|
||||
required: false
|
||||
type: float
|
||||
default: 0.999
|
||||
min: 0.000
|
||||
max: 1.000
|
||||
help:
|
||||
zh_Hans: 在核采样中的概率阈值。当推理功能启用时,该参数将被禁用。
|
||||
en_US: The probability threshold in nucleus sampling. When reasoning is enabled, this parameter will be disabled.
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
required: false
|
||||
type: int
|
||||
default: 0
|
||||
min: 0
|
||||
# tip docs from aws has error, max value is 500
|
||||
max: 500
|
||||
help:
|
||||
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
|
||||
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
pricing:
|
||||
input: '0.003'
|
||||
output: '0.015'
|
||||
unit: '0.001'
|
||||
currency: USD
|
@ -58,6 +58,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
# TODO There is invoke issue: context limit on Cohere Model, will add them after fixed.
|
||||
CONVERSE_API_ENABLED_MODEL_INFO = [
|
||||
{"prefix": "anthropic.claude-v2", "support_system_prompts": True, "support_tool_use": False},
|
||||
{"prefix": "us.deepseek", "support_system_prompts": True, "support_tool_use": False},
|
||||
{"prefix": "anthropic.claude-v1", "support_system_prompts": True, "support_tool_use": False},
|
||||
{"prefix": "us.anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},
|
||||
{"prefix": "eu.anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},
|
||||
|
@ -0,0 +1,63 @@
|
||||
model: us.deepseek.r1-v1:0
|
||||
label:
|
||||
en_US: DeepSeek-R1(US.Cross Region Inference)
|
||||
icon: icon_s_en.svg
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
- vision
|
||||
- tool-call
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 32768
|
||||
parameter_rules:
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
label:
|
||||
zh_Hans: 最大token数
|
||||
en_US: Max Tokens
|
||||
type: int
|
||||
default: 8192
|
||||
min: 1
|
||||
max: 128000
|
||||
help:
|
||||
zh_Hans: 停止前生成的最大令牌数。
|
||||
en_US: The maximum number of tokens to generate before stopping.
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
required: false
|
||||
label:
|
||||
zh_Hans: 模型温度
|
||||
en_US: Model Temperature
|
||||
type: float
|
||||
default: 1
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
help:
|
||||
zh_Hans: 生成内容的随机性。当推理功能启用时,该值将被固定为1。
|
||||
en_US: The amount of randomness injected into the response. When reasoning is enabled, this value will be fixed to 1.
|
||||
- name: top_p
|
||||
show_on:
|
||||
- variable: reasoning_type
|
||||
value: disabled
|
||||
use_template: top_p
|
||||
label:
|
||||
zh_Hans: Top P
|
||||
en_US: Top P
|
||||
required: false
|
||||
type: float
|
||||
default: 0.999
|
||||
min: 0.000
|
||||
max: 1.000
|
||||
help:
|
||||
zh_Hans: 在核采样中的概率阈值。当推理功能启用时,该参数将被禁用。
|
||||
en_US: The probability threshold in nucleus sampling. When reasoning is enabled, this parameter will be disabled.
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
pricing:
|
||||
input: '0.001'
|
||||
output: '0.005'
|
||||
unit: '0.001'
|
||||
currency: USD
|
@ -1,3 +1,4 @@
|
||||
- gpt-4.1
|
||||
- o1
|
||||
- o1-2024-12-17
|
||||
- o1-mini
|
||||
|
@ -0,0 +1,60 @@
|
||||
model: gpt-4.1
|
||||
label:
|
||||
zh_Hans: gpt-4.1
|
||||
en_US: gpt-4.1
|
||||
model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
- vision
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 1047576
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 512
|
||||
min: 1
|
||||
max: 32768
|
||||
- name: reasoning_effort
|
||||
label:
|
||||
zh_Hans: 推理工作
|
||||
en_US: Reasoning Effort
|
||||
type: string
|
||||
help:
|
||||
zh_Hans: 限制推理模型的推理工作
|
||||
en_US: Constrains effort on reasoning for reasoning models
|
||||
required: false
|
||||
options:
|
||||
- low
|
||||
- medium
|
||||
- high
|
||||
- name: response_format
|
||||
label:
|
||||
zh_Hans: 回复格式
|
||||
en_US: Response Format
|
||||
type: string
|
||||
help:
|
||||
zh_Hans: 指定模型必须输出的格式
|
||||
en_US: specifying the format that the model must output
|
||||
required: false
|
||||
options:
|
||||
- text
|
||||
- json_object
|
||||
- json_schema
|
||||
- name: json_schema
|
||||
use_template: json_schema
|
||||
pricing:
|
||||
input: '2.00'
|
||||
output: '8.00'
|
||||
unit: '0.000001'
|
||||
currency: USD
|
@ -1057,7 +1057,7 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
||||
model = "gpt-4o"
|
||||
|
||||
try:
|
||||
encoding = tiktoken.encoding_for_model(model)
|
||||
encoding = tiktoken.get_encoding(model)
|
||||
except KeyError:
|
||||
logger.warning("Warning: model not found. Using cl100k_base encoding.")
|
||||
model = "cl100k_base"
|
||||
|
@ -195,7 +195,7 @@ class CodeNode(BaseNode[CodeNodeData]):
|
||||
if output_config.type == "object":
|
||||
# check if output is object
|
||||
if not isinstance(result.get(output_name), dict):
|
||||
if isinstance(result.get(output_name), type(None)):
|
||||
if result.get(output_name) is None:
|
||||
transformed_result[output_name] = None
|
||||
else:
|
||||
raise OutputValidationError(
|
||||
@ -223,7 +223,7 @@ class CodeNode(BaseNode[CodeNodeData]):
|
||||
elif output_config.type == "array[number]":
|
||||
# check if array of number available
|
||||
if not isinstance(result[output_name], list):
|
||||
if isinstance(result[output_name], type(None)):
|
||||
if result[output_name] is None:
|
||||
transformed_result[output_name] = None
|
||||
else:
|
||||
raise OutputValidationError(
|
||||
@ -244,7 +244,7 @@ class CodeNode(BaseNode[CodeNodeData]):
|
||||
elif output_config.type == "array[string]":
|
||||
# check if array of string available
|
||||
if not isinstance(result[output_name], list):
|
||||
if isinstance(result[output_name], type(None)):
|
||||
if result[output_name] is None:
|
||||
transformed_result[output_name] = None
|
||||
else:
|
||||
raise OutputValidationError(
|
||||
@ -265,7 +265,7 @@ class CodeNode(BaseNode[CodeNodeData]):
|
||||
elif output_config.type == "array[object]":
|
||||
# check if array of object available
|
||||
if not isinstance(result[output_name], list):
|
||||
if isinstance(result[output_name], type(None)):
|
||||
if result[output_name] is None:
|
||||
transformed_result[output_name] = None
|
||||
else:
|
||||
raise OutputValidationError(
|
||||
|
@ -968,14 +968,12 @@ def _handle_memory_chat_mode(
|
||||
*,
|
||||
memory: TokenBufferMemory | None,
|
||||
memory_config: MemoryConfig | None,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
model_config: ModelConfigWithCredentialsEntity, # TODO(-LAN-): Needs to remove
|
||||
) -> Sequence[PromptMessage]:
|
||||
memory_messages: Sequence[PromptMessage] = []
|
||||
# Get messages from memory for chat model
|
||||
if memory and memory_config:
|
||||
rest_tokens = _calculate_rest_token(prompt_messages=[], model_config=model_config)
|
||||
memory_messages = memory.get_history_prompt_messages(
|
||||
max_token_limit=rest_tokens,
|
||||
message_limit=memory_config.window.size if memory_config.window.enabled else None,
|
||||
)
|
||||
return memory_messages
|
||||
|
66
api/poetry.lock
generated
66
api/poetry.lock
generated
@ -10473,44 +10473,44 @@ client = ["SQLAlchemy (>=1.4,<3)"]
|
||||
|
||||
[[package]]
|
||||
name = "tiktoken"
|
||||
version = "0.8.0"
|
||||
version = "0.9.0"
|
||||
description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models"
|
||||
optional = false
|
||||
python-versions = ">=3.9"
|
||||
groups = ["main"]
|
||||
markers = "python_version == \"3.11\" or python_version >= \"3.12\""
|
||||
files = [
|
||||
{file = "tiktoken-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b07e33283463089c81ef1467180e3e00ab00d46c2c4bbcef0acab5f771d6695e"},
|
||||
{file = "tiktoken-0.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9269348cb650726f44dd3bbb3f9110ac19a8dcc8f54949ad3ef652ca22a38e21"},
|
||||
{file = "tiktoken-0.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25e13f37bc4ef2d012731e93e0fef21dc3b7aea5bb9009618de9a4026844e560"},
|
||||
{file = "tiktoken-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f13d13c981511331eac0d01a59b5df7c0d4060a8be1e378672822213da51e0a2"},
|
||||
{file = "tiktoken-0.8.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:6b2ddbc79a22621ce8b1166afa9f9a888a664a579350dc7c09346a3b5de837d9"},
|
||||
{file = "tiktoken-0.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:d8c2d0e5ba6453a290b86cd65fc51fedf247e1ba170191715b049dac1f628005"},
|
||||
{file = "tiktoken-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d622d8011e6d6f239297efa42a2657043aaed06c4f68833550cac9e9bc723ef1"},
|
||||
{file = "tiktoken-0.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2efaf6199717b4485031b4d6edb94075e4d79177a172f38dd934d911b588d54a"},
|
||||
{file = "tiktoken-0.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5637e425ce1fc49cf716d88df3092048359a4b3bbb7da762840426e937ada06d"},
|
||||
{file = "tiktoken-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb0e352d1dbe15aba082883058b3cce9e48d33101bdaac1eccf66424feb5b47"},
|
||||
{file = "tiktoken-0.8.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:56edfefe896c8f10aba372ab5706b9e3558e78db39dd497c940b47bf228bc419"},
|
||||
{file = "tiktoken-0.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:326624128590def898775b722ccc327e90b073714227175ea8febbc920ac0a99"},
|
||||
{file = "tiktoken-0.8.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:881839cfeae051b3628d9823b2e56b5cc93a9e2efb435f4cf15f17dc45f21586"},
|
||||
{file = "tiktoken-0.8.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:fe9399bdc3f29d428f16a2f86c3c8ec20be3eac5f53693ce4980371c3245729b"},
|
||||
{file = "tiktoken-0.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a58deb7075d5b69237a3ff4bb51a726670419db6ea62bdcd8bd80c78497d7ab"},
|
||||
{file = "tiktoken-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2908c0d043a7d03ebd80347266b0e58440bdef5564f84f4d29fb235b5df3b04"},
|
||||
{file = "tiktoken-0.8.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:294440d21a2a51e12d4238e68a5972095534fe9878be57d905c476017bff99fc"},
|
||||
{file = "tiktoken-0.8.0-cp312-cp312-win_amd64.whl", hash = "sha256:d8f3192733ac4d77977432947d563d7e1b310b96497acd3c196c9bddb36ed9db"},
|
||||
{file = "tiktoken-0.8.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:02be1666096aff7da6cbd7cdaa8e7917bfed3467cd64b38b1f112e96d3b06a24"},
|
||||
{file = "tiktoken-0.8.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:c94ff53c5c74b535b2cbf431d907fc13c678bbd009ee633a2aca269a04389f9a"},
|
||||
{file = "tiktoken-0.8.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b231f5e8982c245ee3065cd84a4712d64692348bc609d84467c57b4b72dcbc5"},
|
||||
{file = "tiktoken-0.8.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4177faa809bd55f699e88c96d9bb4635d22e3f59d635ba6fd9ffedf7150b9953"},
|
||||
{file = "tiktoken-0.8.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:5376b6f8dc4753cd81ead935c5f518fa0fbe7e133d9e25f648d8c4dabdd4bad7"},
|
||||
{file = "tiktoken-0.8.0-cp313-cp313-win_amd64.whl", hash = "sha256:18228d624807d66c87acd8f25fc135665617cab220671eb65b50f5d70fa51f69"},
|
||||
{file = "tiktoken-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7e17807445f0cf1f25771c9d86496bd8b5c376f7419912519699f3cc4dc5c12e"},
|
||||
{file = "tiktoken-0.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:886f80bd339578bbdba6ed6d0567a0d5c6cfe198d9e587ba6c447654c65b8edc"},
|
||||
{file = "tiktoken-0.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6adc8323016d7758d6de7313527f755b0fc6c72985b7d9291be5d96d73ecd1e1"},
|
||||
{file = "tiktoken-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b591fb2b30d6a72121a80be24ec7a0e9eb51c5500ddc7e4c2496516dd5e3816b"},
|
||||
{file = "tiktoken-0.8.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:845287b9798e476b4d762c3ebda5102be87ca26e5d2c9854002825d60cdb815d"},
|
||||
{file = "tiktoken-0.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:1473cfe584252dc3fa62adceb5b1c763c1874e04511b197da4e6de51d6ce5a02"},
|
||||
{file = "tiktoken-0.8.0.tar.gz", hash = "sha256:9ccbb2740f24542534369c5635cfd9b2b3c2490754a78ac8831d99f89f94eeb2"},
|
||||
{file = "tiktoken-0.9.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:586c16358138b96ea804c034b8acf3f5d3f0258bd2bc3b0227af4af5d622e382"},
|
||||
{file = "tiktoken-0.9.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d9c59ccc528c6c5dd51820b3474402f69d9a9e1d656226848ad68a8d5b2e5108"},
|
||||
{file = "tiktoken-0.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0968d5beeafbca2a72c595e8385a1a1f8af58feaebb02b227229b69ca5357fd"},
|
||||
{file = "tiktoken-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a5fb085a6a3b7350b8fc838baf493317ca0e17bd95e8642f95fc69ecfed1de"},
|
||||
{file = "tiktoken-0.9.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:15a2752dea63d93b0332fb0ddb05dd909371ededa145fe6a3242f46724fa7990"},
|
||||
{file = "tiktoken-0.9.0-cp310-cp310-win_amd64.whl", hash = "sha256:26113fec3bd7a352e4b33dbaf1bd8948de2507e30bd95a44e2b1156647bc01b4"},
|
||||
{file = "tiktoken-0.9.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:f32cc56168eac4851109e9b5d327637f15fd662aa30dd79f964b7c39fbadd26e"},
|
||||
{file = "tiktoken-0.9.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:45556bc41241e5294063508caf901bf92ba52d8ef9222023f83d2483a3055348"},
|
||||
{file = "tiktoken-0.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03935988a91d6d3216e2ec7c645afbb3d870b37bcb67ada1943ec48678e7ee33"},
|
||||
{file = "tiktoken-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b3d80aad8d2c6b9238fc1a5524542087c52b860b10cbf952429ffb714bc1136"},
|
||||
{file = "tiktoken-0.9.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b2a21133be05dc116b1d0372af051cd2c6aa1d2188250c9b553f9fa49301b336"},
|
||||
{file = "tiktoken-0.9.0-cp311-cp311-win_amd64.whl", hash = "sha256:11a20e67fdf58b0e2dea7b8654a288e481bb4fc0289d3ad21291f8d0849915fb"},
|
||||
{file = "tiktoken-0.9.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:e88f121c1c22b726649ce67c089b90ddda8b9662545a8aeb03cfef15967ddd03"},
|
||||
{file = "tiktoken-0.9.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a6600660f2f72369acb13a57fb3e212434ed38b045fd8cc6cdd74947b4b5d210"},
|
||||
{file = "tiktoken-0.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:95e811743b5dfa74f4b227927ed86cbc57cad4df859cb3b643be797914e41794"},
|
||||
{file = "tiktoken-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99376e1370d59bcf6935c933cb9ba64adc29033b7e73f5f7569f3aad86552b22"},
|
||||
{file = "tiktoken-0.9.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:badb947c32739fb6ddde173e14885fb3de4d32ab9d8c591cbd013c22b4c31dd2"},
|
||||
{file = "tiktoken-0.9.0-cp312-cp312-win_amd64.whl", hash = "sha256:5a62d7a25225bafed786a524c1b9f0910a1128f4232615bf3f8257a73aaa3b16"},
|
||||
{file = "tiktoken-0.9.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:2b0e8e05a26eda1249e824156d537015480af7ae222ccb798e5234ae0285dbdb"},
|
||||
{file = "tiktoken-0.9.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:27d457f096f87685195eea0165a1807fae87b97b2161fe8c9b1df5bd74ca6f63"},
|
||||
{file = "tiktoken-0.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2cf8ded49cddf825390e36dd1ad35cd49589e8161fdcb52aa25f0583e90a3e01"},
|
||||
{file = "tiktoken-0.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc156cb314119a8bb9748257a2eaebd5cc0753b6cb491d26694ed42fc7cb3139"},
|
||||
{file = "tiktoken-0.9.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:cd69372e8c9dd761f0ab873112aba55a0e3e506332dd9f7522ca466e817b1b7a"},
|
||||
{file = "tiktoken-0.9.0-cp313-cp313-win_amd64.whl", hash = "sha256:5ea0edb6f83dc56d794723286215918c1cde03712cbbafa0348b33448faf5b95"},
|
||||
{file = "tiktoken-0.9.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:c6386ca815e7d96ef5b4ac61e0048cd32ca5a92d5781255e13b31381d28667dc"},
|
||||
{file = "tiktoken-0.9.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:75f6d5db5bc2c6274b674ceab1615c1778e6416b14705827d19b40e6355f03e0"},
|
||||
{file = "tiktoken-0.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e15b16f61e6f4625a57a36496d28dd182a8a60ec20a534c5343ba3cafa156ac7"},
|
||||
{file = "tiktoken-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ebcec91babf21297022882344c3f7d9eed855931466c3311b1ad6b64befb3df"},
|
||||
{file = "tiktoken-0.9.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e5fd49e7799579240f03913447c0cdfa1129625ebd5ac440787afc4345990427"},
|
||||
{file = "tiktoken-0.9.0-cp39-cp39-win_amd64.whl", hash = "sha256:26242ca9dc8b58e875ff4ca078b9a94d2f0813e6a535dcd2205df5d49d927cc7"},
|
||||
{file = "tiktoken-0.9.0.tar.gz", hash = "sha256:d02a5ca6a938e0490e1ff957bc48c8b078c88cb83977be1625b1fd8aac792c5d"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -12389,4 +12389,4 @@ cffi = ["cffi (>=1.11)"]
|
||||
[metadata]
|
||||
lock-version = "2.1"
|
||||
python-versions = ">=3.11,<3.13"
|
||||
content-hash = "d197cdff507a70323c1d6aca11609188f54970f67715af744fe6def15b7776fd"
|
||||
content-hash = "0df8aef68385b6596306fd18af317a835023d648eb5028cd57ec463f176e4c0f"
|
||||
|
@ -85,7 +85,7 @@ sentry-sdk = { version = "~1.44.1", extras = ["flask"] }
|
||||
sqlalchemy = "~2.0.29"
|
||||
starlette = "0.41.0"
|
||||
tencentcloud-sdk-python-hunyuan = "~3.0.1294"
|
||||
tiktoken = "~0.8.0"
|
||||
tiktoken = "^0.9.0"
|
||||
tokenizers = "~0.15.0"
|
||||
transformers = "~4.35.0"
|
||||
unstructured = { version = "~0.16.1", extras = ["docx", "epub", "md", "msg", "ppt", "pptx"] }
|
||||
|
@ -55,13 +55,19 @@ def _check_version_compatibility(imported_version: str) -> ImportStatus:
|
||||
except version.InvalidVersion:
|
||||
return ImportStatus.FAILED
|
||||
|
||||
# Compare major version and minor version
|
||||
if current_ver.major != imported_ver.major or current_ver.minor != imported_ver.minor:
|
||||
# If imported version is newer than current, always return PENDING
|
||||
if imported_ver > current_ver:
|
||||
return ImportStatus.PENDING
|
||||
|
||||
if current_ver.micro != imported_ver.micro:
|
||||
# If imported version is older than current's major, return PENDING
|
||||
if imported_ver.major < current_ver.major:
|
||||
return ImportStatus.PENDING
|
||||
|
||||
# If imported version is older than current's minor, return COMPLETED_WITH_WARNINGS
|
||||
if imported_ver.minor < current_ver.minor:
|
||||
return ImportStatus.COMPLETED_WITH_WARNINGS
|
||||
|
||||
# If imported version equals or is older than current's micro, return COMPLETED
|
||||
return ImportStatus.COMPLETED
|
||||
|
||||
|
||||
|
@ -2,7 +2,7 @@ x-shared-env: &shared-api-worker-env
|
||||
services:
|
||||
# API service
|
||||
api:
|
||||
image: langgenius/dify-api:0.15.6
|
||||
image: langgenius/dify-api:0.15.7
|
||||
restart: always
|
||||
environment:
|
||||
# Use the shared environment variables.
|
||||
@ -25,7 +25,7 @@ services:
|
||||
# worker service
|
||||
# The Celery worker for processing the queue.
|
||||
worker:
|
||||
image: langgenius/dify-api:0.15.6
|
||||
image: langgenius/dify-api:0.15.7
|
||||
restart: always
|
||||
environment:
|
||||
# Use the shared environment variables.
|
||||
@ -47,7 +47,7 @@ services:
|
||||
|
||||
# Frontend web application.
|
||||
web:
|
||||
image: langgenius/dify-web:0.15.6
|
||||
image: langgenius/dify-web:0.15.7
|
||||
restart: always
|
||||
environment:
|
||||
CONSOLE_API_URL: ${CONSOLE_API_URL:-}
|
||||
|
@ -394,7 +394,7 @@ x-shared-env: &shared-api-worker-env
|
||||
services:
|
||||
# API service
|
||||
api:
|
||||
image: langgenius/dify-api:0.15.6
|
||||
image: langgenius/dify-api:0.15.7
|
||||
restart: always
|
||||
environment:
|
||||
# Use the shared environment variables.
|
||||
@ -417,7 +417,7 @@ services:
|
||||
# worker service
|
||||
# The Celery worker for processing the queue.
|
||||
worker:
|
||||
image: langgenius/dify-api:0.15.6
|
||||
image: langgenius/dify-api:0.15.7
|
||||
restart: always
|
||||
environment:
|
||||
# Use the shared environment variables.
|
||||
@ -439,7 +439,7 @@ services:
|
||||
|
||||
# Frontend web application.
|
||||
web:
|
||||
image: langgenius/dify-web:0.15.6
|
||||
image: langgenius/dify-web:0.15.7
|
||||
restart: always
|
||||
environment:
|
||||
CONSOLE_API_URL: ${CONSOLE_API_URL:-}
|
||||
|
@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "dify-web",
|
||||
"version": "0.15.6",
|
||||
"version": "0.15.7",
|
||||
"private": true,
|
||||
"engines": {
|
||||
"node": ">=18.17.0"
|
||||
|
Loading…
x
Reference in New Issue
Block a user