add redis lock on create collection in multiple thread mode (#3054)

Co-authored-by: jyong <jyong@dify.ai>
This commit is contained in:
Jyong 2024-04-01 02:10:41 +08:00 committed by GitHub
parent 1716ac562c
commit 84d118de07
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 128 additions and 105 deletions

View File

@ -8,6 +8,7 @@ from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaK
from core.rag.datasource.keyword.keyword_base import BaseKeyword
from core.rag.models.document import Document
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models.dataset import Dataset, DatasetKeywordTable, DocumentSegment
@ -121,26 +122,28 @@ class Jieba(BaseKeyword):
db.session.commit()
def _get_dataset_keyword_table(self) -> Optional[dict]:
dataset_keyword_table = self.dataset.dataset_keyword_table
if dataset_keyword_table:
if dataset_keyword_table.keyword_table_dict:
return dataset_keyword_table.keyword_table_dict['__data__']['table']
else:
dataset_keyword_table = DatasetKeywordTable(
dataset_id=self.dataset.id,
keyword_table=json.dumps({
'__type__': 'keyword_table',
'__data__': {
"index_id": self.dataset.id,
"summary": None,
"table": {}
}
}, cls=SetEncoder)
)
db.session.add(dataset_keyword_table)
db.session.commit()
lock_name = 'keyword_indexing_lock_{}'.format(self.dataset.id)
with redis_client.lock(lock_name, timeout=20):
dataset_keyword_table = self.dataset.dataset_keyword_table
if dataset_keyword_table:
if dataset_keyword_table.keyword_table_dict:
return dataset_keyword_table.keyword_table_dict['__data__']['table']
else:
dataset_keyword_table = DatasetKeywordTable(
dataset_id=self.dataset.id,
keyword_table=json.dumps({
'__type__': 'keyword_table',
'__data__': {
"index_id": self.dataset.id,
"summary": None,
"table": {}
}
}, cls=SetEncoder)
)
db.session.add(dataset_keyword_table)
db.session.commit()
return {}
return {}
def _add_text_to_keyword_table(self, keyword_table: dict, id: str, keywords: list[str]) -> dict:
for keyword in keywords:

View File

@ -8,6 +8,7 @@ from pymilvus import MilvusClient, MilvusException, connections
from core.rag.datasource.vdb.field import Field
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.models.document import Document
from extensions.ext_redis import redis_client
logger = logging.getLogger(__name__)
@ -61,17 +62,7 @@ class MilvusVector(BaseVector):
'params': {"M": 8, "efConstruction": 64}
}
metadatas = [d.metadata for d in texts]
# Grab the existing collection if it exists
from pymilvus import utility
alias = uuid4().hex
if self._client_config.secure:
uri = "https://" + str(self._client_config.host) + ":" + str(self._client_config.port)
else:
uri = "http://" + str(self._client_config.host) + ":" + str(self._client_config.port)
connections.connect(alias=alias, uri=uri, user=self._client_config.user, password=self._client_config.password)
if not utility.has_collection(self._collection_name, using=alias):
self.create_collection(embeddings, metadatas, index_params)
self.create_collection(embeddings, metadatas, index_params)
self.add_texts(texts, embeddings)
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
@ -187,46 +178,60 @@ class MilvusVector(BaseVector):
def create_collection(
self, embeddings: list, metadatas: Optional[list[dict]] = None, index_params: Optional[dict] = None
) -> str:
from pymilvus import CollectionSchema, DataType, FieldSchema
from pymilvus.orm.types import infer_dtype_bydata
):
lock_name = 'vector_indexing_lock_{}'.format(self._collection_name)
with redis_client.lock(lock_name, timeout=20):
collection_exist_cache_key = 'vector_indexing_{}'.format(self._collection_name)
if redis_client.get(collection_exist_cache_key):
return
# Grab the existing collection if it exists
from pymilvus import utility
alias = uuid4().hex
if self._client_config.secure:
uri = "https://" + str(self._client_config.host) + ":" + str(self._client_config.port)
else:
uri = "http://" + str(self._client_config.host) + ":" + str(self._client_config.port)
connections.connect(alias=alias, uri=uri, user=self._client_config.user,
password=self._client_config.password)
if not utility.has_collection(self._collection_name, using=alias):
from pymilvus import CollectionSchema, DataType, FieldSchema
from pymilvus.orm.types import infer_dtype_bydata
# Determine embedding dim
dim = len(embeddings[0])
fields = []
if metadatas:
fields.append(FieldSchema(Field.METADATA_KEY.value, DataType.JSON, max_length=65_535))
# Determine embedding dim
dim = len(embeddings[0])
fields = []
if metadatas:
fields.append(FieldSchema(Field.METADATA_KEY.value, DataType.JSON, max_length=65_535))
# Create the text field
fields.append(
FieldSchema(Field.CONTENT_KEY.value, DataType.VARCHAR, max_length=65_535)
)
# Create the primary key field
fields.append(
FieldSchema(
Field.PRIMARY_KEY.value, DataType.INT64, is_primary=True, auto_id=True
)
)
# Create the vector field, supports binary or float vectors
fields.append(
FieldSchema(Field.VECTOR.value, infer_dtype_bydata(embeddings[0]), dim=dim)
)
# Create the text field
fields.append(
FieldSchema(Field.CONTENT_KEY.value, DataType.VARCHAR, max_length=65_535)
)
# Create the primary key field
fields.append(
FieldSchema(
Field.PRIMARY_KEY.value, DataType.INT64, is_primary=True, auto_id=True
)
)
# Create the vector field, supports binary or float vectors
fields.append(
FieldSchema(Field.VECTOR.value, infer_dtype_bydata(embeddings[0]), dim=dim)
)
# Create the schema for the collection
schema = CollectionSchema(fields)
# Create the schema for the collection
schema = CollectionSchema(fields)
for x in schema.fields:
self._fields.append(x.name)
# Since primary field is auto-id, no need to track it
self._fields.remove(Field.PRIMARY_KEY.value)
# Create the collection
collection_name = self._collection_name
self._client.create_collection_with_schema(collection_name=collection_name,
schema=schema, index_param=index_params,
consistency_level=self._consistency_level)
return collection_name
for x in schema.fields:
self._fields.append(x.name)
# Since primary field is auto-id, no need to track it
self._fields.remove(Field.PRIMARY_KEY.value)
# Create the collection
collection_name = self._collection_name
self._client.create_collection_with_schema(collection_name=collection_name,
schema=schema, index_param=index_params,
consistency_level=self._consistency_level)
redis_client.set(collection_exist_cache_key, 1, ex=3600)
def _init_client(self, config) -> MilvusClient:
if config.secure:
uri = "https://" + str(config.host) + ":" + str(config.port)

View File

@ -20,6 +20,7 @@ from qdrant_client.local.qdrant_local import QdrantLocal
from core.rag.datasource.vdb.field import Field
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.models.document import Document
from extensions.ext_redis import redis_client
if TYPE_CHECKING:
from qdrant_client import grpc # noqa
@ -77,6 +78,17 @@ class QdrantVector(BaseVector):
vector_size = len(embeddings[0])
# get collection name
collection_name = self._collection_name
# create collection
self.create_collection(collection_name, vector_size)
self.add_texts(texts, embeddings, **kwargs)
def create_collection(self, collection_name: str, vector_size: int):
lock_name = 'vector_indexing_lock_{}'.format(collection_name)
with redis_client.lock(lock_name, timeout=20):
collection_exist_cache_key = 'vector_indexing_{}'.format(self._collection_name)
if redis_client.get(collection_exist_cache_key):
return
collection_name = collection_name or uuid.uuid4().hex
all_collection_name = []
collections_response = self._client.get_collections()
@ -84,40 +96,35 @@ class QdrantVector(BaseVector):
for collection in collection_list:
all_collection_name.append(collection.name)
if collection_name not in all_collection_name:
# create collection
self.create_collection(collection_name, vector_size)
from qdrant_client.http import models as rest
vectors_config = rest.VectorParams(
size=vector_size,
distance=rest.Distance[self._distance_func],
)
hnsw_config = HnswConfigDiff(m=0, payload_m=16, ef_construct=100, full_scan_threshold=10000,
max_indexing_threads=0, on_disk=False)
self._client.recreate_collection(
collection_name=collection_name,
vectors_config=vectors_config,
hnsw_config=hnsw_config,
timeout=int(self._client_config.timeout),
)
self.add_texts(texts, embeddings, **kwargs)
def create_collection(self, collection_name: str, vector_size: int):
from qdrant_client.http import models as rest
vectors_config = rest.VectorParams(
size=vector_size,
distance=rest.Distance[self._distance_func],
)
hnsw_config = HnswConfigDiff(m=0, payload_m=16, ef_construct=100, full_scan_threshold=10000,
max_indexing_threads=0, on_disk=False)
self._client.recreate_collection(
collection_name=collection_name,
vectors_config=vectors_config,
hnsw_config=hnsw_config,
timeout=int(self._client_config.timeout),
)
# create payload index
self._client.create_payload_index(collection_name, Field.GROUP_KEY.value,
field_schema=PayloadSchemaType.KEYWORD,
field_type=PayloadSchemaType.KEYWORD)
# creat full text index
text_index_params = TextIndexParams(
type=TextIndexType.TEXT,
tokenizer=TokenizerType.MULTILINGUAL,
min_token_len=2,
max_token_len=20,
lowercase=True
)
self._client.create_payload_index(collection_name, Field.CONTENT_KEY.value,
field_schema=text_index_params)
# create payload index
self._client.create_payload_index(collection_name, Field.GROUP_KEY.value,
field_schema=PayloadSchemaType.KEYWORD,
field_type=PayloadSchemaType.KEYWORD)
# creat full text index
text_index_params = TextIndexParams(
type=TextIndexType.TEXT,
tokenizer=TokenizerType.MULTILINGUAL,
min_token_len=2,
max_token_len=20,
lowercase=True
)
self._client.create_payload_index(collection_name, Field.CONTENT_KEY.value,
field_schema=text_index_params)
redis_client.set(collection_exist_cache_key, 1, ex=3600)
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
uuids = self._get_uuids(documents)

View File

@ -8,6 +8,7 @@ from pydantic import BaseModel, root_validator
from core.rag.datasource.vdb.field import Field
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.models.document import Document
from extensions.ext_redis import redis_client
from models.dataset import Dataset
@ -79,16 +80,23 @@ class WeaviateVector(BaseVector):
}
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
schema = self._default_schema(self._collection_name)
# check whether the index already exists
if not self._client.schema.contains(schema):
# create collection
self._client.schema.create_class(schema)
# create collection
self._create_collection()
# create vector
self.add_texts(texts, embeddings)
def _create_collection(self):
lock_name = 'vector_indexing_lock_{}'.format(self._collection_name)
with redis_client.lock(lock_name, timeout=20):
collection_exist_cache_key = 'vector_indexing_{}'.format(self._collection_name)
if redis_client.get(collection_exist_cache_key):
return
schema = self._default_schema(self._collection_name)
if not self._client.schema.contains(schema):
# create collection
self._client.schema.create_class(schema)
redis_client.set(collection_exist_cache_key, 1, ex=3600)
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
uuids = self._get_uuids(documents)
texts = [d.page_content for d in documents]