mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-14 16:25:52 +08:00
r2
This commit is contained in:
parent
e710a8402c
commit
93ac6d37e9
@ -469,6 +469,7 @@ class DefaultRagPipelineBlockConfigApi(Resource):
|
||||
rag_pipeline_service = RagPipelineService()
|
||||
return rag_pipeline_service.get_default_block_config(node_type=block_type, filters=filters)
|
||||
|
||||
|
||||
class RagPipelineConfigApi(Resource):
|
||||
"""Resource for rag pipeline configuration."""
|
||||
|
||||
|
@ -4,7 +4,7 @@ from collections.abc import Mapping
|
||||
from enum import Enum
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, ValidationInfo, field_serializer, field_validator, model_validator
|
||||
from pydantic import BaseModel, Field, ValidationInfo, field_serializer, field_validator, model_validator
|
||||
|
||||
from core.datasource.entities.constants import DATASOURCE_SELECTOR_MODEL_IDENTITY
|
||||
from core.entities.provider_entities import ProviderConfig
|
||||
|
@ -192,10 +192,12 @@ class ToolProviderID(GenericProviderID):
|
||||
if self.provider_name in ["jina", "siliconflow", "stepfun", "gitee_ai"]:
|
||||
self.plugin_name = f"{self.provider_name}_tool"
|
||||
|
||||
|
||||
class DatasourceProviderID(GenericProviderID):
|
||||
def __init__(self, value: str, is_hardcoded: bool = False) -> None:
|
||||
super().__init__(value, is_hardcoded)
|
||||
|
||||
|
||||
class PluginDependency(BaseModel):
|
||||
class Type(enum.StrEnum):
|
||||
Github = PluginInstallationSource.Github.value
|
||||
|
@ -1,7 +1,13 @@
|
||||
import datetime
|
||||
import logging
|
||||
import time
|
||||
from typing import Any, cast
|
||||
|
||||
from flask_login import current_user
|
||||
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.variables.segments import ObjectSegment
|
||||
from core.workflow.entities.node_entities import NodeRunResult
|
||||
@ -11,7 +17,7 @@ from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset, Document, RateLimitLog
|
||||
from models.workflow import WorkflowNodeExecutionStatus
|
||||
from services.dataset_service import DocumentService
|
||||
from services.dataset_service import DatasetCollectionBindingService
|
||||
from services.feature_service import FeatureService
|
||||
|
||||
from .entities import KnowledgeIndexNodeData
|
||||
@ -109,14 +115,52 @@ class KnowledgeIndexNode(LLMNode):
|
||||
if not document:
|
||||
raise KnowledgeIndexNodeError(f"Document {node_data.document_id} not found.")
|
||||
|
||||
DocumentService.invoke_knowledge_index(
|
||||
dataset=dataset,
|
||||
document=document,
|
||||
chunks=chunks,
|
||||
chunk_structure=node_data.chunk_structure,
|
||||
index_method=node_data.index_method,
|
||||
retrieval_setting=node_data.retrieval_setting,
|
||||
)
|
||||
retrieval_setting = node_data.retrieval_setting
|
||||
index_method = node_data.index_method
|
||||
if not dataset.indexing_technique:
|
||||
if node_data.index_method.indexing_technique not in Dataset.INDEXING_TECHNIQUE_LIST:
|
||||
raise ValueError("Indexing technique is invalid")
|
||||
|
||||
dataset.indexing_technique = index_method.indexing_technique
|
||||
if index_method.indexing_technique == "high_quality":
|
||||
model_manager = ModelManager()
|
||||
if (
|
||||
index_method.embedding_setting.embedding_model
|
||||
and index_method.embedding_setting.embedding_model_provider
|
||||
):
|
||||
dataset_embedding_model = index_method.embedding_setting.embedding_model
|
||||
dataset_embedding_model_provider = index_method.embedding_setting.embedding_model_provider
|
||||
else:
|
||||
embedding_model = model_manager.get_default_model_instance(
|
||||
tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
|
||||
)
|
||||
dataset_embedding_model = embedding_model.model
|
||||
dataset_embedding_model_provider = embedding_model.provider
|
||||
dataset.embedding_model = dataset_embedding_model
|
||||
dataset.embedding_model_provider = dataset_embedding_model_provider
|
||||
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
|
||||
dataset_embedding_model_provider, dataset_embedding_model
|
||||
)
|
||||
dataset.collection_binding_id = dataset_collection_binding.id
|
||||
if not dataset.retrieval_model:
|
||||
default_retrieval_model = {
|
||||
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||
"reranking_enable": False,
|
||||
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
|
||||
"top_k": 2,
|
||||
"score_threshold_enabled": False,
|
||||
}
|
||||
|
||||
dataset.retrieval_model = (
|
||||
retrieval_setting.model_dump() if retrieval_setting else default_retrieval_model
|
||||
) # type: ignore
|
||||
index_processor = IndexProcessorFactory(node_data.chunk_structure).init_index_processor()
|
||||
index_processor.index(dataset, document, chunks)
|
||||
|
||||
# update document status
|
||||
document.indexing_status = "completed"
|
||||
document.completed_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
|
||||
return {
|
||||
"dataset_id": dataset.id,
|
||||
|
@ -6,7 +6,7 @@ import random
|
||||
import time
|
||||
import uuid
|
||||
from collections import Counter
|
||||
from typing import Any, Literal, Optional
|
||||
from typing import Any, Optional
|
||||
|
||||
from flask_login import current_user
|
||||
from sqlalchemy import func, select
|
||||
@ -20,9 +20,7 @@ from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.plugin.entities.plugin import ModelProviderID
|
||||
from core.rag.index_processor.constant.built_in_field import BuiltInField
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.workflow.nodes.knowledge_index.entities import IndexMethod, RetrievalSetting
|
||||
from events.dataset_event import dataset_was_deleted
|
||||
from events.document_event import document_was_deleted
|
||||
from extensions.ext_database import db
|
||||
@ -1516,60 +1514,6 @@ class DocumentService:
|
||||
|
||||
return documents, batch
|
||||
|
||||
@staticmethod
|
||||
def invoke_knowledge_index(
|
||||
dataset: Dataset,
|
||||
document: Document,
|
||||
chunks: list[Any],
|
||||
index_method: IndexMethod,
|
||||
retrieval_setting: RetrievalSetting,
|
||||
chunk_structure: Literal["text_model", "hierarchical_model"],
|
||||
):
|
||||
if not dataset.indexing_technique:
|
||||
if index_method.indexing_technique not in Dataset.INDEXING_TECHNIQUE_LIST:
|
||||
raise ValueError("Indexing technique is invalid")
|
||||
|
||||
dataset.indexing_technique = index_method.indexing_technique
|
||||
if index_method.indexing_technique == "high_quality":
|
||||
model_manager = ModelManager()
|
||||
if (
|
||||
index_method.embedding_setting.embedding_model
|
||||
and index_method.embedding_setting.embedding_model_provider
|
||||
):
|
||||
dataset_embedding_model = index_method.embedding_setting.embedding_model
|
||||
dataset_embedding_model_provider = index_method.embedding_setting.embedding_model_provider
|
||||
else:
|
||||
embedding_model = model_manager.get_default_model_instance(
|
||||
tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
|
||||
)
|
||||
dataset_embedding_model = embedding_model.model
|
||||
dataset_embedding_model_provider = embedding_model.provider
|
||||
dataset.embedding_model = dataset_embedding_model
|
||||
dataset.embedding_model_provider = dataset_embedding_model_provider
|
||||
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
|
||||
dataset_embedding_model_provider, dataset_embedding_model
|
||||
)
|
||||
dataset.collection_binding_id = dataset_collection_binding.id
|
||||
if not dataset.retrieval_model:
|
||||
default_retrieval_model = {
|
||||
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||
"reranking_enable": False,
|
||||
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
|
||||
"top_k": 2,
|
||||
"score_threshold_enabled": False,
|
||||
}
|
||||
|
||||
dataset.retrieval_model = (
|
||||
retrieval_setting.model_dump() if retrieval_setting else default_retrieval_model
|
||||
) # type: ignore
|
||||
index_processor = IndexProcessorFactory(chunk_structure).init_index_processor()
|
||||
index_processor.index(dataset, document, chunks)
|
||||
|
||||
# update document status
|
||||
document.indexing_status = "completed"
|
||||
document.completed_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
|
||||
@staticmethod
|
||||
def check_documents_upload_quota(count: int, features: FeatureModel):
|
||||
can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
|
||||
|
Loading…
x
Reference in New Issue
Block a user