mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-18 04:36:00 +08:00
feat: support more model types and builtin tools on aws/sagemaker (#8061)
Co-authored-by: Yuanbo Li <ybalbert@amazon.com>
This commit is contained in:
parent
ab7d79275e
commit
954580a4af
@ -1,17 +1,36 @@
|
||||
import json
|
||||
import logging
|
||||
from collections.abc import Generator
|
||||
from typing import Any, Optional, Union
|
||||
import re
|
||||
from collections.abc import Generator, Iterator
|
||||
from typing import Any, Optional, Union, cast
|
||||
|
||||
# from openai.types.chat import ChatCompletion, ChatCompletionChunk
|
||||
import boto3
|
||||
from sagemaker import Predictor, serializers
|
||||
from sagemaker.session import Session
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult
|
||||
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
ImagePromptMessageContent,
|
||||
PromptMessage,
|
||||
PromptMessageContent,
|
||||
PromptMessageContentType,
|
||||
PromptMessageTool,
|
||||
SystemPromptMessage,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
FetchFrom,
|
||||
I18nObject,
|
||||
ModelFeature,
|
||||
ModelPropertyKey,
|
||||
ModelType,
|
||||
ParameterRule,
|
||||
ParameterType,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, I18nObject, ModelType
|
||||
from core.model_runtime.errors.invoke import (
|
||||
InvokeAuthorizationError,
|
||||
InvokeBadRequestError,
|
||||
@ -25,12 +44,140 @@ from core.model_runtime.model_providers.__base.large_language_model import Large
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def inference(predictor, messages:list[dict[str,Any]], params:dict[str,Any], stop:list, stream=False):
|
||||
"""
|
||||
params:
|
||||
predictor : Sagemaker Predictor
|
||||
messages (List[Dict[str,Any]]): message list。
|
||||
messages = [
|
||||
{"role": "system", "content":"please answer in Chinese"},
|
||||
{"role": "user", "content": "who are you? what are you doing?"},
|
||||
]
|
||||
params (Dict[str,Any]): model parameters for LLM。
|
||||
stream (bool): False by default。
|
||||
|
||||
response:
|
||||
result of inference if stream is False
|
||||
Iterator of Chunks if stream is True
|
||||
"""
|
||||
payload = {
|
||||
"model" : params.get('model_name'),
|
||||
"stop" : stop,
|
||||
"messages": messages,
|
||||
"stream" : stream,
|
||||
"max_tokens" : params.get('max_new_tokens', params.get('max_tokens', 2048)),
|
||||
"temperature" : params.get('temperature', 0.1),
|
||||
"top_p" : params.get('top_p', 0.9),
|
||||
}
|
||||
|
||||
if not stream:
|
||||
response = predictor.predict(payload)
|
||||
return response
|
||||
else:
|
||||
response_stream = predictor.predict_stream(payload)
|
||||
return response_stream
|
||||
|
||||
class SageMakerLargeLanguageModel(LargeLanguageModel):
|
||||
"""
|
||||
Model class for Cohere large language model.
|
||||
"""
|
||||
sagemaker_client: Any = None
|
||||
sagemaker_sess : Any = None
|
||||
predictor : Any = None
|
||||
|
||||
def _handle_chat_generate_response(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
tools: list[PromptMessageTool],
|
||||
resp: bytes) -> LLMResult:
|
||||
"""
|
||||
handle normal chat generate response
|
||||
"""
|
||||
resp_obj = json.loads(resp.decode('utf-8'))
|
||||
resp_str = resp_obj.get('choices')[0].get('message').get('content')
|
||||
|
||||
if len(resp_str) == 0:
|
||||
raise InvokeServerUnavailableError("Empty response")
|
||||
|
||||
assistant_prompt_message = AssistantPromptMessage(
|
||||
content=resp_str,
|
||||
tool_calls=[]
|
||||
)
|
||||
|
||||
prompt_tokens = self._num_tokens_from_messages(messages=prompt_messages, tools=tools)
|
||||
completion_tokens = self._num_tokens_from_messages(messages=[assistant_prompt_message], tools=tools)
|
||||
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens)
|
||||
|
||||
response = LLMResult(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint=None,
|
||||
usage=usage,
|
||||
message=assistant_prompt_message,
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
def _handle_chat_stream_response(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
tools: list[PromptMessageTool],
|
||||
resp: Iterator[bytes]) -> Generator:
|
||||
"""
|
||||
handle stream chat generate response
|
||||
"""
|
||||
full_response = ''
|
||||
buffer = ""
|
||||
for chunk_bytes in resp:
|
||||
buffer += chunk_bytes.decode('utf-8')
|
||||
last_idx = 0
|
||||
for match in re.finditer(r'^data:\s*(.+?)(\n\n)', buffer):
|
||||
try:
|
||||
data = json.loads(match.group(1).strip())
|
||||
last_idx = match.span()[1]
|
||||
|
||||
if "content" in data["choices"][0]["delta"]:
|
||||
chunk_content = data["choices"][0]["delta"]["content"]
|
||||
assistant_prompt_message = AssistantPromptMessage(
|
||||
content=chunk_content,
|
||||
tool_calls=[]
|
||||
)
|
||||
|
||||
if data["choices"][0]['finish_reason'] is not None:
|
||||
temp_assistant_prompt_message = AssistantPromptMessage(
|
||||
content=full_response,
|
||||
tool_calls=[]
|
||||
)
|
||||
prompt_tokens = self._num_tokens_from_messages(messages=prompt_messages, tools=tools)
|
||||
completion_tokens = self._num_tokens_from_messages(messages=[temp_assistant_prompt_message], tools=[])
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, prompt_tokens=prompt_tokens, completion_tokens=completion_tokens)
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint=None,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=assistant_prompt_message,
|
||||
finish_reason=data["choices"][0]['finish_reason'],
|
||||
usage=usage
|
||||
),
|
||||
)
|
||||
else:
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint=None,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=assistant_prompt_message
|
||||
),
|
||||
)
|
||||
|
||||
full_response += chunk_content
|
||||
except (json.JSONDecodeError, KeyError, IndexError) as e:
|
||||
logger.info("json parse exception, content: {}".format(match.group(1).strip()))
|
||||
pass
|
||||
|
||||
buffer = buffer[last_idx:]
|
||||
|
||||
def _invoke(self, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
@ -50,9 +197,6 @@ class SageMakerLargeLanguageModel(LargeLanguageModel):
|
||||
:param user: unique user id
|
||||
:return: full response or stream response chunk generator result
|
||||
"""
|
||||
# get model mode
|
||||
model_mode = self.get_model_mode(model, credentials)
|
||||
|
||||
if not self.sagemaker_client:
|
||||
access_key = credentials.get('access_key')
|
||||
secret_key = credentials.get('secret_key')
|
||||
@ -68,37 +212,132 @@ class SageMakerLargeLanguageModel(LargeLanguageModel):
|
||||
else:
|
||||
self.sagemaker_client = boto3.client("sagemaker-runtime")
|
||||
|
||||
sagemaker_session = Session(sagemaker_runtime_client=self.sagemaker_client)
|
||||
self.predictor = Predictor(
|
||||
endpoint_name=credentials.get('sagemaker_endpoint'),
|
||||
sagemaker_session=sagemaker_session,
|
||||
serializer=serializers.JSONSerializer(),
|
||||
)
|
||||
|
||||
sagemaker_endpoint = credentials.get('sagemaker_endpoint')
|
||||
response_model = self.sagemaker_client.invoke_endpoint(
|
||||
EndpointName=sagemaker_endpoint,
|
||||
Body=json.dumps(
|
||||
{
|
||||
"inputs": prompt_messages[0].content,
|
||||
"parameters": { "stop" : stop},
|
||||
"history" : []
|
||||
}
|
||||
),
|
||||
ContentType="application/json",
|
||||
)
|
||||
|
||||
assistant_text = response_model['Body'].read().decode('utf8')
|
||||
messages:list[dict[str,Any]] = [ {"role": p.role.value, "content": p.content} for p in prompt_messages ]
|
||||
response = inference(predictor=self.predictor, messages=messages, params=model_parameters, stop=stop, stream=stream)
|
||||
|
||||
# transform assistant message to prompt message
|
||||
assistant_prompt_message = AssistantPromptMessage(
|
||||
content=assistant_text
|
||||
)
|
||||
if stream:
|
||||
if tools and len(tools) > 0:
|
||||
raise InvokeBadRequestError(f"{model}'s tool calls does not support stream mode")
|
||||
|
||||
usage = self._calc_response_usage(model, credentials, 0, 0)
|
||||
return self._handle_chat_stream_response(model=model, credentials=credentials,
|
||||
prompt_messages=prompt_messages,
|
||||
tools=tools, resp=response)
|
||||
return self._handle_chat_generate_response(model=model, credentials=credentials,
|
||||
prompt_messages=prompt_messages,
|
||||
tools=tools, resp=response)
|
||||
|
||||
response = LLMResult(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=assistant_prompt_message,
|
||||
usage=usage
|
||||
)
|
||||
def _convert_prompt_message_to_dict(self, message: PromptMessage) -> dict:
|
||||
"""
|
||||
Convert PromptMessage to dict for OpenAI Compatibility API
|
||||
"""
|
||||
if isinstance(message, UserPromptMessage):
|
||||
message = cast(UserPromptMessage, message)
|
||||
if isinstance(message.content, str):
|
||||
message_dict = {"role": "user", "content": message.content}
|
||||
else:
|
||||
sub_messages = []
|
||||
for message_content in message.content:
|
||||
if message_content.type == PromptMessageContentType.TEXT:
|
||||
message_content = cast(PromptMessageContent, message_content)
|
||||
sub_message_dict = {
|
||||
"type": "text",
|
||||
"text": message_content.data
|
||||
}
|
||||
sub_messages.append(sub_message_dict)
|
||||
elif message_content.type == PromptMessageContentType.IMAGE:
|
||||
message_content = cast(ImagePromptMessageContent, message_content)
|
||||
sub_message_dict = {
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": message_content.data,
|
||||
"detail": message_content.detail.value
|
||||
}
|
||||
}
|
||||
sub_messages.append(sub_message_dict)
|
||||
message_dict = {"role": "user", "content": sub_messages}
|
||||
elif isinstance(message, AssistantPromptMessage):
|
||||
message = cast(AssistantPromptMessage, message)
|
||||
message_dict = {"role": "assistant", "content": message.content}
|
||||
if message.tool_calls and len(message.tool_calls) > 0:
|
||||
message_dict["function_call"] = {
|
||||
"name": message.tool_calls[0].function.name,
|
||||
"arguments": message.tool_calls[0].function.arguments
|
||||
}
|
||||
elif isinstance(message, SystemPromptMessage):
|
||||
message = cast(SystemPromptMessage, message)
|
||||
message_dict = {"role": "system", "content": message.content}
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
message = cast(ToolPromptMessage, message)
|
||||
message_dict = {"tool_call_id": message.tool_call_id, "role": "tool", "content": message.content}
|
||||
else:
|
||||
raise ValueError(f"Unknown message type {type(message)}")
|
||||
|
||||
return response
|
||||
return message_dict
|
||||
|
||||
def _num_tokens_from_messages(self, messages: list[PromptMessage], tools: list[PromptMessageTool],
|
||||
is_completion_model: bool = False) -> int:
|
||||
def tokens(text: str):
|
||||
return self._get_num_tokens_by_gpt2(text)
|
||||
|
||||
if is_completion_model:
|
||||
return sum(tokens(str(message.content)) for message in messages)
|
||||
|
||||
tokens_per_message = 3
|
||||
tokens_per_name = 1
|
||||
|
||||
num_tokens = 0
|
||||
messages_dict = [self._convert_prompt_message_to_dict(m) for m in messages]
|
||||
for message in messages_dict:
|
||||
num_tokens += tokens_per_message
|
||||
for key, value in message.items():
|
||||
if isinstance(value, list):
|
||||
text = ''
|
||||
for item in value:
|
||||
if isinstance(item, dict) and item['type'] == 'text':
|
||||
text += item['text']
|
||||
|
||||
value = text
|
||||
|
||||
if key == "tool_calls":
|
||||
for tool_call in value:
|
||||
for t_key, t_value in tool_call.items():
|
||||
num_tokens += tokens(t_key)
|
||||
if t_key == "function":
|
||||
for f_key, f_value in t_value.items():
|
||||
num_tokens += tokens(f_key)
|
||||
num_tokens += tokens(f_value)
|
||||
else:
|
||||
num_tokens += tokens(t_key)
|
||||
num_tokens += tokens(t_value)
|
||||
if key == "function_call":
|
||||
for t_key, t_value in value.items():
|
||||
num_tokens += tokens(t_key)
|
||||
if t_key == "function":
|
||||
for f_key, f_value in t_value.items():
|
||||
num_tokens += tokens(f_key)
|
||||
num_tokens += tokens(f_value)
|
||||
else:
|
||||
num_tokens += tokens(t_key)
|
||||
num_tokens += tokens(t_value)
|
||||
else:
|
||||
num_tokens += tokens(str(value))
|
||||
|
||||
if key == "name":
|
||||
num_tokens += tokens_per_name
|
||||
num_tokens += 3
|
||||
|
||||
if tools:
|
||||
num_tokens += self._num_tokens_for_tools(tools)
|
||||
|
||||
return num_tokens
|
||||
|
||||
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
tools: Optional[list[PromptMessageTool]] = None) -> int:
|
||||
@ -112,10 +351,8 @@ class SageMakerLargeLanguageModel(LargeLanguageModel):
|
||||
:return:
|
||||
"""
|
||||
# get model mode
|
||||
model_mode = self.get_model_mode(model)
|
||||
|
||||
try:
|
||||
return 0
|
||||
return self._num_tokens_from_messages(prompt_messages, tools)
|
||||
except Exception as e:
|
||||
raise self._transform_invoke_error(e)
|
||||
|
||||
@ -129,7 +366,7 @@ class SageMakerLargeLanguageModel(LargeLanguageModel):
|
||||
"""
|
||||
try:
|
||||
# get model mode
|
||||
model_mode = self.get_model_mode(model)
|
||||
pass
|
||||
except Exception as ex:
|
||||
raise CredentialsValidateFailedError(str(ex))
|
||||
|
||||
@ -200,13 +437,7 @@ class SageMakerLargeLanguageModel(LargeLanguageModel):
|
||||
)
|
||||
]
|
||||
|
||||
completion_type = LLMMode.value_of(credentials["mode"])
|
||||
|
||||
if completion_type == LLMMode.CHAT:
|
||||
print(f"completion_type : {LLMMode.CHAT.value}")
|
||||
|
||||
if completion_type == LLMMode.COMPLETION:
|
||||
print(f"completion_type : {LLMMode.COMPLETION.value}")
|
||||
completion_type = LLMMode.value_of(credentials["mode"]).value
|
||||
|
||||
features = []
|
||||
|
||||
|
@ -22,7 +22,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class SageMakerRerankModel(RerankModel):
|
||||
"""
|
||||
Model class for Cohere rerank model.
|
||||
Model class for SageMaker rerank model.
|
||||
"""
|
||||
sagemaker_client: Any = None
|
||||
|
||||
|
@ -1,10 +1,11 @@
|
||||
import logging
|
||||
import uuid
|
||||
from typing import IO, Any
|
||||
|
||||
from core.model_runtime.model_providers.__base.model_provider import ModelProvider
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SageMakerProvider(ModelProvider):
|
||||
def validate_provider_credentials(self, credentials: dict) -> None:
|
||||
"""
|
||||
@ -15,3 +16,28 @@ class SageMakerProvider(ModelProvider):
|
||||
:param credentials: provider credentials, credentials form defined in `provider_credential_schema`.
|
||||
"""
|
||||
pass
|
||||
|
||||
def buffer_to_s3(s3_client:Any, file: IO[bytes], bucket:str, s3_prefix:str) -> str:
|
||||
'''
|
||||
return s3_uri of this file
|
||||
'''
|
||||
s3_key = f'{s3_prefix}{uuid.uuid4()}.mp3'
|
||||
s3_client.put_object(
|
||||
Body=file.read(),
|
||||
Bucket=bucket,
|
||||
Key=s3_key,
|
||||
ContentType='audio/mp3'
|
||||
)
|
||||
return s3_key
|
||||
|
||||
def generate_presigned_url(s3_client:Any, file: IO[bytes], bucket_name:str, s3_prefix:str, expiration=600) -> str:
|
||||
object_key = buffer_to_s3(s3_client, file, bucket_name, s3_prefix)
|
||||
try:
|
||||
response = s3_client.generate_presigned_url('get_object',
|
||||
Params={'Bucket': bucket_name, 'Key': object_key},
|
||||
ExpiresIn=expiration)
|
||||
except Exception as e:
|
||||
print(f"Error generating presigned URL: {e}")
|
||||
return None
|
||||
|
||||
return response
|
@ -21,6 +21,8 @@ supported_model_types:
|
||||
- llm
|
||||
- text-embedding
|
||||
- rerank
|
||||
- speech2text
|
||||
- tts
|
||||
configurate_methods:
|
||||
- customizable-model
|
||||
model_credential_schema:
|
||||
@ -45,14 +47,10 @@ model_credential_schema:
|
||||
zh_Hans: 选择对话类型
|
||||
en_US: Select completion mode
|
||||
options:
|
||||
- value: completion
|
||||
label:
|
||||
en_US: Completion
|
||||
zh_Hans: 补全
|
||||
- value: chat
|
||||
label:
|
||||
en_US: Chat
|
||||
zh_Hans: 对话
|
||||
zh_Hans: Chat
|
||||
- variable: sagemaker_endpoint
|
||||
label:
|
||||
en_US: sagemaker endpoint
|
||||
@ -61,6 +59,76 @@ model_credential_schema:
|
||||
placeholder:
|
||||
zh_Hans: 请输出你的Sagemaker推理端点
|
||||
en_US: Enter your Sagemaker Inference endpoint
|
||||
- variable: audio_s3_cache_bucket
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: speech2text
|
||||
label:
|
||||
zh_Hans: 音频缓存桶(s3 bucket)
|
||||
en_US: audio cache bucket(s3 bucket)
|
||||
type: text-input
|
||||
required: true
|
||||
placeholder:
|
||||
zh_Hans: sagemaker-us-east-1-******207838
|
||||
en_US: sagemaker-us-east-1-*******7838
|
||||
- variable: audio_model_type
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: tts
|
||||
label:
|
||||
en_US: Audio model type
|
||||
type: select
|
||||
required: true
|
||||
placeholder:
|
||||
zh_Hans: 语音模型类型
|
||||
en_US: Audio model type
|
||||
options:
|
||||
- value: PresetVoice
|
||||
label:
|
||||
en_US: preset voice
|
||||
zh_Hans: 内置音色
|
||||
- value: CloneVoice
|
||||
label:
|
||||
en_US: clone voice
|
||||
zh_Hans: 克隆音色
|
||||
- value: CloneVoice_CrossLingual
|
||||
label:
|
||||
en_US: crosslingual clone voice
|
||||
zh_Hans: 跨语种克隆音色
|
||||
- value: InstructVoice
|
||||
label:
|
||||
en_US: Instruct voice
|
||||
zh_Hans: 文字指令音色
|
||||
- variable: prompt_audio
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: tts
|
||||
label:
|
||||
en_US: Mock Audio Source
|
||||
type: text-input
|
||||
required: false
|
||||
placeholder:
|
||||
zh_Hans: 被模仿的音色音频
|
||||
en_US: source audio to be mocked
|
||||
- variable: prompt_text
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: tts
|
||||
label:
|
||||
en_US: Prompt Audio Text
|
||||
type: text-input
|
||||
required: false
|
||||
placeholder:
|
||||
zh_Hans: 模仿音色的对应文本
|
||||
en_US: text for the mocked source audio
|
||||
- variable: instruct_text
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: tts
|
||||
label:
|
||||
en_US: instruct text for speaker
|
||||
type: text-input
|
||||
required: false
|
||||
- variable: aws_access_key_id
|
||||
required: false
|
||||
label:
|
||||
|
@ -0,0 +1,142 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import IO, Any, Optional
|
||||
|
||||
import boto3
|
||||
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType
|
||||
from core.model_runtime.errors.invoke import (
|
||||
InvokeAuthorizationError,
|
||||
InvokeBadRequestError,
|
||||
InvokeConnectionError,
|
||||
InvokeError,
|
||||
InvokeRateLimitError,
|
||||
InvokeServerUnavailableError,
|
||||
)
|
||||
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
|
||||
from core.model_runtime.model_providers.sagemaker.sagemaker import generate_presigned_url
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class SageMakerSpeech2TextModel(Speech2TextModel):
|
||||
"""
|
||||
Model class for Xinference speech to text model.
|
||||
"""
|
||||
sagemaker_client: Any = None
|
||||
s3_client : Any = None
|
||||
|
||||
def _invoke(self, model: str, credentials: dict,
|
||||
file: IO[bytes], user: Optional[str] = None) \
|
||||
-> str:
|
||||
"""
|
||||
Invoke speech2text model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param file: audio file
|
||||
:param user: unique user id
|
||||
:return: text for given audio file
|
||||
"""
|
||||
asr_text = None
|
||||
|
||||
try:
|
||||
if not self.sagemaker_client:
|
||||
access_key = credentials.get('aws_access_key_id')
|
||||
secret_key = credentials.get('aws_secret_access_key')
|
||||
aws_region = credentials.get('aws_region')
|
||||
if aws_region:
|
||||
if access_key and secret_key:
|
||||
self.sagemaker_client = boto3.client("sagemaker-runtime",
|
||||
aws_access_key_id=access_key,
|
||||
aws_secret_access_key=secret_key,
|
||||
region_name=aws_region)
|
||||
self.s3_client = boto3.client("s3",
|
||||
aws_access_key_id=access_key,
|
||||
aws_secret_access_key=secret_key,
|
||||
region_name=aws_region)
|
||||
else:
|
||||
self.sagemaker_client = boto3.client("sagemaker-runtime", region_name=aws_region)
|
||||
self.s3_client = boto3.client("s3", region_name=aws_region)
|
||||
else:
|
||||
self.sagemaker_client = boto3.client("sagemaker-runtime")
|
||||
self.s3_client = boto3.client("s3")
|
||||
|
||||
s3_prefix='dify/speech2text/'
|
||||
sagemaker_endpoint = credentials.get('sagemaker_endpoint')
|
||||
bucket = credentials.get('audio_s3_cache_bucket')
|
||||
|
||||
s3_presign_url = generate_presigned_url(self.s3_client, file, bucket, s3_prefix)
|
||||
payload = {
|
||||
"audio_s3_presign_uri" : s3_presign_url
|
||||
}
|
||||
|
||||
response_model = self.sagemaker_client.invoke_endpoint(
|
||||
EndpointName=sagemaker_endpoint,
|
||||
Body=json.dumps(payload),
|
||||
ContentType="application/json"
|
||||
)
|
||||
json_str = response_model['Body'].read().decode('utf8')
|
||||
json_obj = json.loads(json_str)
|
||||
asr_text = json_obj['text']
|
||||
except Exception as e:
|
||||
logger.exception(f'Exception {e}, line : {line}')
|
||||
|
||||
return asr_text
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
"""
|
||||
Validate model credentials
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:return:
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
|
||||
"""
|
||||
Map model invoke error to unified error
|
||||
The key is the error type thrown to the caller
|
||||
The value is the error type thrown by the model,
|
||||
which needs to be converted into a unified error type for the caller.
|
||||
|
||||
:return: Invoke error mapping
|
||||
"""
|
||||
return {
|
||||
InvokeConnectionError: [
|
||||
InvokeConnectionError
|
||||
],
|
||||
InvokeServerUnavailableError: [
|
||||
InvokeServerUnavailableError
|
||||
],
|
||||
InvokeRateLimitError: [
|
||||
InvokeRateLimitError
|
||||
],
|
||||
InvokeAuthorizationError: [
|
||||
InvokeAuthorizationError
|
||||
],
|
||||
InvokeBadRequestError: [
|
||||
InvokeBadRequestError,
|
||||
KeyError,
|
||||
ValueError
|
||||
]
|
||||
}
|
||||
|
||||
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
|
||||
"""
|
||||
used to define customizable model schema
|
||||
"""
|
||||
entity = AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(
|
||||
en_US=model
|
||||
),
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_type=ModelType.SPEECH2TEXT,
|
||||
model_properties={ },
|
||||
parameter_rules=[]
|
||||
)
|
||||
|
||||
return entity
|
287
api/core/model_runtime/model_providers/sagemaker/tts/tts.py
Normal file
287
api/core/model_runtime/model_providers/sagemaker/tts/tts.py
Normal file
@ -0,0 +1,287 @@
|
||||
import concurrent.futures
|
||||
import copy
|
||||
import json
|
||||
import logging
|
||||
from enum import Enum
|
||||
from typing import Any, Optional
|
||||
|
||||
import boto3
|
||||
import requests
|
||||
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType
|
||||
from core.model_runtime.errors.invoke import (
|
||||
InvokeAuthorizationError,
|
||||
InvokeBadRequestError,
|
||||
InvokeConnectionError,
|
||||
InvokeError,
|
||||
InvokeRateLimitError,
|
||||
InvokeServerUnavailableError,
|
||||
)
|
||||
from core.model_runtime.model_providers.__base.tts_model import TTSModel
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class TTSModelType(Enum):
|
||||
PresetVoice = "PresetVoice"
|
||||
CloneVoice = "CloneVoice"
|
||||
CloneVoice_CrossLingual = "CloneVoice_CrossLingual"
|
||||
InstructVoice = "InstructVoice"
|
||||
|
||||
class SageMakerText2SpeechModel(TTSModel):
|
||||
|
||||
sagemaker_client: Any = None
|
||||
s3_client : Any = None
|
||||
comprehend_client : Any = None
|
||||
|
||||
def __init__(self):
|
||||
# preset voices, need support custom voice
|
||||
self.model_voices = {
|
||||
'__default': {
|
||||
'all': [
|
||||
{'name': 'Default', 'value': 'default'},
|
||||
]
|
||||
},
|
||||
'CosyVoice': {
|
||||
'zh-Hans': [
|
||||
{'name': '中文男', 'value': '中文男'},
|
||||
{'name': '中文女', 'value': '中文女'},
|
||||
{'name': '粤语女', 'value': '粤语女'},
|
||||
],
|
||||
'zh-Hant': [
|
||||
{'name': '中文男', 'value': '中文男'},
|
||||
{'name': '中文女', 'value': '中文女'},
|
||||
{'name': '粤语女', 'value': '粤语女'},
|
||||
],
|
||||
'en-US': [
|
||||
{'name': '英文男', 'value': '英文男'},
|
||||
{'name': '英文女', 'value': '英文女'},
|
||||
],
|
||||
'ja-JP': [
|
||||
{'name': '日语男', 'value': '日语男'},
|
||||
],
|
||||
'ko-KR': [
|
||||
{'name': '韩语女', 'value': '韩语女'},
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
"""
|
||||
Validate model credentials
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:return:
|
||||
"""
|
||||
pass
|
||||
|
||||
def _detect_lang_code(self, content:str, map_dict:dict=None):
|
||||
map_dict = {
|
||||
"zh" : "<|zh|>",
|
||||
"en" : "<|en|>",
|
||||
"ja" : "<|jp|>",
|
||||
"zh-TW" : "<|yue|>",
|
||||
"ko" : "<|ko|>"
|
||||
}
|
||||
|
||||
response = self.comprehend_client.detect_dominant_language(Text=content)
|
||||
language_code = response['Languages'][0]['LanguageCode']
|
||||
|
||||
return map_dict.get(language_code, '<|zh|>')
|
||||
|
||||
def _build_tts_payload(self, model_type:str, content_text:str, model_role:str, prompt_text:str, prompt_audio:str, instruct_text:str):
|
||||
if model_type == TTSModelType.PresetVoice.value and model_role:
|
||||
return { "tts_text" : content_text, "role" : model_role }
|
||||
if model_type == TTSModelType.CloneVoice.value and prompt_text and prompt_audio:
|
||||
return { "tts_text" : content_text, "prompt_text": prompt_text, "prompt_audio" : prompt_audio }
|
||||
if model_type == TTSModelType.CloneVoice_CrossLingual.value and prompt_audio:
|
||||
lang_tag = self._detect_lang_code(content_text)
|
||||
return { "tts_text" : f"{content_text}", "prompt_audio" : prompt_audio, "lang_tag" : lang_tag }
|
||||
if model_type == TTSModelType.InstructVoice.value and instruct_text and model_role:
|
||||
return { "tts_text" : content_text, "role" : model_role, "instruct_text" : instruct_text }
|
||||
|
||||
raise RuntimeError(f"Invalid params for {model_type}")
|
||||
|
||||
def _invoke(self, model: str, tenant_id: str, credentials: dict, content_text: str, voice: str,
|
||||
user: Optional[str] = None):
|
||||
"""
|
||||
_invoke text2speech model
|
||||
|
||||
:param model: model name
|
||||
:param tenant_id: user tenant id
|
||||
:param credentials: model credentials
|
||||
:param voice: model timbre
|
||||
:param content_text: text content to be translated
|
||||
:param user: unique user id
|
||||
:return: text translated to audio file
|
||||
"""
|
||||
if not self.sagemaker_client:
|
||||
access_key = credentials.get('aws_access_key_id')
|
||||
secret_key = credentials.get('aws_secret_access_key')
|
||||
aws_region = credentials.get('aws_region')
|
||||
if aws_region:
|
||||
if access_key and secret_key:
|
||||
self.sagemaker_client = boto3.client("sagemaker-runtime",
|
||||
aws_access_key_id=access_key,
|
||||
aws_secret_access_key=secret_key,
|
||||
region_name=aws_region)
|
||||
self.s3_client = boto3.client("s3",
|
||||
aws_access_key_id=access_key,
|
||||
aws_secret_access_key=secret_key,
|
||||
region_name=aws_region)
|
||||
self.comprehend_client = boto3.client('comprehend',
|
||||
aws_access_key_id=access_key,
|
||||
aws_secret_access_key=secret_key,
|
||||
region_name=aws_region)
|
||||
else:
|
||||
self.sagemaker_client = boto3.client("sagemaker-runtime", region_name=aws_region)
|
||||
self.s3_client = boto3.client("s3", region_name=aws_region)
|
||||
self.comprehend_client = boto3.client('comprehend', region_name=aws_region)
|
||||
else:
|
||||
self.sagemaker_client = boto3.client("sagemaker-runtime")
|
||||
self.s3_client = boto3.client("s3")
|
||||
self.comprehend_client = boto3.client('comprehend')
|
||||
|
||||
model_type = credentials.get('audio_model_type', 'PresetVoice')
|
||||
prompt_text = credentials.get('prompt_text')
|
||||
prompt_audio = credentials.get('prompt_audio')
|
||||
instruct_text = credentials.get('instruct_text')
|
||||
sagemaker_endpoint = credentials.get('sagemaker_endpoint')
|
||||
payload = self._build_tts_payload(
|
||||
model_type,
|
||||
content_text,
|
||||
voice,
|
||||
prompt_text,
|
||||
prompt_audio,
|
||||
instruct_text
|
||||
)
|
||||
|
||||
return self._tts_invoke_streaming(model_type, payload, sagemaker_endpoint)
|
||||
|
||||
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
|
||||
"""
|
||||
used to define customizable model schema
|
||||
"""
|
||||
entity = AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(
|
||||
en_US=model
|
||||
),
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_type=ModelType.TTS,
|
||||
model_properties={},
|
||||
parameter_rules=[]
|
||||
)
|
||||
|
||||
return entity
|
||||
|
||||
@property
|
||||
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
|
||||
"""
|
||||
Map model invoke error to unified error
|
||||
The key is the error type thrown to the caller
|
||||
The value is the error type thrown by the model,
|
||||
which needs to be converted into a unified error type for the caller.
|
||||
|
||||
:return: Invoke error mapping
|
||||
"""
|
||||
return {
|
||||
InvokeConnectionError: [
|
||||
InvokeConnectionError
|
||||
],
|
||||
InvokeServerUnavailableError: [
|
||||
InvokeServerUnavailableError
|
||||
],
|
||||
InvokeRateLimitError: [
|
||||
InvokeRateLimitError
|
||||
],
|
||||
InvokeAuthorizationError: [
|
||||
InvokeAuthorizationError
|
||||
],
|
||||
InvokeBadRequestError: [
|
||||
InvokeBadRequestError,
|
||||
KeyError,
|
||||
ValueError
|
||||
]
|
||||
}
|
||||
|
||||
def _get_model_default_voice(self, model: str, credentials: dict) -> any:
|
||||
return ""
|
||||
|
||||
def _get_model_word_limit(self, model: str, credentials: dict) -> int:
|
||||
return 15
|
||||
|
||||
def _get_model_audio_type(self, model: str, credentials: dict) -> str:
|
||||
return "mp3"
|
||||
|
||||
def _get_model_workers_limit(self, model: str, credentials: dict) -> int:
|
||||
return 5
|
||||
|
||||
def get_tts_model_voices(self, model: str, credentials: dict, language: Optional[str] = None) -> list:
|
||||
audio_model_name = 'CosyVoice'
|
||||
for key, voices in self.model_voices.items():
|
||||
if key in audio_model_name:
|
||||
if language and language in voices:
|
||||
return voices[language]
|
||||
elif 'all' in voices:
|
||||
return voices['all']
|
||||
|
||||
return self.model_voices['__default']['all']
|
||||
|
||||
def _invoke_sagemaker(self, payload:dict, endpoint:str):
|
||||
response_model = self.sagemaker_client.invoke_endpoint(
|
||||
EndpointName=endpoint,
|
||||
Body=json.dumps(payload),
|
||||
ContentType="application/json",
|
||||
)
|
||||
json_str = response_model['Body'].read().decode('utf8')
|
||||
json_obj = json.loads(json_str)
|
||||
return json_obj
|
||||
|
||||
def _tts_invoke_streaming(self, model_type:str, payload:dict, sagemaker_endpoint:str) -> any:
|
||||
"""
|
||||
_tts_invoke_streaming text2speech model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param content_text: text content to be translated
|
||||
:param voice: model timbre
|
||||
:return: text translated to audio file
|
||||
"""
|
||||
try:
|
||||
lang_tag = ''
|
||||
if model_type == TTSModelType.CloneVoice_CrossLingual.value:
|
||||
lang_tag = payload.pop('lang_tag')
|
||||
|
||||
word_limit = self._get_model_word_limit(model='', credentials={})
|
||||
content_text = payload.get("tts_text")
|
||||
if len(content_text) > word_limit:
|
||||
split_sentences = self._split_text_into_sentences(content_text, max_length=word_limit)
|
||||
sentences = [ f"{lang_tag}{s}" for s in split_sentences if len(s) ]
|
||||
len_sent = len(sentences)
|
||||
executor = concurrent.futures.ThreadPoolExecutor(max_workers=min(4, len_sent))
|
||||
payloads = [ copy.deepcopy(payload) for i in range(len_sent) ]
|
||||
for idx in range(len_sent):
|
||||
payloads[idx]["tts_text"] = sentences[idx]
|
||||
|
||||
futures = [ executor.submit(
|
||||
self._invoke_sagemaker,
|
||||
payload=payload,
|
||||
endpoint=sagemaker_endpoint,
|
||||
)
|
||||
for payload in payloads]
|
||||
|
||||
for index, future in enumerate(futures):
|
||||
resp = future.result()
|
||||
audio_bytes = requests.get(resp.get('s3_presign_url')).content
|
||||
for i in range(0, len(audio_bytes), 1024):
|
||||
yield audio_bytes[i:i + 1024]
|
||||
else:
|
||||
resp = self._invoke_sagemaker(payload, sagemaker_endpoint)
|
||||
audio_bytes = requests.get(resp.get('s3_presign_url')).content
|
||||
|
||||
for i in range(0, len(audio_bytes), 1024):
|
||||
yield audio_bytes[i:i + 1024]
|
||||
except Exception as ex:
|
||||
raise InvokeBadRequestError(str(ex))
|
@ -3,6 +3,7 @@ import logging
|
||||
from typing import Any, Union
|
||||
|
||||
import boto3
|
||||
from botocore.exceptions import BotoCoreError
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from core.tools.entities.tool_entities import ToolInvokeMessage
|
||||
@ -16,7 +17,7 @@ class GuardrailParameters(BaseModel):
|
||||
guardrail_version: str = Field(..., description="The version of the guardrail")
|
||||
source: str = Field(..., description="The source of the content")
|
||||
text: str = Field(..., description="The text to apply the guardrail to")
|
||||
aws_region: str = Field(default="us-east-1", description="AWS region for the Bedrock client")
|
||||
aws_region: str = Field(..., description="AWS region for the Bedrock client")
|
||||
|
||||
class ApplyGuardrailTool(BuiltinTool):
|
||||
def _invoke(self,
|
||||
@ -40,6 +41,8 @@ class ApplyGuardrailTool(BuiltinTool):
|
||||
source=params.source,
|
||||
content=[{"text": {"text": params.text}}]
|
||||
)
|
||||
|
||||
logger.info(f"Raw response from AWS: {json.dumps(response, indent=2)}")
|
||||
|
||||
# Check for empty response
|
||||
if not response:
|
||||
@ -69,7 +72,7 @@ class ApplyGuardrailTool(BuiltinTool):
|
||||
|
||||
return self.create_text_message(text=result)
|
||||
|
||||
except boto3.exceptions.BotoCoreError as e:
|
||||
except BotoCoreError as e:
|
||||
error_message = f'AWS service error: {str(e)}'
|
||||
logger.error(error_message, exc_info=True)
|
||||
return self.create_text_message(text=error_message)
|
||||
@ -80,4 +83,4 @@ class ApplyGuardrailTool(BuiltinTool):
|
||||
except Exception as e:
|
||||
error_message = f'An unexpected error occurred: {str(e)}'
|
||||
logger.error(error_message, exc_info=True)
|
||||
return self.create_text_message(text=error_message)
|
||||
return self.create_text_message(text=error_message)
|
@ -54,3 +54,14 @@ parameters:
|
||||
zh_Hans: 用于请求护栏审查的内容,可以是用户输入或 LLM 输出。
|
||||
llm_description: The content used for requesting guardrail review, which can be either user input or LLM output.
|
||||
form: llm
|
||||
- name: aws_region
|
||||
type: string
|
||||
required: true
|
||||
label:
|
||||
en_US: AWS Region
|
||||
zh_Hans: AWS 区域
|
||||
human_description:
|
||||
en_US: Please enter the AWS region for the Bedrock client, for example 'us-east-1'.
|
||||
zh_Hans: 请输入 Bedrock 客户端的 AWS 区域,例如 'us-east-1'。
|
||||
llm_description: Please enter the AWS region for the Bedrock client, for example 'us-east-1'.
|
||||
form: form
|
||||
|
@ -0,0 +1,71 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, Union
|
||||
|
||||
import boto3
|
||||
|
||||
from core.tools.entities.tool_entities import ToolInvokeMessage
|
||||
from core.tools.tool.builtin_tool import BuiltinTool
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
console_handler = logging.StreamHandler()
|
||||
logger.addHandler(console_handler)
|
||||
|
||||
|
||||
class LambdaYamlToJsonTool(BuiltinTool):
|
||||
lambda_client: Any = None
|
||||
|
||||
def _invoke_lambda(self, lambda_name: str, yaml_content: str) -> str:
|
||||
msg = {
|
||||
"body": yaml_content
|
||||
}
|
||||
logger.info(json.dumps(msg))
|
||||
|
||||
invoke_response = self.lambda_client.invoke(FunctionName=lambda_name,
|
||||
InvocationType='RequestResponse',
|
||||
Payload=json.dumps(msg))
|
||||
response_body = invoke_response['Payload']
|
||||
|
||||
response_str = response_body.read().decode("utf-8")
|
||||
resp_json = json.loads(response_str)
|
||||
|
||||
logger.info(resp_json)
|
||||
if resp_json['statusCode'] != 200:
|
||||
raise Exception(f"Invalid status code: {response_str}")
|
||||
|
||||
return resp_json['body']
|
||||
|
||||
def _invoke(self,
|
||||
user_id: str,
|
||||
tool_parameters: dict[str, Any],
|
||||
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
|
||||
"""
|
||||
invoke tools
|
||||
"""
|
||||
try:
|
||||
if not self.lambda_client:
|
||||
aws_region = tool_parameters.get('aws_region') # todo: move aws_region out, and update client region
|
||||
if aws_region:
|
||||
self.lambda_client = boto3.client("lambda", region_name=aws_region)
|
||||
else:
|
||||
self.lambda_client = boto3.client("lambda")
|
||||
|
||||
yaml_content = tool_parameters.get('yaml_content', '')
|
||||
if not yaml_content:
|
||||
return self.create_text_message('Please input yaml_content')
|
||||
|
||||
lambda_name = tool_parameters.get('lambda_name', '')
|
||||
if not lambda_name:
|
||||
return self.create_text_message('Please input lambda_name')
|
||||
logger.debug(f'{json.dumps(tool_parameters, indent=2, ensure_ascii=False)}')
|
||||
|
||||
result = self._invoke_lambda(lambda_name, yaml_content)
|
||||
logger.debug(result)
|
||||
|
||||
return self.create_text_message(result)
|
||||
except Exception as e:
|
||||
return self.create_text_message(f'Exception: {str(e)}')
|
||||
|
||||
console_handler.flush()
|
@ -0,0 +1,53 @@
|
||||
identity:
|
||||
name: lambda_yaml_to_json
|
||||
author: AWS
|
||||
label:
|
||||
en_US: LambdaYamlToJson
|
||||
zh_Hans: LambdaYamlToJson
|
||||
pt_BR: LambdaYamlToJson
|
||||
icon: icon.svg
|
||||
description:
|
||||
human:
|
||||
en_US: A tool to convert yaml to json using AWS Lambda.
|
||||
zh_Hans: 将 YAML 转为 JSON 的工具(通过AWS Lambda)。
|
||||
pt_BR: A tool to convert yaml to json using AWS Lambda.
|
||||
llm: A tool to convert yaml to json.
|
||||
parameters:
|
||||
- name: yaml_content
|
||||
type: string
|
||||
required: true
|
||||
label:
|
||||
en_US: YAML content to convert for
|
||||
zh_Hans: YAML 内容
|
||||
pt_BR: YAML content to convert for
|
||||
human_description:
|
||||
en_US: YAML content to convert for
|
||||
zh_Hans: YAML 内容
|
||||
pt_BR: YAML content to convert for
|
||||
llm_description: YAML content to convert for
|
||||
form: llm
|
||||
- name: aws_region
|
||||
type: string
|
||||
required: false
|
||||
label:
|
||||
en_US: region of lambda
|
||||
zh_Hans: Lambda 所在的region
|
||||
pt_BR: region of lambda
|
||||
human_description:
|
||||
en_US: region of lambda
|
||||
zh_Hans: Lambda 所在的region
|
||||
pt_BR: region of lambda
|
||||
llm_description: region of lambda
|
||||
form: form
|
||||
- name: lambda_name
|
||||
type: string
|
||||
required: false
|
||||
label:
|
||||
en_US: name of lambda
|
||||
zh_Hans: Lambda 名称
|
||||
pt_BR: name of lambda
|
||||
human_description:
|
||||
en_US: name of lambda
|
||||
zh_Hans: Lambda 名称
|
||||
pt_BR: name of lambda
|
||||
form: form
|
@ -78,9 +78,7 @@ class SageMakerReRankTool(BuiltinTool):
|
||||
sorted_candidate_docs = sorted(candidate_docs, key=lambda x: x['score'], reverse=True)
|
||||
|
||||
line = 9
|
||||
results_str = json.dumps(sorted_candidate_docs[:self.topk], ensure_ascii=False)
|
||||
return self.create_text_message(text=results_str)
|
||||
return [ self.create_json_message(res) for res in sorted_candidate_docs[:self.topk] ]
|
||||
|
||||
except Exception as e:
|
||||
return self.create_text_message(f'Exception {str(e)}, line : {line}')
|
||||
|
||||
return self.create_text_message(f'Exception {str(e)}, line : {line}')
|
95
api/core/tools/provider/builtin/aws/tools/sagemaker_tts.py
Normal file
95
api/core/tools/provider/builtin/aws/tools/sagemaker_tts.py
Normal file
@ -0,0 +1,95 @@
|
||||
import json
|
||||
from enum import Enum
|
||||
from typing import Any, Union
|
||||
|
||||
import boto3
|
||||
|
||||
from core.tools.entities.tool_entities import ToolInvokeMessage
|
||||
from core.tools.tool.builtin_tool import BuiltinTool
|
||||
|
||||
|
||||
class TTSModelType(Enum):
|
||||
PresetVoice = "PresetVoice"
|
||||
CloneVoice = "CloneVoice"
|
||||
CloneVoice_CrossLingual = "CloneVoice_CrossLingual"
|
||||
InstructVoice = "InstructVoice"
|
||||
|
||||
class SageMakerTTSTool(BuiltinTool):
|
||||
sagemaker_client: Any = None
|
||||
sagemaker_endpoint:str = None
|
||||
s3_client : Any = None
|
||||
comprehend_client : Any = None
|
||||
|
||||
def _detect_lang_code(self, content:str, map_dict:dict=None):
|
||||
map_dict = {
|
||||
"zh" : "<|zh|>",
|
||||
"en" : "<|en|>",
|
||||
"ja" : "<|jp|>",
|
||||
"zh-TW" : "<|yue|>",
|
||||
"ko" : "<|ko|>"
|
||||
}
|
||||
|
||||
response = self.comprehend_client.detect_dominant_language(Text=content)
|
||||
language_code = response['Languages'][0]['LanguageCode']
|
||||
return map_dict.get(language_code, '<|zh|>')
|
||||
|
||||
def _build_tts_payload(self, model_type:str, content_text:str, model_role:str, prompt_text:str, prompt_audio:str, instruct_text:str):
|
||||
if model_type == TTSModelType.PresetVoice.value and model_role:
|
||||
return { "tts_text" : content_text, "role" : model_role }
|
||||
if model_type == TTSModelType.CloneVoice.value and prompt_text and prompt_audio:
|
||||
return { "tts_text" : content_text, "prompt_text": prompt_text, "prompt_audio" : prompt_audio }
|
||||
if model_type == TTSModelType.CloneVoice_CrossLingual.value and prompt_audio:
|
||||
lang_tag = self._detect_lang_code(content_text)
|
||||
return { "tts_text" : f"{content_text}", "prompt_audio" : prompt_audio, "lang_tag" : lang_tag }
|
||||
if model_type == TTSModelType.InstructVoice.value and instruct_text and model_role:
|
||||
return { "tts_text" : content_text, "role" : model_role, "instruct_text" : instruct_text }
|
||||
|
||||
raise RuntimeError(f"Invalid params for {model_type}")
|
||||
|
||||
def _invoke_sagemaker(self, payload:dict, endpoint:str):
|
||||
response_model = self.sagemaker_client.invoke_endpoint(
|
||||
EndpointName=endpoint,
|
||||
Body=json.dumps(payload),
|
||||
ContentType="application/json",
|
||||
)
|
||||
json_str = response_model['Body'].read().decode('utf8')
|
||||
json_obj = json.loads(json_str)
|
||||
return json_obj
|
||||
|
||||
def _invoke(self,
|
||||
user_id: str,
|
||||
tool_parameters: dict[str, Any],
|
||||
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
|
||||
"""
|
||||
invoke tools
|
||||
"""
|
||||
try:
|
||||
if not self.sagemaker_client:
|
||||
aws_region = tool_parameters.get('aws_region')
|
||||
if aws_region:
|
||||
self.sagemaker_client = boto3.client("sagemaker-runtime", region_name=aws_region)
|
||||
self.s3_client = boto3.client("s3", region_name=aws_region)
|
||||
self.comprehend_client = boto3.client('comprehend', region_name=aws_region)
|
||||
else:
|
||||
self.sagemaker_client = boto3.client("sagemaker-runtime")
|
||||
self.s3_client = boto3.client("s3")
|
||||
self.comprehend_client = boto3.client('comprehend')
|
||||
|
||||
if not self.sagemaker_endpoint:
|
||||
self.sagemaker_endpoint = tool_parameters.get('sagemaker_endpoint')
|
||||
|
||||
tts_text = tool_parameters.get('tts_text')
|
||||
tts_infer_type = tool_parameters.get('tts_infer_type')
|
||||
|
||||
voice = tool_parameters.get('voice')
|
||||
mock_voice_audio = tool_parameters.get('mock_voice_audio')
|
||||
mock_voice_text = tool_parameters.get('mock_voice_text')
|
||||
voice_instruct_prompt = tool_parameters.get('voice_instruct_prompt')
|
||||
payload = self._build_tts_payload(tts_infer_type, tts_text, voice, mock_voice_text, mock_voice_audio, voice_instruct_prompt)
|
||||
|
||||
result = self._invoke_sagemaker(payload, self.sagemaker_endpoint)
|
||||
|
||||
return self.create_text_message(text=result['s3_presign_url'])
|
||||
|
||||
except Exception as e:
|
||||
return self.create_text_message(f'Exception {str(e)}')
|
149
api/core/tools/provider/builtin/aws/tools/sagemaker_tts.yaml
Normal file
149
api/core/tools/provider/builtin/aws/tools/sagemaker_tts.yaml
Normal file
@ -0,0 +1,149 @@
|
||||
identity:
|
||||
name: sagemaker_tts
|
||||
author: AWS
|
||||
label:
|
||||
en_US: SagemakerTTS
|
||||
zh_Hans: Sagemaker语音合成
|
||||
pt_BR: SagemakerTTS
|
||||
icon: icon.svg
|
||||
description:
|
||||
human:
|
||||
en_US: A tool for Speech synthesis - https://github.com/aws-samples/dify-aws-tool
|
||||
zh_Hans: Sagemaker语音合成工具, 请参考 Github Repo - https://github.com/aws-samples/dify-aws-tool上的部署脚本
|
||||
pt_BR: A tool for Speech synthesis.
|
||||
llm: A tool for Speech synthesis. You can find deploy notebook on Github Repo - https://github.com/aws-samples/dify-aws-tool
|
||||
parameters:
|
||||
- name: sagemaker_endpoint
|
||||
type: string
|
||||
required: true
|
||||
label:
|
||||
en_US: sagemaker endpoint for tts
|
||||
zh_Hans: 语音生成的SageMaker端点
|
||||
pt_BR: sagemaker endpoint for tts
|
||||
human_description:
|
||||
en_US: sagemaker endpoint for tts
|
||||
zh_Hans: 语音生成的SageMaker端点
|
||||
pt_BR: sagemaker endpoint for tts
|
||||
llm_description: sagemaker endpoint for tts
|
||||
form: form
|
||||
- name: tts_text
|
||||
type: string
|
||||
required: true
|
||||
label:
|
||||
en_US: tts text
|
||||
zh_Hans: 语音合成原文
|
||||
pt_BR: tts text
|
||||
human_description:
|
||||
en_US: tts text
|
||||
zh_Hans: 语音合成原文
|
||||
pt_BR: tts text
|
||||
llm_description: tts text
|
||||
form: llm
|
||||
- name: tts_infer_type
|
||||
type: select
|
||||
required: false
|
||||
label:
|
||||
en_US: tts infer type
|
||||
zh_Hans: 合成方式
|
||||
pt_BR: tts infer type
|
||||
human_description:
|
||||
en_US: tts infer type
|
||||
zh_Hans: 合成方式
|
||||
pt_BR: tts infer type
|
||||
llm_description: tts infer type
|
||||
options:
|
||||
- value: PresetVoice
|
||||
label:
|
||||
en_US: preset voice
|
||||
zh_Hans: 预置音色
|
||||
- value: CloneVoice
|
||||
label:
|
||||
en_US: clone voice
|
||||
zh_Hans: 克隆音色
|
||||
- value: CloneVoice_CrossLingual
|
||||
label:
|
||||
en_US: clone crossLingual voice
|
||||
zh_Hans: 克隆音色(跨语言)
|
||||
- value: InstructVoice
|
||||
label:
|
||||
en_US: instruct voice
|
||||
zh_Hans: 指令音色
|
||||
form: form
|
||||
- name: voice
|
||||
type: select
|
||||
required: false
|
||||
label:
|
||||
en_US: preset voice
|
||||
zh_Hans: 预置音色
|
||||
pt_BR: preset voice
|
||||
human_description:
|
||||
en_US: preset voice
|
||||
zh_Hans: 预置音色
|
||||
pt_BR: preset voice
|
||||
llm_description: preset voice
|
||||
options:
|
||||
- value: 中文男
|
||||
label:
|
||||
en_US: zh-cn male
|
||||
zh_Hans: 中文男
|
||||
- value: 中文女
|
||||
label:
|
||||
en_US: zh-cn female
|
||||
zh_Hans: 中文女
|
||||
- value: 粤语女
|
||||
label:
|
||||
en_US: zh-TW female
|
||||
zh_Hans: 粤语女
|
||||
form: form
|
||||
- name: mock_voice_audio
|
||||
type: string
|
||||
required: false
|
||||
label:
|
||||
en_US: clone voice link
|
||||
zh_Hans: 克隆音频链接
|
||||
pt_BR: clone voice link
|
||||
human_description:
|
||||
en_US: clone voice link
|
||||
zh_Hans: 克隆音频链接
|
||||
pt_BR: clone voice link
|
||||
llm_description: clone voice link
|
||||
form: llm
|
||||
- name: mock_voice_text
|
||||
type: string
|
||||
required: false
|
||||
label:
|
||||
en_US: text of clone voice
|
||||
zh_Hans: 克隆音频对应文本
|
||||
pt_BR: text of clone voice
|
||||
human_description:
|
||||
en_US: text of clone voice
|
||||
zh_Hans: 克隆音频对应文本
|
||||
pt_BR: text of clone voice
|
||||
llm_description: text of clone voice
|
||||
form: llm
|
||||
- name: voice_instruct_prompt
|
||||
type: string
|
||||
required: false
|
||||
label:
|
||||
en_US: instruct prompt for voice
|
||||
zh_Hans: 音色指令文本
|
||||
pt_BR: instruct prompt for voice
|
||||
human_description:
|
||||
en_US: instruct prompt for voice
|
||||
zh_Hans: 音色指令文本
|
||||
pt_BR: instruct prompt for voice
|
||||
llm_description: instruct prompt for voice
|
||||
form: llm
|
||||
- name: aws_region
|
||||
type: string
|
||||
required: false
|
||||
label:
|
||||
en_US: region of sagemaker endpoint
|
||||
zh_Hans: SageMaker 端点所在的region
|
||||
pt_BR: region of sagemaker endpoint
|
||||
human_description:
|
||||
en_US: region of sagemaker endpoint
|
||||
zh_Hans: SageMaker 端点所在的region
|
||||
pt_BR: region of sagemaker endpoint
|
||||
llm_description: region of sagemaker endpoint
|
||||
form: form
|
275
api/poetry.lock
generated
275
api/poetry.lock
generated
@ -520,22 +520,22 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "attrs"
|
||||
version = "24.2.0"
|
||||
version = "23.2.0"
|
||||
description = "Classes Without Boilerplate"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"},
|
||||
{file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"},
|
||||
{file = "attrs-23.2.0-py3-none-any.whl", hash = "sha256:99b87a485a5820b23b879f04c2305b44b951b502fd64be915879d77a7e8fc6f1"},
|
||||
{file = "attrs-23.2.0.tar.gz", hash = "sha256:935dc3b529c262f6cf76e50877d35a4bd3c1de194fd41f47a2b7ae8f19971f30"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"]
|
||||
cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"]
|
||||
dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"]
|
||||
docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"]
|
||||
tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"]
|
||||
tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"]
|
||||
cov = ["attrs[tests]", "coverage[toml] (>=5.3)"]
|
||||
dev = ["attrs[tests]", "pre-commit"]
|
||||
docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"]
|
||||
tests = ["attrs[tests-no-zope]", "zope-interface"]
|
||||
tests-mypy = ["mypy (>=1.6)", "pytest-mypy-plugins"]
|
||||
tests-no-zope = ["attrs[tests-mypy]", "cloudpickle", "hypothesis", "pympler", "pytest (>=4.3.0)", "pytest-xdist[psutil]"]
|
||||
|
||||
[[package]]
|
||||
name = "authlib"
|
||||
@ -1719,6 +1719,17 @@ lz4 = ["clickhouse-cityhash (>=1.0.2.1)", "lz4", "lz4 (<=3.0.1)"]
|
||||
numpy = ["numpy (>=1.12.0)", "pandas (>=0.24.0)"]
|
||||
zstd = ["clickhouse-cityhash (>=1.0.2.1)", "zstd"]
|
||||
|
||||
[[package]]
|
||||
name = "cloudpickle"
|
||||
version = "2.2.1"
|
||||
description = "Extended pickling support for Python objects"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "cloudpickle-2.2.1-py3-none-any.whl", hash = "sha256:61f594d1f4c295fa5cd9014ceb3a1fc4a70b0de1164b94fbc2d854ccba056f9f"},
|
||||
{file = "cloudpickle-2.2.1.tar.gz", hash = "sha256:d89684b8de9e34a2a43b3460fbca07d09d6e25ce858df4d5a44240403b6178f5"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "cloudscraper"
|
||||
version = "1.2.71"
|
||||
@ -2151,6 +2162,21 @@ wrapt = ">=1.10,<2"
|
||||
[package.extras]
|
||||
dev = ["PyTest", "PyTest-Cov", "bump2version (<1)", "sphinx (<2)", "tox"]
|
||||
|
||||
[[package]]
|
||||
name = "dill"
|
||||
version = "0.3.8"
|
||||
description = "serialize all of Python"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "dill-0.3.8-py3-none-any.whl", hash = "sha256:c36ca9ffb54365bdd2f8eb3eff7d2a21237f8452b57ace88b1ac615b7e815bd7"},
|
||||
{file = "dill-0.3.8.tar.gz", hash = "sha256:3ebe3c479ad625c4553aca177444d89b486b1d84982eeacded644afc0cf797ca"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
graph = ["objgraph (>=1.7.2)"]
|
||||
profile = ["gprof2dot (>=2022.7.29)"]
|
||||
|
||||
[[package]]
|
||||
name = "distro"
|
||||
version = "1.9.0"
|
||||
@ -2162,6 +2188,28 @@ files = [
|
||||
{file = "distro-1.9.0.tar.gz", hash = "sha256:2fa77c6fd8940f116ee1d6b94a2f90b13b5ea8d019b98bc8bafdcabcdd9bdbed"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "docker"
|
||||
version = "7.1.0"
|
||||
description = "A Python library for the Docker Engine API."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "docker-7.1.0-py3-none-any.whl", hash = "sha256:c96b93b7f0a746f9e77d325bcfb87422a3d8bd4f03136ae8a85b37f1898d5fc0"},
|
||||
{file = "docker-7.1.0.tar.gz", hash = "sha256:ad8c70e6e3f8926cb8a92619b832b4ea5299e2831c14284663184e200546fa6c"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
pywin32 = {version = ">=304", markers = "sys_platform == \"win32\""}
|
||||
requests = ">=2.26.0"
|
||||
urllib3 = ">=1.26.0"
|
||||
|
||||
[package.extras]
|
||||
dev = ["coverage (==7.2.7)", "pytest (==7.4.2)", "pytest-cov (==4.1.0)", "pytest-timeout (==2.1.0)", "ruff (==0.1.8)"]
|
||||
docs = ["myst-parser (==0.18.0)", "sphinx (==5.1.1)"]
|
||||
ssh = ["paramiko (>=2.4.3)"]
|
||||
websockets = ["websocket-client (>=1.3.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "docstring-parser"
|
||||
version = "0.16"
|
||||
@ -3309,6 +3357,21 @@ typing-extensions = "*"
|
||||
[package.extras]
|
||||
dev = ["Pillow", "absl-py", "black", "ipython", "nose2", "pandas", "pytype", "pyyaml"]
|
||||
|
||||
[[package]]
|
||||
name = "google-pasta"
|
||||
version = "0.2.0"
|
||||
description = "pasta is an AST-based Python refactoring library"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "google-pasta-0.2.0.tar.gz", hash = "sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e"},
|
||||
{file = "google_pasta-0.2.0-py2-none-any.whl", hash = "sha256:4612951da876b1a10fe3960d7226f0c7682cf901e16ac06e473b267a5afa8954"},
|
||||
{file = "google_pasta-0.2.0-py3-none-any.whl", hash = "sha256:b32482794a366b5366a32c92a9a9201b107821889935a02b3e51f6b432ea84ed"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
six = "*"
|
||||
|
||||
[[package]]
|
||||
name = "google-resumable-media"
|
||||
version = "2.7.2"
|
||||
@ -3930,22 +3993,22 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "importlib-metadata"
|
||||
version = "8.4.0"
|
||||
version = "6.11.0"
|
||||
description = "Read metadata from Python packages"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "importlib_metadata-8.4.0-py3-none-any.whl", hash = "sha256:66f342cc6ac9818fc6ff340576acd24d65ba0b3efabb2b4ac08b598965a4a2f1"},
|
||||
{file = "importlib_metadata-8.4.0.tar.gz", hash = "sha256:9a547d3bc3608b025f93d403fdd1aae741c24fbb8314df4b155675742ce303c5"},
|
||||
{file = "importlib_metadata-6.11.0-py3-none-any.whl", hash = "sha256:f0afba6205ad8f8947c7d338b5342d5db2afbfd82f9cbef7879a9539cc12eb9b"},
|
||||
{file = "importlib_metadata-6.11.0.tar.gz", hash = "sha256:1231cf92d825c9e03cfc4da076a16de6422c863558229ea0b22b675657463443"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
zipp = ">=0.5"
|
||||
|
||||
[package.extras]
|
||||
doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
|
||||
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"]
|
||||
perf = ["ipython"]
|
||||
test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"]
|
||||
testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)", "pytest-ruff"]
|
||||
|
||||
[[package]]
|
||||
name = "importlib-resources"
|
||||
@ -4929,6 +4992,22 @@ files = [
|
||||
[package.extras]
|
||||
test = ["mypy (>=1.0)", "pytest (>=7.0.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "mock"
|
||||
version = "4.0.3"
|
||||
description = "Rolling backport of unittest.mock for all Pythons"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "mock-4.0.3-py3-none-any.whl", hash = "sha256:122fcb64ee37cfad5b3f48d7a7d51875d7031aaf3d8be7c42e2bee25044eee62"},
|
||||
{file = "mock-4.0.3.tar.gz", hash = "sha256:7d3fbbde18228f4ff2f1f119a45cdffa458b4c0dee32eb4d2bb2f82554bac7bc"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
build = ["blurb", "twine", "wheel"]
|
||||
docs = ["sphinx"]
|
||||
test = ["pytest (<5.4)", "pytest-cov"]
|
||||
|
||||
[[package]]
|
||||
name = "monotonic"
|
||||
version = "1.6"
|
||||
@ -5128,6 +5207,30 @@ files = [
|
||||
{file = "multidict-6.0.5.tar.gz", hash = "sha256:f7e301075edaf50500f0b341543c41194d8df3ae5caf4702f2095f3ca73dd8da"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "multiprocess"
|
||||
version = "0.70.16"
|
||||
description = "better multiprocessing and multithreading in Python"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "multiprocess-0.70.16-pp310-pypy310_pp73-macosx_10_13_x86_64.whl", hash = "sha256:476887be10e2f59ff183c006af746cb6f1fd0eadcfd4ef49e605cbe2659920ee"},
|
||||
{file = "multiprocess-0.70.16-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:d951bed82c8f73929ac82c61f01a7b5ce8f3e5ef40f5b52553b4f547ce2b08ec"},
|
||||
{file = "multiprocess-0.70.16-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:37b55f71c07e2d741374998c043b9520b626a8dddc8b3129222ca4f1a06ef67a"},
|
||||
{file = "multiprocess-0.70.16-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:ba8c31889abf4511c7308a8c52bb4a30b9d590e7f58523302ba00237702ca054"},
|
||||
{file = "multiprocess-0.70.16-pp39-pypy39_pp73-macosx_10_13_x86_64.whl", hash = "sha256:0dfd078c306e08d46d7a8d06fb120313d87aa43af60d66da43ffff40b44d2f41"},
|
||||
{file = "multiprocess-0.70.16-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e7b9d0f307cd9bd50851afaac0dba2cb6c44449efff697df7c7645f7d3f2be3a"},
|
||||
{file = "multiprocess-0.70.16-py310-none-any.whl", hash = "sha256:c4a9944c67bd49f823687463660a2d6daae94c289adff97e0f9d696ba6371d02"},
|
||||
{file = "multiprocess-0.70.16-py311-none-any.whl", hash = "sha256:af4cabb0dac72abfb1e794fa7855c325fd2b55a10a44628a3c1ad3311c04127a"},
|
||||
{file = "multiprocess-0.70.16-py312-none-any.whl", hash = "sha256:fc0544c531920dde3b00c29863377f87e1632601092ea2daca74e4beb40faa2e"},
|
||||
{file = "multiprocess-0.70.16-py38-none-any.whl", hash = "sha256:a71d82033454891091a226dfc319d0cfa8019a4e888ef9ca910372a446de4435"},
|
||||
{file = "multiprocess-0.70.16-py39-none-any.whl", hash = "sha256:a0bafd3ae1b732eac64be2e72038231c1ba97724b60b09400d68f229fcc2fbf3"},
|
||||
{file = "multiprocess-0.70.16.tar.gz", hash = "sha256:161af703d4652a0e1410be6abccecde4a7ddffd19341be0a7011b94aeb171ac1"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
dill = ">=0.3.8"
|
||||
|
||||
[[package]]
|
||||
name = "multitasking"
|
||||
version = "0.0.11"
|
||||
@ -5955,6 +6058,23 @@ sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-d
|
||||
test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"]
|
||||
xml = ["lxml (>=4.9.2)"]
|
||||
|
||||
[[package]]
|
||||
name = "pathos"
|
||||
version = "0.3.2"
|
||||
description = "parallel graph management and execution in heterogeneous computing"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "pathos-0.3.2-py3-none-any.whl", hash = "sha256:d669275e6eb4b3fbcd2846d7a6d1bba315fe23add0c614445ba1408d8b38bafe"},
|
||||
{file = "pathos-0.3.2.tar.gz", hash = "sha256:4f2a42bc1e10ccf0fe71961e7145fc1437018b6b21bd93b2446abc3983e49a7a"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
dill = ">=0.3.8"
|
||||
multiprocess = ">=0.70.16"
|
||||
pox = ">=0.3.4"
|
||||
ppft = ">=1.7.6.8"
|
||||
|
||||
[[package]]
|
||||
name = "peewee"
|
||||
version = "3.17.6"
|
||||
@ -6196,6 +6316,31 @@ dev = ["black", "flake8", "flake8-print", "isort", "pre-commit"]
|
||||
sentry = ["django", "sentry-sdk"]
|
||||
test = ["coverage", "django", "flake8", "freezegun (==0.3.15)", "mock (>=2.0.0)", "pylint", "pytest", "pytest-timeout"]
|
||||
|
||||
[[package]]
|
||||
name = "pox"
|
||||
version = "0.3.4"
|
||||
description = "utilities for filesystem exploration and automated builds"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "pox-0.3.4-py3-none-any.whl", hash = "sha256:651b8ae8a7b341b7bfd267f67f63106daeb9805f1ac11f323d5280d2da93fdb6"},
|
||||
{file = "pox-0.3.4.tar.gz", hash = "sha256:16e6eca84f1bec3828210b06b052adf04cf2ab20c22fd6fbef5f78320c9a6fed"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "ppft"
|
||||
version = "1.7.6.8"
|
||||
description = "distributed and parallel Python"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "ppft-1.7.6.8-py3-none-any.whl", hash = "sha256:de2dd4b1b080923dd9627fbdea52649fd741c752fce4f3cf37e26f785df23d9b"},
|
||||
{file = "ppft-1.7.6.8.tar.gz", hash = "sha256:76a429a7d7b74c4d743f6dba8351e58d62b6432ed65df9fe204790160dab996d"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
dill = ["dill (>=0.3.8)"]
|
||||
|
||||
[[package]]
|
||||
name = "primp"
|
||||
version = "0.6.1"
|
||||
@ -8004,6 +8149,84 @@ tensorflow = ["safetensors[numpy]", "tensorflow (>=2.11.0)"]
|
||||
testing = ["h5py (>=3.7.0)", "huggingface-hub (>=0.12.1)", "hypothesis (>=6.70.2)", "pytest (>=7.2.0)", "pytest-benchmark (>=4.0.0)", "safetensors[numpy]", "setuptools-rust (>=1.5.2)"]
|
||||
torch = ["safetensors[numpy]", "torch (>=1.10)"]
|
||||
|
||||
[[package]]
|
||||
name = "sagemaker"
|
||||
version = "2.231.0"
|
||||
description = "Open source library for training and deploying models on Amazon SageMaker."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "sagemaker-2.231.0-py3-none-any.whl", hash = "sha256:5b6d84484a58c6ac8b22af42c6c5e0ea3c5f42d719345fe6aafba42f93635000"},
|
||||
{file = "sagemaker-2.231.0.tar.gz", hash = "sha256:d49ee9c35725832dd9810708938af723201b831e82924a3a6ac1c4260a3d8239"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
attrs = ">=23.1.0,<24"
|
||||
boto3 = ">=1.34.142,<2.0"
|
||||
cloudpickle = "2.2.1"
|
||||
docker = "*"
|
||||
google-pasta = "*"
|
||||
importlib-metadata = ">=1.4.0,<7.0"
|
||||
jsonschema = "*"
|
||||
numpy = ">=1.9.0,<2.0"
|
||||
packaging = ">=20.0"
|
||||
pandas = "*"
|
||||
pathos = "*"
|
||||
platformdirs = "*"
|
||||
protobuf = ">=3.12,<5.0"
|
||||
psutil = "*"
|
||||
pyyaml = ">=6.0,<7.0"
|
||||
requests = "*"
|
||||
sagemaker-core = ">=1.0.0,<2.0.0"
|
||||
schema = "*"
|
||||
smdebug-rulesconfig = "1.0.1"
|
||||
tblib = ">=1.7.0,<4"
|
||||
tqdm = "*"
|
||||
urllib3 = ">=1.26.8,<3.0.0"
|
||||
|
||||
[package.extras]
|
||||
all = ["accelerate (>=0.24.1,<=0.27.0)", "docker (>=5.0.2,<8.0.0)", "fastapi (>=0.111.0)", "nest-asyncio", "pyspark (==3.3.1)", "pyyaml (>=5.4.1,<7)", "sagemaker-feature-store-pyspark-3-3", "sagemaker-schema-inference-artifacts (>=0.0.5)", "scipy (==1.10.1)", "urllib3 (>=1.26.8,<3.0.0)", "uvicorn (>=0.30.1)"]
|
||||
feature-processor = ["pyspark (==3.3.1)", "sagemaker-feature-store-pyspark-3-3"]
|
||||
huggingface = ["accelerate (>=0.24.1,<=0.27.0)", "fastapi (>=0.111.0)", "nest-asyncio", "sagemaker-schema-inference-artifacts (>=0.0.5)", "uvicorn (>=0.30.1)"]
|
||||
local = ["docker (>=5.0.2,<8.0.0)", "pyyaml (>=5.4.1,<7)", "urllib3 (>=1.26.8,<3.0.0)"]
|
||||
scipy = ["scipy (==1.10.1)"]
|
||||
test = ["accelerate (>=0.24.1,<=0.27.0)", "apache-airflow (==2.9.3)", "apache-airflow-providers-amazon (==7.2.1)", "attrs (>=23.1.0,<24)", "awslogs (==0.14.0)", "black (==24.3.0)", "build[virtualenv] (==1.2.1)", "cloudpickle (==2.2.1)", "contextlib2 (==21.6.0)", "coverage (>=5.2,<6.2)", "docker (>=5.0.2,<8.0.0)", "fabric (==2.6.0)", "fastapi (>=0.111.0)", "flake8 (==4.0.1)", "huggingface-hub (>=0.23.4)", "jinja2 (==3.1.4)", "mlflow (>=2.12.2,<2.13)", "mock (==4.0.3)", "nbformat (>=5.9,<6)", "nest-asyncio", "numpy (>=1.24.0)", "onnx (>=1.15.0)", "pandas (>=1.3.5,<1.5)", "pillow (>=10.0.1,<=11)", "pyspark (==3.3.1)", "pytest (==6.2.5)", "pytest-cov (==3.0.0)", "pytest-rerunfailures (==10.2)", "pytest-timeout (==2.1.0)", "pytest-xdist (==2.4.0)", "pyvis (==0.2.1)", "pyyaml (==6.0)", "pyyaml (>=5.4.1,<7)", "requests (==2.32.2)", "sagemaker-experiments (==0.1.35)", "sagemaker-feature-store-pyspark-3-3", "sagemaker-schema-inference-artifacts (>=0.0.5)", "schema (==0.7.5)", "scikit-learn (==1.3.0)", "scipy (==1.10.1)", "stopit (==1.1.2)", "tensorflow (>=2.1,<=2.16)", "tox (==3.24.5)", "tritonclient[http] (<2.37.0)", "urllib3 (>=1.26.8,<3.0.0)", "uvicorn (>=0.30.1)", "xgboost (>=1.6.2,<=1.7.6)"]
|
||||
|
||||
[[package]]
|
||||
name = "sagemaker-core"
|
||||
version = "1.0.2"
|
||||
description = "An python package for sagemaker core functionalities"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "sagemaker_core-1.0.2-py3-none-any.whl", hash = "sha256:ce8d38a4a32efa83e4bc037a8befc7e29f87cd3eaf99acc4472b607f75a0f45a"},
|
||||
{file = "sagemaker_core-1.0.2.tar.gz", hash = "sha256:8fb942aac5e7ed928dab512ffe6facf8c6bdd4595df63c59c0bd0795ea434f8d"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
boto3 = ">=1.34.0,<2.0.0"
|
||||
importlib-metadata = ">=1.4.0,<7.0"
|
||||
jsonschema = "<5.0.0"
|
||||
mock = ">4.0,<5.0"
|
||||
platformdirs = ">=4.0.0,<5.0.0"
|
||||
pydantic = ">=1.7.0,<3.0.0"
|
||||
PyYAML = ">=6.0,<7.0"
|
||||
rich = ">=13.0.0,<14.0.0"
|
||||
|
||||
[package.extras]
|
||||
codegen = ["black (>=24.3.0,<25.0.0)", "pandas (>=2.0.0,<3.0.0)", "pylint (>=3.0.0,<4.0.0)", "pytest (>=8.0.0,<9.0.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "schema"
|
||||
version = "0.7.7"
|
||||
description = "Simple data validation library"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "schema-0.7.7-py2.py3-none-any.whl", hash = "sha256:5d976a5b50f36e74e2157b47097b60002bd4d42e65425fcc9c9befadb4255dde"},
|
||||
{file = "schema-0.7.7.tar.gz", hash = "sha256:7da553abd2958a19dc2547c388cde53398b39196175a9be59ea1caf5ab0a1807"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "scikit-learn"
|
||||
version = "1.5.1"
|
||||
@ -8276,6 +8499,17 @@ files = [
|
||||
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "smdebug-rulesconfig"
|
||||
version = "1.0.1"
|
||||
description = "SMDebug RulesConfig"
|
||||
optional = false
|
||||
python-versions = ">=2.7"
|
||||
files = [
|
||||
{file = "smdebug_rulesconfig-1.0.1-py2.py3-none-any.whl", hash = "sha256:104da3e6931ecf879dfc687ca4bbb3bee5ea2bc27f4478e9dbb3ee3655f1ae61"},
|
||||
{file = "smdebug_rulesconfig-1.0.1.tar.gz", hash = "sha256:7a19e6eb2e6bcfefbc07e4a86ef7a88f32495001a038bf28c7d8e77ab793fcd6"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "sniffio"
|
||||
version = "1.3.1"
|
||||
@ -8473,6 +8707,17 @@ files = [
|
||||
[package.extras]
|
||||
widechars = ["wcwidth"]
|
||||
|
||||
[[package]]
|
||||
name = "tblib"
|
||||
version = "3.0.0"
|
||||
description = "Traceback serialization library."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "tblib-3.0.0-py3-none-any.whl", hash = "sha256:80a6c77e59b55e83911e1e607c649836a69c103963c5f28a46cbeef44acf8129"},
|
||||
{file = "tblib-3.0.0.tar.gz", hash = "sha256:93622790a0a29e04f0346458face1e144dc4d32f493714c6c3dff82a4adb77e6"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "tcvectordb"
|
||||
version = "1.3.2"
|
||||
@ -10126,4 +10371,4 @@ cffi = ["cffi (>=1.11)"]
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.10,<3.13"
|
||||
content-hash = "78c7db0bf525a72f4c8309e3363304d1a0a23cf0a6836bfb974a38a1fcde9158"
|
||||
content-hash = "c3c637d643f4dcb3e35d0e7f2a3a4fbaf2a730512a4ca31adce5884c94f07f57"
|
||||
|
@ -113,6 +113,7 @@ azure-identity = "1.16.1"
|
||||
azure-storage-blob = "12.13.0"
|
||||
beautifulsoup4 = "4.12.2"
|
||||
boto3 = "1.34.148"
|
||||
sagemaker = "2.231.0"
|
||||
bs4 = "~0.0.1"
|
||||
cachetools = "~5.3.0"
|
||||
celery = "~5.3.6"
|
||||
|
Loading…
x
Reference in New Issue
Block a user