mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-14 00:45:53 +08:00
Merge branch 'main' into feat/plugins
This commit is contained in:
commit
9a242bcac9
7
.github/workflows/api-tests.yml
vendored
7
.github/workflows/api-tests.yml
vendored
@ -27,18 +27,17 @@ jobs:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Install Poetry
|
||||
uses: abatilo/actions-poetry@v3
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: 'poetry'
|
||||
cache-dependency-path: |
|
||||
api/pyproject.toml
|
||||
api/poetry.lock
|
||||
|
||||
- name: Install Poetry
|
||||
uses: abatilo/actions-poetry@v3
|
||||
|
||||
- name: Check Poetry lockfile
|
||||
run: |
|
||||
poetry check -C api --lock
|
||||
|
7
.github/workflows/db-migration-test.yml
vendored
7
.github/workflows/db-migration-test.yml
vendored
@ -23,18 +23,17 @@ jobs:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Install Poetry
|
||||
uses: abatilo/actions-poetry@v3
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: 'poetry'
|
||||
cache-dependency-path: |
|
||||
api/pyproject.toml
|
||||
api/poetry.lock
|
||||
|
||||
- name: Install Poetry
|
||||
uses: abatilo/actions-poetry@v3
|
||||
|
||||
- name: Install dependencies
|
||||
run: poetry install -C api
|
||||
|
||||
|
7
.github/workflows/style.yml
vendored
7
.github/workflows/style.yml
vendored
@ -24,15 +24,16 @@ jobs:
|
||||
with:
|
||||
files: api/**
|
||||
|
||||
- name: Install Poetry
|
||||
uses: abatilo/actions-poetry@v3
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
with:
|
||||
python-version: '3.10'
|
||||
|
||||
- name: Install Poetry
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
uses: abatilo/actions-poetry@v3
|
||||
|
||||
- name: Python dependencies
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
run: poetry install -C api --only lint
|
||||
|
@ -85,3 +85,4 @@
|
||||
cd ../
|
||||
poetry run -C api bash dev/pytest/pytest_all_tests.sh
|
||||
```
|
||||
|
||||
|
205
api/app.py
205
api/app.py
@ -10,44 +10,19 @@ if os.environ.get("DEBUG", "false").lower() != "true":
|
||||
grpc.experimental.gevent.init_gevent()
|
||||
|
||||
import json
|
||||
import logging
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
import warnings
|
||||
from logging.handlers import RotatingFileHandler
|
||||
|
||||
from flask import Flask, Response, request
|
||||
from flask_cors import CORS
|
||||
from werkzeug.exceptions import Unauthorized
|
||||
from flask import Response
|
||||
|
||||
import contexts
|
||||
from commands import register_commands
|
||||
from configs import dify_config
|
||||
from app_factory import create_app
|
||||
|
||||
# DO NOT REMOVE BELOW
|
||||
from events import event_handlers # noqa: F401
|
||||
from extensions import (
|
||||
ext_celery,
|
||||
ext_code_based_extension,
|
||||
ext_compress,
|
||||
ext_database,
|
||||
ext_hosting_provider,
|
||||
ext_login,
|
||||
ext_mail,
|
||||
ext_migrate,
|
||||
ext_proxy_fix,
|
||||
ext_redis,
|
||||
ext_sentry,
|
||||
ext_storage,
|
||||
)
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_login import login_manager
|
||||
from libs.passport import PassportService
|
||||
|
||||
# TODO: Find a way to avoid importing models here
|
||||
from models import account, dataset, model, source, task, tool, tools, web # noqa: F401
|
||||
from services.account_service import AccountService
|
||||
|
||||
# DO NOT REMOVE ABOVE
|
||||
|
||||
@ -60,188 +35,12 @@ if hasattr(time, "tzset"):
|
||||
time.tzset()
|
||||
|
||||
|
||||
class DifyApp(Flask):
|
||||
pass
|
||||
|
||||
|
||||
# -------------
|
||||
# Configuration
|
||||
# -------------
|
||||
|
||||
|
||||
config_type = os.getenv("EDITION", default="SELF_HOSTED") # ce edition first
|
||||
|
||||
|
||||
# ----------------------------
|
||||
# Application Factory Function
|
||||
# ----------------------------
|
||||
|
||||
|
||||
def create_flask_app_with_configs() -> Flask:
|
||||
"""
|
||||
create a raw flask app
|
||||
with configs loaded from .env file
|
||||
"""
|
||||
dify_app = DifyApp(__name__)
|
||||
dify_app.config.from_mapping(dify_config.model_dump())
|
||||
|
||||
# populate configs into system environment variables
|
||||
for key, value in dify_app.config.items():
|
||||
if isinstance(value, str):
|
||||
os.environ[key] = value
|
||||
elif isinstance(value, int | float | bool):
|
||||
os.environ[key] = str(value)
|
||||
elif value is None:
|
||||
os.environ[key] = ""
|
||||
|
||||
return dify_app
|
||||
|
||||
|
||||
def create_app() -> Flask:
|
||||
app = create_flask_app_with_configs()
|
||||
|
||||
app.secret_key = app.config["SECRET_KEY"]
|
||||
|
||||
log_handlers = None
|
||||
log_file = app.config.get("LOG_FILE")
|
||||
if log_file:
|
||||
log_dir = os.path.dirname(log_file)
|
||||
os.makedirs(log_dir, exist_ok=True)
|
||||
log_handlers = [
|
||||
RotatingFileHandler(
|
||||
filename=log_file,
|
||||
maxBytes=1024 * 1024 * 1024,
|
||||
backupCount=5,
|
||||
),
|
||||
logging.StreamHandler(sys.stdout),
|
||||
]
|
||||
|
||||
logging.basicConfig(
|
||||
level=app.config.get("LOG_LEVEL"),
|
||||
format=app.config.get("LOG_FORMAT"),
|
||||
datefmt=app.config.get("LOG_DATEFORMAT"),
|
||||
handlers=log_handlers,
|
||||
force=True,
|
||||
)
|
||||
log_tz = app.config.get("LOG_TZ")
|
||||
if log_tz:
|
||||
from datetime import datetime
|
||||
|
||||
import pytz
|
||||
|
||||
timezone = pytz.timezone(log_tz)
|
||||
|
||||
def time_converter(seconds):
|
||||
return datetime.utcfromtimestamp(seconds).astimezone(timezone).timetuple()
|
||||
|
||||
for handler in logging.root.handlers:
|
||||
handler.formatter.converter = time_converter
|
||||
initialize_extensions(app)
|
||||
register_blueprints(app)
|
||||
register_commands(app)
|
||||
|
||||
return app
|
||||
|
||||
|
||||
def initialize_extensions(app):
|
||||
# Since the application instance is now created, pass it to each Flask
|
||||
# extension instance to bind it to the Flask application instance (app)
|
||||
ext_compress.init_app(app)
|
||||
ext_code_based_extension.init()
|
||||
ext_database.init_app(app)
|
||||
ext_migrate.init(app, db)
|
||||
ext_redis.init_app(app)
|
||||
ext_storage.init_app(app)
|
||||
ext_celery.init_app(app)
|
||||
ext_login.init_app(app)
|
||||
ext_mail.init_app(app)
|
||||
ext_hosting_provider.init_app(app)
|
||||
ext_sentry.init_app(app)
|
||||
ext_proxy_fix.init_app(app)
|
||||
|
||||
|
||||
# Flask-Login configuration
|
||||
@login_manager.request_loader
|
||||
def load_user_from_request(request_from_flask_login):
|
||||
"""Load user based on the request."""
|
||||
if request.blueprint not in {"console", "inner_api"}:
|
||||
return None
|
||||
# Check if the user_id contains a dot, indicating the old format
|
||||
auth_header = request.headers.get("Authorization", "")
|
||||
if not auth_header:
|
||||
auth_token = request.args.get("_token")
|
||||
if not auth_token:
|
||||
raise Unauthorized("Invalid Authorization token.")
|
||||
else:
|
||||
if " " not in auth_header:
|
||||
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
|
||||
auth_scheme, auth_token = auth_header.split(None, 1)
|
||||
auth_scheme = auth_scheme.lower()
|
||||
if auth_scheme != "bearer":
|
||||
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
|
||||
|
||||
decoded = PassportService().verify(auth_token)
|
||||
user_id = decoded.get("user_id")
|
||||
|
||||
logged_in_account = AccountService.load_logged_in_account(account_id=user_id)
|
||||
if logged_in_account:
|
||||
contexts.tenant_id.set(logged_in_account.current_tenant_id)
|
||||
return logged_in_account
|
||||
|
||||
|
||||
@login_manager.unauthorized_handler
|
||||
def unauthorized_handler():
|
||||
"""Handle unauthorized requests."""
|
||||
return Response(
|
||||
json.dumps({"code": "unauthorized", "message": "Unauthorized."}),
|
||||
status=401,
|
||||
content_type="application/json",
|
||||
)
|
||||
|
||||
|
||||
# register blueprint routers
|
||||
def register_blueprints(app):
|
||||
from controllers.console import bp as console_app_bp
|
||||
from controllers.files import bp as files_bp
|
||||
from controllers.inner_api import bp as inner_api_bp
|
||||
from controllers.service_api import bp as service_api_bp
|
||||
from controllers.web import bp as web_bp
|
||||
|
||||
CORS(
|
||||
service_api_bp,
|
||||
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
|
||||
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
|
||||
)
|
||||
app.register_blueprint(service_api_bp)
|
||||
|
||||
CORS(
|
||||
web_bp,
|
||||
resources={r"/*": {"origins": app.config["WEB_API_CORS_ALLOW_ORIGINS"]}},
|
||||
supports_credentials=True,
|
||||
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
|
||||
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
|
||||
expose_headers=["X-Version", "X-Env"],
|
||||
)
|
||||
|
||||
app.register_blueprint(web_bp)
|
||||
|
||||
CORS(
|
||||
console_app_bp,
|
||||
resources={r"/*": {"origins": app.config["CONSOLE_CORS_ALLOW_ORIGINS"]}},
|
||||
supports_credentials=True,
|
||||
allow_headers=["Content-Type", "Authorization"],
|
||||
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
|
||||
expose_headers=["X-Version", "X-Env"],
|
||||
)
|
||||
|
||||
app.register_blueprint(console_app_bp)
|
||||
|
||||
CORS(files_bp, allow_headers=["Content-Type"], methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"])
|
||||
app.register_blueprint(files_bp)
|
||||
|
||||
app.register_blueprint(inner_api_bp)
|
||||
|
||||
|
||||
# create app
|
||||
app = create_app()
|
||||
celery = app.extensions["celery"]
|
||||
|
213
api/app_factory.py
Normal file
213
api/app_factory.py
Normal file
@ -0,0 +1,213 @@
|
||||
import os
|
||||
|
||||
if os.environ.get("DEBUG", "false").lower() != "true":
|
||||
from gevent import monkey
|
||||
|
||||
monkey.patch_all()
|
||||
|
||||
import grpc.experimental.gevent
|
||||
|
||||
grpc.experimental.gevent.init_gevent()
|
||||
|
||||
import json
|
||||
import logging
|
||||
import sys
|
||||
from logging.handlers import RotatingFileHandler
|
||||
|
||||
from flask import Flask, Response, request
|
||||
from flask_cors import CORS
|
||||
from werkzeug.exceptions import Unauthorized
|
||||
|
||||
import contexts
|
||||
from commands import register_commands
|
||||
from configs import dify_config
|
||||
from extensions import (
|
||||
ext_celery,
|
||||
ext_code_based_extension,
|
||||
ext_compress,
|
||||
ext_database,
|
||||
ext_hosting_provider,
|
||||
ext_login,
|
||||
ext_mail,
|
||||
ext_migrate,
|
||||
ext_proxy_fix,
|
||||
ext_redis,
|
||||
ext_sentry,
|
||||
ext_storage,
|
||||
)
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_login import login_manager
|
||||
from libs.passport import PassportService
|
||||
from services.account_service import AccountService
|
||||
|
||||
|
||||
class DifyApp(Flask):
|
||||
pass
|
||||
|
||||
|
||||
# ----------------------------
|
||||
# Application Factory Function
|
||||
# ----------------------------
|
||||
def create_flask_app_with_configs() -> Flask:
|
||||
"""
|
||||
create a raw flask app
|
||||
with configs loaded from .env file
|
||||
"""
|
||||
dify_app = DifyApp(__name__)
|
||||
dify_app.config.from_mapping(dify_config.model_dump())
|
||||
|
||||
# populate configs into system environment variables
|
||||
for key, value in dify_app.config.items():
|
||||
if isinstance(value, str):
|
||||
os.environ[key] = value
|
||||
elif isinstance(value, int | float | bool):
|
||||
os.environ[key] = str(value)
|
||||
elif value is None:
|
||||
os.environ[key] = ""
|
||||
|
||||
return dify_app
|
||||
|
||||
|
||||
def create_app() -> Flask:
|
||||
app = create_flask_app_with_configs()
|
||||
|
||||
app.secret_key = app.config["SECRET_KEY"]
|
||||
|
||||
log_handlers = None
|
||||
log_file = app.config.get("LOG_FILE")
|
||||
if log_file:
|
||||
log_dir = os.path.dirname(log_file)
|
||||
os.makedirs(log_dir, exist_ok=True)
|
||||
log_handlers = [
|
||||
RotatingFileHandler(
|
||||
filename=log_file,
|
||||
maxBytes=1024 * 1024 * 1024,
|
||||
backupCount=5,
|
||||
),
|
||||
logging.StreamHandler(sys.stdout),
|
||||
]
|
||||
|
||||
logging.basicConfig(
|
||||
level=app.config.get("LOG_LEVEL"),
|
||||
format=app.config.get("LOG_FORMAT"),
|
||||
datefmt=app.config.get("LOG_DATEFORMAT"),
|
||||
handlers=log_handlers,
|
||||
force=True,
|
||||
)
|
||||
log_tz = app.config.get("LOG_TZ")
|
||||
if log_tz:
|
||||
from datetime import datetime
|
||||
|
||||
import pytz
|
||||
|
||||
timezone = pytz.timezone(log_tz)
|
||||
|
||||
def time_converter(seconds):
|
||||
return datetime.utcfromtimestamp(seconds).astimezone(timezone).timetuple()
|
||||
|
||||
for handler in logging.root.handlers:
|
||||
handler.formatter.converter = time_converter
|
||||
initialize_extensions(app)
|
||||
register_blueprints(app)
|
||||
register_commands(app)
|
||||
|
||||
return app
|
||||
|
||||
|
||||
def initialize_extensions(app):
|
||||
# Since the application instance is now created, pass it to each Flask
|
||||
# extension instance to bind it to the Flask application instance (app)
|
||||
ext_compress.init_app(app)
|
||||
ext_code_based_extension.init()
|
||||
ext_database.init_app(app)
|
||||
ext_migrate.init(app, db)
|
||||
ext_redis.init_app(app)
|
||||
ext_storage.init_app(app)
|
||||
ext_celery.init_app(app)
|
||||
ext_login.init_app(app)
|
||||
ext_mail.init_app(app)
|
||||
ext_hosting_provider.init_app(app)
|
||||
ext_sentry.init_app(app)
|
||||
ext_proxy_fix.init_app(app)
|
||||
|
||||
|
||||
# Flask-Login configuration
|
||||
@login_manager.request_loader
|
||||
def load_user_from_request(request_from_flask_login):
|
||||
"""Load user based on the request."""
|
||||
if request.blueprint not in {"console", "inner_api"}:
|
||||
return None
|
||||
# Check if the user_id contains a dot, indicating the old format
|
||||
auth_header = request.headers.get("Authorization", "")
|
||||
if not auth_header:
|
||||
auth_token = request.args.get("_token")
|
||||
if not auth_token:
|
||||
raise Unauthorized("Invalid Authorization token.")
|
||||
else:
|
||||
if " " not in auth_header:
|
||||
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
|
||||
auth_scheme, auth_token = auth_header.split(None, 1)
|
||||
auth_scheme = auth_scheme.lower()
|
||||
if auth_scheme != "bearer":
|
||||
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
|
||||
|
||||
decoded = PassportService().verify(auth_token)
|
||||
user_id = decoded.get("user_id")
|
||||
|
||||
logged_in_account = AccountService.load_logged_in_account(account_id=user_id)
|
||||
if logged_in_account:
|
||||
contexts.tenant_id.set(logged_in_account.current_tenant_id)
|
||||
return logged_in_account
|
||||
|
||||
|
||||
@login_manager.unauthorized_handler
|
||||
def unauthorized_handler():
|
||||
"""Handle unauthorized requests."""
|
||||
return Response(
|
||||
json.dumps({"code": "unauthorized", "message": "Unauthorized."}),
|
||||
status=401,
|
||||
content_type="application/json",
|
||||
)
|
||||
|
||||
|
||||
# register blueprint routers
|
||||
def register_blueprints(app):
|
||||
from controllers.console import bp as console_app_bp
|
||||
from controllers.files import bp as files_bp
|
||||
from controllers.inner_api import bp as inner_api_bp
|
||||
from controllers.service_api import bp as service_api_bp
|
||||
from controllers.web import bp as web_bp
|
||||
|
||||
CORS(
|
||||
service_api_bp,
|
||||
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
|
||||
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
|
||||
)
|
||||
app.register_blueprint(service_api_bp)
|
||||
|
||||
CORS(
|
||||
web_bp,
|
||||
resources={r"/*": {"origins": app.config["WEB_API_CORS_ALLOW_ORIGINS"]}},
|
||||
supports_credentials=True,
|
||||
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
|
||||
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
|
||||
expose_headers=["X-Version", "X-Env"],
|
||||
)
|
||||
|
||||
app.register_blueprint(web_bp)
|
||||
|
||||
CORS(
|
||||
console_app_bp,
|
||||
resources={r"/*": {"origins": app.config["CONSOLE_CORS_ALLOW_ORIGINS"]}},
|
||||
supports_credentials=True,
|
||||
allow_headers=["Content-Type", "Authorization"],
|
||||
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
|
||||
expose_headers=["X-Version", "X-Env"],
|
||||
)
|
||||
|
||||
app.register_blueprint(console_app_bp)
|
||||
|
||||
CORS(files_bp, allow_headers=["Content-Type"], methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"])
|
||||
app.register_blueprint(files_bp)
|
||||
|
||||
app.register_blueprint(inner_api_bp)
|
@ -259,6 +259,25 @@ def migrate_knowledge_vector_database():
|
||||
skipped_count = 0
|
||||
total_count = 0
|
||||
vector_type = dify_config.VECTOR_STORE
|
||||
upper_colletion_vector_types = {
|
||||
VectorType.MILVUS,
|
||||
VectorType.PGVECTOR,
|
||||
VectorType.RELYT,
|
||||
VectorType.WEAVIATE,
|
||||
VectorType.ORACLE,
|
||||
VectorType.ELASTICSEARCH,
|
||||
}
|
||||
lower_colletion_vector_types = {
|
||||
VectorType.ANALYTICDB,
|
||||
VectorType.CHROMA,
|
||||
VectorType.MYSCALE,
|
||||
VectorType.PGVECTO_RS,
|
||||
VectorType.TIDB_VECTOR,
|
||||
VectorType.OPENSEARCH,
|
||||
VectorType.TENCENT,
|
||||
VectorType.BAIDU,
|
||||
VectorType.VIKINGDB,
|
||||
}
|
||||
page = 1
|
||||
while True:
|
||||
try:
|
||||
@ -284,11 +303,9 @@ def migrate_knowledge_vector_database():
|
||||
skipped_count = skipped_count + 1
|
||||
continue
|
||||
collection_name = ""
|
||||
if vector_type == VectorType.WEAVIATE:
|
||||
dataset_id = dataset.id
|
||||
dataset_id = dataset.id
|
||||
if vector_type in upper_colletion_vector_types:
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {"type": VectorType.WEAVIATE, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.QDRANT:
|
||||
if dataset.collection_binding_id:
|
||||
dataset_collection_binding = (
|
||||
@ -301,63 +318,15 @@ def migrate_knowledge_vector_database():
|
||||
else:
|
||||
raise ValueError("Dataset Collection Binding not found")
|
||||
else:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {"type": VectorType.QDRANT, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
|
||||
elif vector_type == VectorType.MILVUS:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {"type": VectorType.MILVUS, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.RELYT:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {"type": "relyt", "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.TENCENT:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {"type": VectorType.TENCENT, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.PGVECTOR:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {"type": VectorType.PGVECTOR, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.OPENSEARCH:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": VectorType.OPENSEARCH,
|
||||
"vector_store": {"class_prefix": collection_name},
|
||||
}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.ANALYTICDB:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": VectorType.ANALYTICDB,
|
||||
"vector_store": {"class_prefix": collection_name},
|
||||
}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.ELASTICSEARCH:
|
||||
dataset_id = dataset.id
|
||||
index_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {"type": "elasticsearch", "vector_store": {"class_prefix": index_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.BAIDU:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": VectorType.BAIDU,
|
||||
"vector_store": {"class_prefix": collection_name},
|
||||
}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type in lower_colletion_vector_types:
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
|
||||
else:
|
||||
raise ValueError(f"Vector store {vector_type} is not supported.")
|
||||
|
||||
index_struct_dict = {"type": vector_type, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
vector = Vector(dataset)
|
||||
click.echo(f"Migrating dataset {dataset.id}.")
|
||||
|
||||
|
@ -506,11 +506,16 @@ class DataSetConfig(BaseSettings):
|
||||
Configuration for dataset management
|
||||
"""
|
||||
|
||||
CLEAN_DAY_SETTING: PositiveInt = Field(
|
||||
description="Interval in days for dataset cleanup operations",
|
||||
PLAN_SANDBOX_CLEAN_DAY_SETTING: PositiveInt = Field(
|
||||
description="Interval in days for dataset cleanup operations - plan: sandbox",
|
||||
default=30,
|
||||
)
|
||||
|
||||
PLAN_PRO_CLEAN_DAY_SETTING: PositiveInt = Field(
|
||||
description="Interval in days for dataset cleanup operations - plan: pro and team",
|
||||
default=7,
|
||||
)
|
||||
|
||||
DATASET_OPERATOR_ENABLED: bool = Field(
|
||||
description="Enable or disable dataset operator functionality",
|
||||
default=False,
|
||||
|
@ -14,7 +14,7 @@ class OracleConfig(BaseSettings):
|
||||
default=None,
|
||||
)
|
||||
|
||||
ORACLE_PORT: Optional[PositiveInt] = Field(
|
||||
ORACLE_PORT: PositiveInt = Field(
|
||||
description="Port number on which the Oracle database server is listening (default is 1521)",
|
||||
default=1521,
|
||||
)
|
||||
|
@ -14,7 +14,7 @@ class PGVectorConfig(BaseSettings):
|
||||
default=None,
|
||||
)
|
||||
|
||||
PGVECTOR_PORT: Optional[PositiveInt] = Field(
|
||||
PGVECTOR_PORT: PositiveInt = Field(
|
||||
description="Port number on which the PostgreSQL server is listening (default is 5433)",
|
||||
default=5433,
|
||||
)
|
||||
|
@ -14,7 +14,7 @@ class PGVectoRSConfig(BaseSettings):
|
||||
default=None,
|
||||
)
|
||||
|
||||
PGVECTO_RS_PORT: Optional[PositiveInt] = Field(
|
||||
PGVECTO_RS_PORT: PositiveInt = Field(
|
||||
description="Port number on which the PostgreSQL server with PGVecto.RS is listening (default is 5431)",
|
||||
default=5431,
|
||||
)
|
||||
|
@ -11,27 +11,39 @@ class VikingDBConfig(BaseModel):
|
||||
"""
|
||||
|
||||
VIKINGDB_ACCESS_KEY: Optional[str] = Field(
|
||||
default=None, description="The Access Key provided by Volcengine VikingDB for API authentication."
|
||||
description="The Access Key provided by Volcengine VikingDB for API authentication."
|
||||
"Refer to the following documentation for details on obtaining credentials:"
|
||||
"https://www.volcengine.com/docs/6291/65568",
|
||||
default=None,
|
||||
)
|
||||
|
||||
VIKINGDB_SECRET_KEY: Optional[str] = Field(
|
||||
default=None, description="The Secret Key provided by Volcengine VikingDB for API authentication."
|
||||
description="The Secret Key provided by Volcengine VikingDB for API authentication.",
|
||||
default=None,
|
||||
)
|
||||
VIKINGDB_REGION: Optional[str] = Field(
|
||||
default="cn-shanghai",
|
||||
|
||||
VIKINGDB_REGION: str = Field(
|
||||
description="The region of the Volcengine VikingDB service.(e.g., 'cn-shanghai', 'cn-beijing').",
|
||||
default="cn-shanghai",
|
||||
)
|
||||
VIKINGDB_HOST: Optional[str] = Field(
|
||||
default="api-vikingdb.mlp.cn-shanghai.volces.com",
|
||||
|
||||
VIKINGDB_HOST: str = Field(
|
||||
description="The host of the Volcengine VikingDB service.(e.g., 'api-vikingdb.volces.com', \
|
||||
'api-vikingdb.mlp.cn-shanghai.volces.com')",
|
||||
default="api-vikingdb.mlp.cn-shanghai.volces.com",
|
||||
)
|
||||
VIKINGDB_SCHEME: Optional[str] = Field(
|
||||
default="http",
|
||||
|
||||
VIKINGDB_SCHEME: str = Field(
|
||||
description="The scheme of the Volcengine VikingDB service.(e.g., 'http', 'https').",
|
||||
default="http",
|
||||
)
|
||||
VIKINGDB_CONNECTION_TIMEOUT: Optional[int] = Field(
|
||||
default=30, description="The connection timeout of the Volcengine VikingDB service."
|
||||
|
||||
VIKINGDB_CONNECTION_TIMEOUT: int = Field(
|
||||
description="The connection timeout of the Volcengine VikingDB service.",
|
||||
default=30,
|
||||
)
|
||||
VIKINGDB_SOCKET_TIMEOUT: Optional[int] = Field(
|
||||
default=30, description="The socket timeout of the Volcengine VikingDB service."
|
||||
|
||||
VIKINGDB_SOCKET_TIMEOUT: int = Field(
|
||||
description="The socket timeout of the Volcengine VikingDB service.",
|
||||
default=30,
|
||||
)
|
||||
|
@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
|
||||
|
||||
CURRENT_VERSION: str = Field(
|
||||
description="Dify version",
|
||||
default="0.9.1",
|
||||
default="0.9.2",
|
||||
)
|
||||
|
||||
COMMIT_SHA: str = Field(
|
||||
|
@ -1,88 +1,24 @@
|
||||
import logging
|
||||
from flask_restful import Resource
|
||||
|
||||
from flask_login import current_user
|
||||
from flask_restful import Resource, marshal, reqparse
|
||||
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
|
||||
|
||||
import services
|
||||
from controllers.console import api
|
||||
from controllers.console.app.error import (
|
||||
CompletionRequestError,
|
||||
ProviderModelCurrentlyNotSupportError,
|
||||
ProviderNotInitializeError,
|
||||
ProviderQuotaExceededError,
|
||||
)
|
||||
from controllers.console.datasets.error import DatasetNotInitializedError
|
||||
from controllers.console.datasets.hit_testing_base import DatasetsHitTestingBase
|
||||
from controllers.console.setup import setup_required
|
||||
from controllers.console.wraps import account_initialization_required
|
||||
from core.errors.error import (
|
||||
LLMBadRequestError,
|
||||
ModelCurrentlyNotSupportError,
|
||||
ProviderTokenNotInitError,
|
||||
QuotaExceededError,
|
||||
)
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
from fields.hit_testing_fields import hit_testing_record_fields
|
||||
from libs.login import login_required
|
||||
from services.dataset_service import DatasetService
|
||||
from services.hit_testing_service import HitTestingService
|
||||
|
||||
|
||||
class HitTestingApi(Resource):
|
||||
class HitTestingApi(Resource, DatasetsHitTestingBase):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, dataset_id):
|
||||
dataset_id_str = str(dataset_id)
|
||||
|
||||
dataset = DatasetService.get_dataset(dataset_id_str)
|
||||
if dataset is None:
|
||||
raise NotFound("Dataset not found.")
|
||||
dataset = self.get_and_validate_dataset(dataset_id_str)
|
||||
args = self.parse_args()
|
||||
self.hit_testing_args_check(args)
|
||||
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
raise Forbidden(str(e))
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("query", type=str, location="json")
|
||||
parser.add_argument("retrieval_model", type=dict, required=False, location="json")
|
||||
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
|
||||
args = parser.parse_args()
|
||||
|
||||
HitTestingService.hit_testing_args_check(args)
|
||||
|
||||
try:
|
||||
response = HitTestingService.retrieve(
|
||||
dataset=dataset,
|
||||
query=args["query"],
|
||||
account=current_user,
|
||||
retrieval_model=args["retrieval_model"],
|
||||
external_retrieval_model=args["external_retrieval_model"],
|
||||
limit=10,
|
||||
)
|
||||
|
||||
return {"query": response["query"], "records": marshal(response["records"], hit_testing_record_fields)}
|
||||
except services.errors.index.IndexNotInitializedError:
|
||||
raise DatasetNotInitializedError()
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
except QuotaExceededError:
|
||||
raise ProviderQuotaExceededError()
|
||||
except ModelCurrentlyNotSupportError:
|
||||
raise ProviderModelCurrentlyNotSupportError()
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model or Reranking Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider."
|
||||
)
|
||||
except InvokeError as e:
|
||||
raise CompletionRequestError(e.description)
|
||||
except ValueError as e:
|
||||
raise ValueError(str(e))
|
||||
except Exception as e:
|
||||
logging.exception("Hit testing failed.")
|
||||
raise InternalServerError(str(e))
|
||||
return self.perform_hit_testing(dataset, args)
|
||||
|
||||
|
||||
api.add_resource(HitTestingApi, "/datasets/<uuid:dataset_id>/hit-testing")
|
||||
|
85
api/controllers/console/datasets/hit_testing_base.py
Normal file
85
api/controllers/console/datasets/hit_testing_base.py
Normal file
@ -0,0 +1,85 @@
|
||||
import logging
|
||||
|
||||
from flask_login import current_user
|
||||
from flask_restful import marshal, reqparse
|
||||
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
|
||||
|
||||
import services.dataset_service
|
||||
from controllers.console.app.error import (
|
||||
CompletionRequestError,
|
||||
ProviderModelCurrentlyNotSupportError,
|
||||
ProviderNotInitializeError,
|
||||
ProviderQuotaExceededError,
|
||||
)
|
||||
from controllers.console.datasets.error import DatasetNotInitializedError
|
||||
from core.errors.error import (
|
||||
LLMBadRequestError,
|
||||
ModelCurrentlyNotSupportError,
|
||||
ProviderTokenNotInitError,
|
||||
QuotaExceededError,
|
||||
)
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
from fields.hit_testing_fields import hit_testing_record_fields
|
||||
from services.dataset_service import DatasetService
|
||||
from services.hit_testing_service import HitTestingService
|
||||
|
||||
|
||||
class DatasetsHitTestingBase:
|
||||
@staticmethod
|
||||
def get_and_validate_dataset(dataset_id: str):
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if dataset is None:
|
||||
raise NotFound("Dataset not found.")
|
||||
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
raise Forbidden(str(e))
|
||||
|
||||
return dataset
|
||||
|
||||
@staticmethod
|
||||
def hit_testing_args_check(args):
|
||||
HitTestingService.hit_testing_args_check(args)
|
||||
|
||||
@staticmethod
|
||||
def parse_args():
|
||||
parser = reqparse.RequestParser()
|
||||
|
||||
parser.add_argument("query", type=str, location="json")
|
||||
parser.add_argument("retrieval_model", type=dict, required=False, location="json")
|
||||
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
|
||||
return parser.parse_args()
|
||||
|
||||
@staticmethod
|
||||
def perform_hit_testing(dataset, args):
|
||||
try:
|
||||
response = HitTestingService.retrieve(
|
||||
dataset=dataset,
|
||||
query=args["query"],
|
||||
account=current_user,
|
||||
retrieval_model=args["retrieval_model"],
|
||||
external_retrieval_model=args["external_retrieval_model"],
|
||||
limit=10,
|
||||
)
|
||||
return {"query": response["query"], "records": marshal(response["records"], hit_testing_record_fields)}
|
||||
except services.errors.index.IndexNotInitializedError:
|
||||
raise DatasetNotInitializedError()
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
except QuotaExceededError:
|
||||
raise ProviderQuotaExceededError()
|
||||
except ModelCurrentlyNotSupportError:
|
||||
raise ProviderModelCurrentlyNotSupportError()
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model or Reranking Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider."
|
||||
)
|
||||
except InvokeError as e:
|
||||
raise CompletionRequestError(e.description)
|
||||
except ValueError as e:
|
||||
raise ValueError(str(e))
|
||||
except Exception as e:
|
||||
logging.exception("Hit testing failed.")
|
||||
raise InternalServerError(str(e))
|
@ -5,7 +5,6 @@ from libs.external_api import ExternalApi
|
||||
bp = Blueprint("service_api", __name__, url_prefix="/v1")
|
||||
api = ExternalApi(bp)
|
||||
|
||||
|
||||
from . import index
|
||||
from .app import app, audio, completion, conversation, file, message, workflow
|
||||
from .dataset import dataset, document, segment
|
||||
from .dataset import dataset, document, hit_testing, segment
|
||||
|
@ -4,7 +4,6 @@ from flask_restful import Resource, reqparse
|
||||
from werkzeug.exceptions import InternalServerError, NotFound
|
||||
|
||||
import services
|
||||
from constants import UUID_NIL
|
||||
from controllers.service_api import api
|
||||
from controllers.service_api.app.error import (
|
||||
AppUnavailableError,
|
||||
@ -108,7 +107,6 @@ class ChatApi(Resource):
|
||||
parser.add_argument("conversation_id", type=uuid_value, location="json")
|
||||
parser.add_argument("retriever_from", type=str, required=False, default="dev", location="json")
|
||||
parser.add_argument("auto_generate_name", type=bool, required=False, default=True, location="json")
|
||||
parser.add_argument("parent_message_id", type=uuid_value, required=False, default=UUID_NIL, location="json")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
17
api/controllers/service_api/dataset/hit_testing.py
Normal file
17
api/controllers/service_api/dataset/hit_testing.py
Normal file
@ -0,0 +1,17 @@
|
||||
from controllers.console.datasets.hit_testing_base import DatasetsHitTestingBase
|
||||
from controllers.service_api import api
|
||||
from controllers.service_api.wraps import DatasetApiResource
|
||||
|
||||
|
||||
class HitTestingApi(DatasetApiResource, DatasetsHitTestingBase):
|
||||
def post(self, tenant_id, dataset_id):
|
||||
dataset_id_str = str(dataset_id)
|
||||
|
||||
dataset = self.get_and_validate_dataset(dataset_id_str)
|
||||
args = self.parse_args()
|
||||
self.hit_testing_args_check(args)
|
||||
|
||||
return self.perform_hit_testing(dataset, args)
|
||||
|
||||
|
||||
api.add_resource(HitTestingApi, "/datasets/<uuid:dataset_id>/hit-testing")
|
@ -62,6 +62,8 @@ class CotAgentOutputParser:
|
||||
thought_str = "thought:"
|
||||
thought_idx = 0
|
||||
|
||||
last_character = ""
|
||||
|
||||
for response in llm_response:
|
||||
if response.delta.usage:
|
||||
usage_dict["usage"] = response.delta.usage
|
||||
@ -74,35 +76,38 @@ class CotAgentOutputParser:
|
||||
while index < len(response):
|
||||
steps = 1
|
||||
delta = response[index : index + steps]
|
||||
last_character = response[index - 1] if index > 0 else ""
|
||||
yield_delta = False
|
||||
|
||||
if delta == "`":
|
||||
last_character = delta
|
||||
code_block_cache += delta
|
||||
code_block_delimiter_count += 1
|
||||
else:
|
||||
if not in_code_block:
|
||||
if code_block_delimiter_count > 0:
|
||||
last_character = delta
|
||||
yield code_block_cache
|
||||
code_block_cache = ""
|
||||
else:
|
||||
last_character = delta
|
||||
code_block_cache += delta
|
||||
code_block_delimiter_count = 0
|
||||
|
||||
if not in_code_block and not in_json:
|
||||
if delta.lower() == action_str[action_idx] and action_idx == 0:
|
||||
if last_character not in {"\n", " ", ""}:
|
||||
yield_delta = True
|
||||
else:
|
||||
last_character = delta
|
||||
action_cache += delta
|
||||
action_idx += 1
|
||||
if action_idx == len(action_str):
|
||||
action_cache = ""
|
||||
action_idx = 0
|
||||
index += steps
|
||||
yield delta
|
||||
continue
|
||||
|
||||
action_cache += delta
|
||||
action_idx += 1
|
||||
if action_idx == len(action_str):
|
||||
action_cache = ""
|
||||
action_idx = 0
|
||||
index += steps
|
||||
continue
|
||||
elif delta.lower() == action_str[action_idx] and action_idx > 0:
|
||||
last_character = delta
|
||||
action_cache += delta
|
||||
action_idx += 1
|
||||
if action_idx == len(action_str):
|
||||
@ -112,24 +117,25 @@ class CotAgentOutputParser:
|
||||
continue
|
||||
else:
|
||||
if action_cache:
|
||||
last_character = delta
|
||||
yield action_cache
|
||||
action_cache = ""
|
||||
action_idx = 0
|
||||
|
||||
if delta.lower() == thought_str[thought_idx] and thought_idx == 0:
|
||||
if last_character not in {"\n", " ", ""}:
|
||||
yield_delta = True
|
||||
else:
|
||||
last_character = delta
|
||||
thought_cache += delta
|
||||
thought_idx += 1
|
||||
if thought_idx == len(thought_str):
|
||||
thought_cache = ""
|
||||
thought_idx = 0
|
||||
index += steps
|
||||
yield delta
|
||||
continue
|
||||
|
||||
thought_cache += delta
|
||||
thought_idx += 1
|
||||
if thought_idx == len(thought_str):
|
||||
thought_cache = ""
|
||||
thought_idx = 0
|
||||
index += steps
|
||||
continue
|
||||
elif delta.lower() == thought_str[thought_idx] and thought_idx > 0:
|
||||
last_character = delta
|
||||
thought_cache += delta
|
||||
thought_idx += 1
|
||||
if thought_idx == len(thought_str):
|
||||
@ -139,12 +145,20 @@ class CotAgentOutputParser:
|
||||
continue
|
||||
else:
|
||||
if thought_cache:
|
||||
last_character = delta
|
||||
yield thought_cache
|
||||
thought_cache = ""
|
||||
thought_idx = 0
|
||||
|
||||
if yield_delta:
|
||||
index += steps
|
||||
last_character = delta
|
||||
yield delta
|
||||
continue
|
||||
|
||||
if code_block_delimiter_count == 3:
|
||||
if in_code_block:
|
||||
last_character = delta
|
||||
yield from extra_json_from_code_block(code_block_cache)
|
||||
code_block_cache = ""
|
||||
|
||||
@ -156,8 +170,10 @@ class CotAgentOutputParser:
|
||||
if delta == "{":
|
||||
json_quote_count += 1
|
||||
in_json = True
|
||||
last_character = delta
|
||||
json_cache += delta
|
||||
elif delta == "}":
|
||||
last_character = delta
|
||||
json_cache += delta
|
||||
if json_quote_count > 0:
|
||||
json_quote_count -= 1
|
||||
@ -168,16 +184,19 @@ class CotAgentOutputParser:
|
||||
continue
|
||||
else:
|
||||
if in_json:
|
||||
last_character = delta
|
||||
json_cache += delta
|
||||
|
||||
if got_json:
|
||||
got_json = False
|
||||
last_character = delta
|
||||
yield parse_action(json_cache)
|
||||
json_cache = ""
|
||||
json_quote_count = 0
|
||||
in_json = False
|
||||
|
||||
if not in_code_block and not in_json:
|
||||
last_character = delta
|
||||
yield delta.replace("`", "")
|
||||
|
||||
index += steps
|
||||
|
@ -10,6 +10,7 @@ from flask import Flask, current_app
|
||||
from pydantic import ValidationError
|
||||
|
||||
import contexts
|
||||
from constants import UUID_NIL
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfigManager
|
||||
from core.app.apps.advanced_chat.app_runner import AdvancedChatAppRunner
|
||||
@ -122,7 +123,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
inputs=conversation.inputs if conversation else self._get_cleaned_inputs(inputs, app_config),
|
||||
query=query,
|
||||
files=file_objs,
|
||||
parent_message_id=args.get("parent_message_id"),
|
||||
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
|
||||
user_id=user.id,
|
||||
stream=stream,
|
||||
invoke_from=invoke_from,
|
||||
|
@ -8,6 +8,7 @@ from typing import Any, Literal, Union, overload
|
||||
from flask import Flask, current_app
|
||||
from pydantic import ValidationError
|
||||
|
||||
from constants import UUID_NIL
|
||||
from core.app.app_config.easy_ui_based_app.model_config.converter import ModelConfigConverter
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfigManager
|
||||
@ -127,7 +128,7 @@ class AgentChatAppGenerator(MessageBasedAppGenerator):
|
||||
inputs=conversation.inputs if conversation else self._get_cleaned_inputs(inputs, app_config),
|
||||
query=query,
|
||||
files=file_objs,
|
||||
parent_message_id=args.get("parent_message_id"),
|
||||
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
|
||||
user_id=user.id,
|
||||
stream=stream,
|
||||
invoke_from=invoke_from,
|
||||
|
@ -8,6 +8,7 @@ from typing import Any, Literal, Union, overload
|
||||
from flask import Flask, current_app
|
||||
from pydantic import ValidationError
|
||||
|
||||
from constants import UUID_NIL
|
||||
from core.app.app_config.easy_ui_based_app.model_config.converter import ModelConfigConverter
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, GenerateTaskStoppedError, PublishFrom
|
||||
@ -128,7 +129,7 @@ class ChatAppGenerator(MessageBasedAppGenerator):
|
||||
inputs=conversation.inputs if conversation else self._get_cleaned_inputs(inputs, app_config),
|
||||
query=query,
|
||||
files=file_objs,
|
||||
parent_message_id=args.get("parent_message_id"),
|
||||
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
|
||||
user_id=user.id,
|
||||
stream=stream,
|
||||
invoke_from=invoke_from,
|
||||
|
@ -2,8 +2,9 @@ from collections.abc import Mapping
|
||||
from enum import Enum
|
||||
from typing import Any, Optional
|
||||
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
from pydantic import BaseModel, ConfigDict, Field, ValidationInfo, field_validator
|
||||
|
||||
from constants import UUID_NIL
|
||||
from core.app.app_config.entities import AppConfig, EasyUIBasedAppConfig, WorkflowUIBasedAppConfig
|
||||
from core.entities.provider_configuration import ProviderModelBundle
|
||||
from core.file.file_obj import FileVar
|
||||
@ -116,13 +117,36 @@ class EasyUIBasedAppGenerateEntity(AppGenerateEntity):
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
|
||||
class ChatAppGenerateEntity(EasyUIBasedAppGenerateEntity):
|
||||
class ConversationAppGenerateEntity(AppGenerateEntity):
|
||||
"""
|
||||
Base entity for conversation-based app generation.
|
||||
"""
|
||||
|
||||
conversation_id: Optional[str] = None
|
||||
parent_message_id: Optional[str] = Field(
|
||||
default=None,
|
||||
description=(
|
||||
"Starting from v0.9.0, parent_message_id is used to support message regeneration for internal chat API."
|
||||
"For service API, we need to ensure its forward compatibility, "
|
||||
"so passing in the parent_message_id as request arg is not supported for now. "
|
||||
"It needs to be set to UUID_NIL so that the subsequent processing will treat it as legacy messages."
|
||||
),
|
||||
)
|
||||
|
||||
@field_validator("parent_message_id")
|
||||
@classmethod
|
||||
def validate_parent_message_id(cls, v, info: ValidationInfo):
|
||||
if info.data.get("invoke_from") == InvokeFrom.SERVICE_API and v != UUID_NIL:
|
||||
raise ValueError("parent_message_id should be UUID_NIL for service API")
|
||||
return v
|
||||
|
||||
|
||||
class ChatAppGenerateEntity(ConversationAppGenerateEntity, EasyUIBasedAppGenerateEntity):
|
||||
"""
|
||||
Chat Application Generate Entity.
|
||||
"""
|
||||
|
||||
conversation_id: Optional[str] = None
|
||||
parent_message_id: Optional[str] = None
|
||||
pass
|
||||
|
||||
|
||||
class CompletionAppGenerateEntity(EasyUIBasedAppGenerateEntity):
|
||||
@ -133,16 +157,15 @@ class CompletionAppGenerateEntity(EasyUIBasedAppGenerateEntity):
|
||||
pass
|
||||
|
||||
|
||||
class AgentChatAppGenerateEntity(EasyUIBasedAppGenerateEntity):
|
||||
class AgentChatAppGenerateEntity(ConversationAppGenerateEntity, EasyUIBasedAppGenerateEntity):
|
||||
"""
|
||||
Agent Chat Application Generate Entity.
|
||||
"""
|
||||
|
||||
conversation_id: Optional[str] = None
|
||||
parent_message_id: Optional[str] = None
|
||||
pass
|
||||
|
||||
|
||||
class AdvancedChatAppGenerateEntity(AppGenerateEntity):
|
||||
class AdvancedChatAppGenerateEntity(ConversationAppGenerateEntity):
|
||||
"""
|
||||
Advanced Chat Application Generate Entity.
|
||||
"""
|
||||
@ -150,8 +173,6 @@ class AdvancedChatAppGenerateEntity(AppGenerateEntity):
|
||||
# app config
|
||||
app_config: WorkflowUIBasedAppConfig
|
||||
|
||||
conversation_id: Optional[str] = None
|
||||
parent_message_id: Optional[str] = None
|
||||
workflow_run_id: Optional[str] = None
|
||||
query: str
|
||||
|
||||
|
@ -3,7 +3,7 @@ import os
|
||||
from collections.abc import Callable, Generator, Sequence
|
||||
from typing import IO, Optional, Union, cast
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
|
||||
from core.entities.provider_entities import ModelLoadBalancingConfiguration
|
||||
from core.errors.error import ProviderTokenNotInitError
|
||||
|
@ -4,7 +4,7 @@ from typing import Optional
|
||||
|
||||
from pydantic import ConfigDict
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
||||
from core.model_runtime.model_providers.__base.ai_model import AIModel
|
||||
|
@ -1098,6 +1098,14 @@ LLM_BASE_MODELS = [
|
||||
ModelPropertyKey.CONTEXT_SIZE: 128000,
|
||||
},
|
||||
parameter_rules=[
|
||||
ParameterRule(
|
||||
name="temperature",
|
||||
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TEMPERATURE],
|
||||
),
|
||||
ParameterRule(
|
||||
name="top_p",
|
||||
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TOP_P],
|
||||
),
|
||||
ParameterRule(
|
||||
name="response_format",
|
||||
label=I18nObject(zh_Hans="回复格式", en_US="response_format"),
|
||||
@ -1135,6 +1143,14 @@ LLM_BASE_MODELS = [
|
||||
ModelPropertyKey.CONTEXT_SIZE: 128000,
|
||||
},
|
||||
parameter_rules=[
|
||||
ParameterRule(
|
||||
name="temperature",
|
||||
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TEMPERATURE],
|
||||
),
|
||||
ParameterRule(
|
||||
name="top_p",
|
||||
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TOP_P],
|
||||
),
|
||||
ParameterRule(
|
||||
name="response_format",
|
||||
label=I18nObject(zh_Hans="回复格式", en_US="response_format"),
|
||||
|
@ -119,7 +119,15 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
|
||||
try:
|
||||
client = AzureOpenAI(**self._to_credential_kwargs(credentials))
|
||||
|
||||
if ai_model_entity.entity.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT.value:
|
||||
if model.startswith("o1"):
|
||||
client.chat.completions.create(
|
||||
messages=[{"role": "user", "content": "ping"}],
|
||||
model=model,
|
||||
temperature=1,
|
||||
max_completion_tokens=20,
|
||||
stream=False,
|
||||
)
|
||||
elif ai_model_entity.entity.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT.value:
|
||||
# chat model
|
||||
client.chat.completions.create(
|
||||
messages=[{"role": "user", "content": "ping"}],
|
||||
|
@ -7,7 +7,7 @@ import numpy as np
|
||||
import tiktoken
|
||||
from openai import AzureOpenAI
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
|
@ -4,7 +4,7 @@ from typing import Optional
|
||||
|
||||
from requests import post
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
|
@ -52,6 +52,8 @@ parameter_rules:
|
||||
help:
|
||||
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
|
||||
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
pricing:
|
||||
input: '0.00025'
|
||||
output: '0.00125'
|
||||
|
@ -51,6 +51,8 @@ parameter_rules:
|
||||
help:
|
||||
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
|
||||
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
pricing:
|
||||
input: '0.003'
|
||||
output: '0.015'
|
||||
|
@ -51,6 +51,8 @@ parameter_rules:
|
||||
help:
|
||||
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
|
||||
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
pricing:
|
||||
input: '0.003'
|
||||
output: '0.015'
|
||||
|
@ -52,6 +52,8 @@ parameter_rules:
|
||||
help:
|
||||
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
|
||||
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
pricing:
|
||||
input: '0.00025'
|
||||
output: '0.00125'
|
||||
|
@ -52,6 +52,8 @@ parameter_rules:
|
||||
help:
|
||||
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
|
||||
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
pricing:
|
||||
input: '0.015'
|
||||
output: '0.075'
|
||||
|
@ -51,6 +51,8 @@ parameter_rules:
|
||||
help:
|
||||
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
|
||||
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
pricing:
|
||||
input: '0.003'
|
||||
output: '0.015'
|
||||
|
@ -51,6 +51,8 @@ parameter_rules:
|
||||
help:
|
||||
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
|
||||
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
pricing:
|
||||
input: '0.003'
|
||||
output: '0.015'
|
||||
|
@ -13,7 +13,7 @@ from botocore.exceptions import (
|
||||
UnknownServiceError,
|
||||
)
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
|
@ -5,7 +5,7 @@ import cohere
|
||||
import numpy as np
|
||||
from cohere.core import RequestOptions
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
|
@ -18,6 +18,7 @@ supported_model_types:
|
||||
- text-embedding
|
||||
configurate_methods:
|
||||
- predefined-model
|
||||
- customizable-model
|
||||
provider_credential_schema:
|
||||
credential_form_schemas:
|
||||
- variable: fireworks_api_key
|
||||
@ -28,3 +29,75 @@ provider_credential_schema:
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的 API Key
|
||||
en_US: Enter your API Key
|
||||
model_credential_schema:
|
||||
model:
|
||||
label:
|
||||
en_US: Model URL
|
||||
zh_Hans: 模型URL
|
||||
placeholder:
|
||||
en_US: Enter your Model URL
|
||||
zh_Hans: 输入模型URL
|
||||
credential_form_schemas:
|
||||
- variable: model_label_zh_Hanns
|
||||
label:
|
||||
zh_Hans: 模型中文名称
|
||||
en_US: The zh_Hans of Model
|
||||
required: true
|
||||
type: text-input
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的模型中文名称
|
||||
en_US: Enter your zh_Hans of Model
|
||||
- variable: model_label_en_US
|
||||
label:
|
||||
zh_Hans: 模型英文名称
|
||||
en_US: The en_US of Model
|
||||
required: true
|
||||
type: text-input
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的模型英文名称
|
||||
en_US: Enter your en_US of Model
|
||||
- variable: fireworks_api_key
|
||||
label:
|
||||
en_US: API Key
|
||||
type: secret-input
|
||||
required: true
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的 API Key
|
||||
en_US: Enter your API Key
|
||||
- variable: context_size
|
||||
label:
|
||||
zh_Hans: 模型上下文长度
|
||||
en_US: Model context size
|
||||
required: true
|
||||
type: text-input
|
||||
default: '4096'
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的模型上下文长度
|
||||
en_US: Enter your Model context size
|
||||
- variable: max_tokens
|
||||
label:
|
||||
zh_Hans: 最大 token 上限
|
||||
en_US: Upper bound for max tokens
|
||||
default: '4096'
|
||||
type: text-input
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: llm
|
||||
- variable: function_calling_type
|
||||
label:
|
||||
en_US: Function calling
|
||||
type: select
|
||||
required: false
|
||||
default: no_call
|
||||
options:
|
||||
- value: no_call
|
||||
label:
|
||||
en_US: Not Support
|
||||
zh_Hans: 不支持
|
||||
- value: function_call
|
||||
label:
|
||||
en_US: Support
|
||||
zh_Hans: 支持
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: llm
|
||||
|
@ -43,3 +43,4 @@ pricing:
|
||||
output: '0.2'
|
||||
unit: '0.000001'
|
||||
currency: USD
|
||||
deprecated: true
|
||||
|
@ -8,7 +8,8 @@ from openai.types.chat.chat_completion_chunk import ChoiceDeltaFunctionCall, Cho
|
||||
from openai.types.chat.chat_completion_message import FunctionCall
|
||||
|
||||
from core.model_runtime.callbacks.base_callback import Callback
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
ImagePromptMessageContent,
|
||||
@ -20,6 +21,15 @@ from core.model_runtime.entities.message_entities import (
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
FetchFrom,
|
||||
ModelFeature,
|
||||
ModelPropertyKey,
|
||||
ModelType,
|
||||
ParameterRule,
|
||||
ParameterType,
|
||||
)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.model_runtime.model_providers.fireworks._common import _CommonFireworks
|
||||
@ -608,3 +618,50 @@ class FireworksLargeLanguageModel(_CommonFireworks, LargeLanguageModel):
|
||||
num_tokens += self._get_num_tokens_by_gpt2(required_field)
|
||||
|
||||
return num_tokens
|
||||
|
||||
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity:
|
||||
return AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(
|
||||
en_US=credentials.get("model_label_en_US", model),
|
||||
zh_Hans=credentials.get("model_label_zh_Hanns", model),
|
||||
),
|
||||
model_type=ModelType.LLM,
|
||||
features=[ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL, ModelFeature.STREAM_TOOL_CALL]
|
||||
if credentials.get("function_calling_type") == "function_call"
|
||||
else [],
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_properties={
|
||||
ModelPropertyKey.CONTEXT_SIZE: int(credentials.get("context_size", 4096)),
|
||||
ModelPropertyKey.MODE: LLMMode.CHAT.value,
|
||||
},
|
||||
parameter_rules=[
|
||||
ParameterRule(
|
||||
name="temperature",
|
||||
use_template="temperature",
|
||||
label=I18nObject(en_US="Temperature", zh_Hans="温度"),
|
||||
type=ParameterType.FLOAT,
|
||||
),
|
||||
ParameterRule(
|
||||
name="max_tokens",
|
||||
use_template="max_tokens",
|
||||
default=512,
|
||||
min=1,
|
||||
max=int(credentials.get("max_tokens", 4096)),
|
||||
label=I18nObject(en_US="Max Tokens", zh_Hans="最大标记"),
|
||||
type=ParameterType.INT,
|
||||
),
|
||||
ParameterRule(
|
||||
name="top_p",
|
||||
use_template="top_p",
|
||||
label=I18nObject(en_US="Top P", zh_Hans="Top P"),
|
||||
type=ParameterType.FLOAT,
|
||||
),
|
||||
ParameterRule(
|
||||
name="top_k",
|
||||
use_template="top_k",
|
||||
label=I18nObject(en_US="Top K", zh_Hans="Top K"),
|
||||
type=ParameterType.FLOAT,
|
||||
),
|
||||
],
|
||||
)
|
||||
|
@ -0,0 +1,46 @@
|
||||
model: accounts/fireworks/models/qwen2p5-72b-instruct
|
||||
label:
|
||||
zh_Hans: Qwen2.5 72B Instruct
|
||||
en_US: Qwen2.5 72B Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
- tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 32768
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
- name: context_length_exceeded_behavior
|
||||
default: None
|
||||
label:
|
||||
zh_Hans: 上下文长度超出行为
|
||||
en_US: Context Length Exceeded Behavior
|
||||
help:
|
||||
zh_Hans: 上下文长度超出行为
|
||||
en_US: Context Length Exceeded Behavior
|
||||
type: string
|
||||
options:
|
||||
- None
|
||||
- truncate
|
||||
- error
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
pricing:
|
||||
input: '0.9'
|
||||
output: '0.9'
|
||||
unit: '0.000001'
|
||||
currency: USD
|
@ -5,7 +5,7 @@ from typing import Optional, Union
|
||||
import numpy as np
|
||||
from openai import OpenAI
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
|
@ -32,15 +32,6 @@ parameter_rules:
|
||||
max: 8192
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
- name: stream
|
||||
label:
|
||||
zh_Hans: 流式输出
|
||||
en_US: Stream
|
||||
type: boolean
|
||||
help:
|
||||
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
|
||||
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
|
||||
default: false
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
|
@ -32,15 +32,6 @@ parameter_rules:
|
||||
max: 8192
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
- name: stream
|
||||
label:
|
||||
zh_Hans: 流式输出
|
||||
en_US: Stream
|
||||
type: boolean
|
||||
help:
|
||||
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
|
||||
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
|
||||
default: false
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
|
@ -32,15 +32,6 @@ parameter_rules:
|
||||
max: 8192
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
- name: stream
|
||||
label:
|
||||
zh_Hans: 流式输出
|
||||
en_US: Stream
|
||||
type: boolean
|
||||
help:
|
||||
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
|
||||
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
|
||||
default: false
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
|
@ -32,15 +32,6 @@ parameter_rules:
|
||||
max: 8192
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
- name: stream
|
||||
label:
|
||||
zh_Hans: 流式输出
|
||||
en_US: Stream
|
||||
type: boolean
|
||||
help:
|
||||
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
|
||||
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
|
||||
default: false
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
|
@ -32,15 +32,6 @@ parameter_rules:
|
||||
max: 8192
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
- name: stream
|
||||
label:
|
||||
zh_Hans: 流式输出
|
||||
en_US: Stream
|
||||
type: boolean
|
||||
help:
|
||||
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
|
||||
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
|
||||
default: false
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
|
@ -32,15 +32,6 @@ parameter_rules:
|
||||
max: 8192
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
- name: stream
|
||||
label:
|
||||
zh_Hans: 流式输出
|
||||
en_US: Stream
|
||||
type: boolean
|
||||
help:
|
||||
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
|
||||
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
|
||||
default: false
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
|
@ -32,15 +32,6 @@ parameter_rules:
|
||||
max: 8192
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
- name: stream
|
||||
label:
|
||||
zh_Hans: 流式输出
|
||||
en_US: Stream
|
||||
type: boolean
|
||||
help:
|
||||
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
|
||||
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
|
||||
default: false
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
|
@ -32,15 +32,6 @@ parameter_rules:
|
||||
max: 8192
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
- name: stream
|
||||
label:
|
||||
zh_Hans: 流式输出
|
||||
en_US: Stream
|
||||
type: boolean
|
||||
help:
|
||||
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
|
||||
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
|
||||
default: false
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
|
@ -32,15 +32,6 @@ parameter_rules:
|
||||
max: 8192
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
- name: stream
|
||||
label:
|
||||
zh_Hans: 流式输出
|
||||
en_US: Stream
|
||||
type: boolean
|
||||
help:
|
||||
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
|
||||
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
|
||||
default: false
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
|
@ -32,15 +32,6 @@ parameter_rules:
|
||||
max: 8192
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
- name: stream
|
||||
label:
|
||||
zh_Hans: 流式输出
|
||||
en_US: Stream
|
||||
type: boolean
|
||||
help:
|
||||
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
|
||||
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
|
||||
default: false
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
|
@ -32,15 +32,6 @@ parameter_rules:
|
||||
max: 8192
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
- name: stream
|
||||
label:
|
||||
zh_Hans: 流式输出
|
||||
en_US: Stream
|
||||
type: boolean
|
||||
help:
|
||||
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
|
||||
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
|
||||
default: false
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
|
@ -32,15 +32,6 @@ parameter_rules:
|
||||
max: 8192
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
- name: stream
|
||||
label:
|
||||
zh_Hans: 流式输出
|
||||
en_US: Stream
|
||||
type: boolean
|
||||
help:
|
||||
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
|
||||
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
|
||||
default: false
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
|
@ -32,15 +32,6 @@ parameter_rules:
|
||||
max: 8192
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
- name: stream
|
||||
label:
|
||||
zh_Hans: 流式输出
|
||||
en_US: Stream
|
||||
type: boolean
|
||||
help:
|
||||
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
|
||||
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
|
||||
default: false
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
|
@ -27,15 +27,6 @@ parameter_rules:
|
||||
default: 4096
|
||||
min: 1
|
||||
max: 4096
|
||||
- name: stream
|
||||
label:
|
||||
zh_Hans: 流式输出
|
||||
en_US: Stream
|
||||
type: boolean
|
||||
help:
|
||||
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
|
||||
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
|
||||
default: false
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
|
@ -31,15 +31,6 @@ parameter_rules:
|
||||
max: 2048
|
||||
- name: response_format
|
||||
use_template: response_format
|
||||
- name: stream
|
||||
label:
|
||||
zh_Hans: 流式输出
|
||||
en_US: Stream
|
||||
type: boolean
|
||||
help:
|
||||
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
|
||||
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
|
||||
default: false
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
|
@ -6,7 +6,7 @@ import numpy as np
|
||||
import requests
|
||||
from huggingface_hub import HfApi, InferenceClient
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
|
@ -1,7 +1,7 @@
|
||||
import time
|
||||
from typing import Optional
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
|
@ -9,7 +9,7 @@ from tencentcloud.common.profile.client_profile import ClientProfile
|
||||
from tencentcloud.common.profile.http_profile import HttpProfile
|
||||
from tencentcloud.hunyuan.v20230901 import hunyuan_client, models
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
|
@ -4,7 +4,7 @@ from typing import Optional
|
||||
|
||||
from requests import post
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
|
@ -5,7 +5,7 @@ from typing import Optional
|
||||
from requests import post
|
||||
from yarl import URL
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
|
@ -0,0 +1,44 @@
|
||||
model: abab6.5t-chat
|
||||
label:
|
||||
en_US: Abab6.5t-Chat
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 8192
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0.01
|
||||
max: 1
|
||||
default: 0.9
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0.01
|
||||
max: 1
|
||||
default: 0.95
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
default: 3072
|
||||
min: 1
|
||||
max: 8192
|
||||
- name: mask_sensitive_info
|
||||
type: boolean
|
||||
default: true
|
||||
label:
|
||||
zh_Hans: 隐私保护
|
||||
en_US: Moderate
|
||||
help:
|
||||
zh_Hans: 对输出中易涉及隐私问题的文本信息进行打码,目前包括但不限于邮箱、域名、链接、证件号、家庭住址等,默认true,即开启打码
|
||||
en_US: Mask the sensitive info of the generated content, such as email/domain/link/address/phone/id..
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
input: '0.005'
|
||||
output: '0.005'
|
||||
unit: '0.001'
|
||||
currency: RMB
|
@ -4,7 +4,7 @@ from typing import Optional
|
||||
|
||||
from requests import post
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
@ -61,7 +61,8 @@ class MinimaxTextEmbeddingModel(TextEmbeddingModel):
|
||||
url = f"{self.api_base}?GroupId={group_id}"
|
||||
headers = {"Authorization": "Bearer " + api_key, "Content-Type": "application/json"}
|
||||
|
||||
data = {"model": "embo-01", "texts": texts, "type": "db"}
|
||||
embedding_type = "db" if input_type == EmbeddingInputType.DOCUMENT else "query"
|
||||
data = {"model": "embo-01", "texts": texts, "type": embedding_type}
|
||||
|
||||
try:
|
||||
response = post(url, headers=headers, data=dumps(data))
|
||||
|
@ -4,7 +4,7 @@ from typing import Optional
|
||||
|
||||
import requests
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
|
@ -5,7 +5,7 @@ from typing import Optional
|
||||
from nomic import embed
|
||||
from nomic import login as nomic_login
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import (
|
||||
EmbeddingUsage,
|
||||
|
@ -4,7 +4,7 @@ from typing import Optional
|
||||
|
||||
from requests import post
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
|
@ -6,7 +6,7 @@ from typing import Optional
|
||||
import numpy as np
|
||||
import oci
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
|
@ -8,7 +8,7 @@ from urllib.parse import urljoin
|
||||
import numpy as np
|
||||
import requests
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
|
@ -19,9 +19,9 @@ class OpenAIProvider(ModelProvider):
|
||||
try:
|
||||
model_instance = self.get_model_instance(ModelType.LLM)
|
||||
|
||||
# Use `gpt-3.5-turbo` model for validate,
|
||||
# Use `gpt-4o-mini` model for validate,
|
||||
# no matter what model you pass in, text completion model or chat model
|
||||
model_instance.validate_credentials(model="gpt-3.5-turbo", credentials=credentials)
|
||||
model_instance.validate_credentials(model="gpt-4o-mini", credentials=credentials)
|
||||
except CredentialsValidateFailedError as ex:
|
||||
raise ex
|
||||
except Exception as ex:
|
||||
|
@ -6,7 +6,7 @@ import numpy as np
|
||||
import tiktoken
|
||||
from openai import OpenAI
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
|
@ -7,7 +7,7 @@ from urllib.parse import urljoin
|
||||
import numpy as np
|
||||
import requests
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
|
@ -5,7 +5,7 @@ from typing import Optional
|
||||
from requests import post
|
||||
from requests.exceptions import ConnectionError, InvalidSchema, MissingSchema
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
|
@ -35,6 +35,15 @@ parameter_rules:
|
||||
help:
|
||||
zh_Hans: 控制生成结果的随机性。数值越小,随机性越弱;数值越大,随机性越强。一般而言,top_p 和 temperature 两个参数选择一个进行调整即可。
|
||||
en_US: Control the randomness of generated results. The smaller the value, the weaker the randomness; the larger the value, the stronger the randomness. Generally speaking, you can adjust one of the two parameters top_p and temperature.
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
default: 0
|
||||
|
@ -18,6 +18,15 @@ parameter_rules:
|
||||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
|
@ -14,6 +14,15 @@ parameter_rules:
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
|
@ -14,6 +14,15 @@ parameter_rules:
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
|
@ -14,6 +14,15 @@ parameter_rules:
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
|
@ -16,6 +16,15 @@ parameter_rules:
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
|
@ -15,6 +15,15 @@ parameter_rules:
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
|
@ -15,6 +15,15 @@ parameter_rules:
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
|
@ -10,6 +10,15 @@ parameter_rules:
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
|
@ -10,6 +10,15 @@ parameter_rules:
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
|
@ -10,6 +10,15 @@ parameter_rules:
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
|
@ -10,6 +10,15 @@ parameter_rules:
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
|
@ -10,6 +10,15 @@ parameter_rules:
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
|
@ -18,6 +18,15 @@ parameter_rules:
|
||||
default: 1
|
||||
min: 0
|
||||
max: 1
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 1024
|
||||
|
@ -18,6 +18,15 @@ parameter_rules:
|
||||
default: 1
|
||||
min: 0
|
||||
max: 1
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 1024
|
||||
|
@ -19,6 +19,15 @@ parameter_rules:
|
||||
default: 1
|
||||
min: 0
|
||||
max: 1
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 1024
|
||||
|
@ -12,6 +12,15 @@ parameter_rules:
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
|
@ -12,6 +12,15 @@ parameter_rules:
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
|
@ -21,6 +21,15 @@ parameter_rules:
|
||||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
@ -21,6 +21,15 @@ parameter_rules:
|
||||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
@ -7,7 +7,7 @@ from urllib.parse import urljoin
|
||||
import numpy as np
|
||||
import requests
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
|
@ -4,7 +4,7 @@ from typing import Optional
|
||||
|
||||
from replicate import Client as ReplicateClient
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
|
@ -14,6 +14,7 @@ from core.model_runtime.errors.invoke import (
|
||||
InvokeRateLimitError,
|
||||
InvokeServerUnavailableError,
|
||||
)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
|
||||
from core.model_runtime.model_providers.sagemaker.sagemaker import generate_presigned_url
|
||||
|
||||
@ -77,7 +78,8 @@ class SageMakerSpeech2TextModel(Speech2TextModel):
|
||||
json_obj = json.loads(json_str)
|
||||
asr_text = json_obj["text"]
|
||||
except Exception as e:
|
||||
logger.exception(f"Exception {e}, line : {line}")
|
||||
logger.exception(f"failed to invoke speech2text model, {e}")
|
||||
raise CredentialsValidateFailedError(str(e))
|
||||
|
||||
return asr_text
|
||||
|
||||
|
@ -6,7 +6,7 @@ from typing import Any, Optional
|
||||
|
||||
import boto3
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
|
@ -21,6 +21,15 @@ parameter_rules:
|
||||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user