Merge branch 'main' into feat/plugins

This commit is contained in:
twwu 2024-10-18 09:59:43 +08:00
commit 9a242bcac9
377 changed files with 8519 additions and 9684 deletions

View File

@ -27,18 +27,17 @@ jobs:
- name: Checkout code
uses: actions/checkout@v4
- name: Install Poetry
uses: abatilo/actions-poetry@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: 'poetry'
cache-dependency-path: |
api/pyproject.toml
api/poetry.lock
- name: Install Poetry
uses: abatilo/actions-poetry@v3
- name: Check Poetry lockfile
run: |
poetry check -C api --lock

View File

@ -23,18 +23,17 @@ jobs:
- name: Checkout code
uses: actions/checkout@v4
- name: Install Poetry
uses: abatilo/actions-poetry@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: 'poetry'
cache-dependency-path: |
api/pyproject.toml
api/poetry.lock
- name: Install Poetry
uses: abatilo/actions-poetry@v3
- name: Install dependencies
run: poetry install -C api

View File

@ -24,15 +24,16 @@ jobs:
with:
files: api/**
- name: Install Poetry
uses: abatilo/actions-poetry@v3
- name: Set up Python
uses: actions/setup-python@v5
if: steps.changed-files.outputs.any_changed == 'true'
with:
python-version: '3.10'
- name: Install Poetry
if: steps.changed-files.outputs.any_changed == 'true'
uses: abatilo/actions-poetry@v3
- name: Python dependencies
if: steps.changed-files.outputs.any_changed == 'true'
run: poetry install -C api --only lint

View File

@ -85,3 +85,4 @@
cd ../
poetry run -C api bash dev/pytest/pytest_all_tests.sh
```

View File

@ -10,44 +10,19 @@ if os.environ.get("DEBUG", "false").lower() != "true":
grpc.experimental.gevent.init_gevent()
import json
import logging
import sys
import threading
import time
import warnings
from logging.handlers import RotatingFileHandler
from flask import Flask, Response, request
from flask_cors import CORS
from werkzeug.exceptions import Unauthorized
from flask import Response
import contexts
from commands import register_commands
from configs import dify_config
from app_factory import create_app
# DO NOT REMOVE BELOW
from events import event_handlers # noqa: F401
from extensions import (
ext_celery,
ext_code_based_extension,
ext_compress,
ext_database,
ext_hosting_provider,
ext_login,
ext_mail,
ext_migrate,
ext_proxy_fix,
ext_redis,
ext_sentry,
ext_storage,
)
from extensions.ext_database import db
from extensions.ext_login import login_manager
from libs.passport import PassportService
# TODO: Find a way to avoid importing models here
from models import account, dataset, model, source, task, tool, tools, web # noqa: F401
from services.account_service import AccountService
# DO NOT REMOVE ABOVE
@ -60,188 +35,12 @@ if hasattr(time, "tzset"):
time.tzset()
class DifyApp(Flask):
pass
# -------------
# Configuration
# -------------
config_type = os.getenv("EDITION", default="SELF_HOSTED") # ce edition first
# ----------------------------
# Application Factory Function
# ----------------------------
def create_flask_app_with_configs() -> Flask:
"""
create a raw flask app
with configs loaded from .env file
"""
dify_app = DifyApp(__name__)
dify_app.config.from_mapping(dify_config.model_dump())
# populate configs into system environment variables
for key, value in dify_app.config.items():
if isinstance(value, str):
os.environ[key] = value
elif isinstance(value, int | float | bool):
os.environ[key] = str(value)
elif value is None:
os.environ[key] = ""
return dify_app
def create_app() -> Flask:
app = create_flask_app_with_configs()
app.secret_key = app.config["SECRET_KEY"]
log_handlers = None
log_file = app.config.get("LOG_FILE")
if log_file:
log_dir = os.path.dirname(log_file)
os.makedirs(log_dir, exist_ok=True)
log_handlers = [
RotatingFileHandler(
filename=log_file,
maxBytes=1024 * 1024 * 1024,
backupCount=5,
),
logging.StreamHandler(sys.stdout),
]
logging.basicConfig(
level=app.config.get("LOG_LEVEL"),
format=app.config.get("LOG_FORMAT"),
datefmt=app.config.get("LOG_DATEFORMAT"),
handlers=log_handlers,
force=True,
)
log_tz = app.config.get("LOG_TZ")
if log_tz:
from datetime import datetime
import pytz
timezone = pytz.timezone(log_tz)
def time_converter(seconds):
return datetime.utcfromtimestamp(seconds).astimezone(timezone).timetuple()
for handler in logging.root.handlers:
handler.formatter.converter = time_converter
initialize_extensions(app)
register_blueprints(app)
register_commands(app)
return app
def initialize_extensions(app):
# Since the application instance is now created, pass it to each Flask
# extension instance to bind it to the Flask application instance (app)
ext_compress.init_app(app)
ext_code_based_extension.init()
ext_database.init_app(app)
ext_migrate.init(app, db)
ext_redis.init_app(app)
ext_storage.init_app(app)
ext_celery.init_app(app)
ext_login.init_app(app)
ext_mail.init_app(app)
ext_hosting_provider.init_app(app)
ext_sentry.init_app(app)
ext_proxy_fix.init_app(app)
# Flask-Login configuration
@login_manager.request_loader
def load_user_from_request(request_from_flask_login):
"""Load user based on the request."""
if request.blueprint not in {"console", "inner_api"}:
return None
# Check if the user_id contains a dot, indicating the old format
auth_header = request.headers.get("Authorization", "")
if not auth_header:
auth_token = request.args.get("_token")
if not auth_token:
raise Unauthorized("Invalid Authorization token.")
else:
if " " not in auth_header:
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
auth_scheme, auth_token = auth_header.split(None, 1)
auth_scheme = auth_scheme.lower()
if auth_scheme != "bearer":
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
decoded = PassportService().verify(auth_token)
user_id = decoded.get("user_id")
logged_in_account = AccountService.load_logged_in_account(account_id=user_id)
if logged_in_account:
contexts.tenant_id.set(logged_in_account.current_tenant_id)
return logged_in_account
@login_manager.unauthorized_handler
def unauthorized_handler():
"""Handle unauthorized requests."""
return Response(
json.dumps({"code": "unauthorized", "message": "Unauthorized."}),
status=401,
content_type="application/json",
)
# register blueprint routers
def register_blueprints(app):
from controllers.console import bp as console_app_bp
from controllers.files import bp as files_bp
from controllers.inner_api import bp as inner_api_bp
from controllers.service_api import bp as service_api_bp
from controllers.web import bp as web_bp
CORS(
service_api_bp,
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
)
app.register_blueprint(service_api_bp)
CORS(
web_bp,
resources={r"/*": {"origins": app.config["WEB_API_CORS_ALLOW_ORIGINS"]}},
supports_credentials=True,
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
expose_headers=["X-Version", "X-Env"],
)
app.register_blueprint(web_bp)
CORS(
console_app_bp,
resources={r"/*": {"origins": app.config["CONSOLE_CORS_ALLOW_ORIGINS"]}},
supports_credentials=True,
allow_headers=["Content-Type", "Authorization"],
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
expose_headers=["X-Version", "X-Env"],
)
app.register_blueprint(console_app_bp)
CORS(files_bp, allow_headers=["Content-Type"], methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"])
app.register_blueprint(files_bp)
app.register_blueprint(inner_api_bp)
# create app
app = create_app()
celery = app.extensions["celery"]

213
api/app_factory.py Normal file
View File

@ -0,0 +1,213 @@
import os
if os.environ.get("DEBUG", "false").lower() != "true":
from gevent import monkey
monkey.patch_all()
import grpc.experimental.gevent
grpc.experimental.gevent.init_gevent()
import json
import logging
import sys
from logging.handlers import RotatingFileHandler
from flask import Flask, Response, request
from flask_cors import CORS
from werkzeug.exceptions import Unauthorized
import contexts
from commands import register_commands
from configs import dify_config
from extensions import (
ext_celery,
ext_code_based_extension,
ext_compress,
ext_database,
ext_hosting_provider,
ext_login,
ext_mail,
ext_migrate,
ext_proxy_fix,
ext_redis,
ext_sentry,
ext_storage,
)
from extensions.ext_database import db
from extensions.ext_login import login_manager
from libs.passport import PassportService
from services.account_service import AccountService
class DifyApp(Flask):
pass
# ----------------------------
# Application Factory Function
# ----------------------------
def create_flask_app_with_configs() -> Flask:
"""
create a raw flask app
with configs loaded from .env file
"""
dify_app = DifyApp(__name__)
dify_app.config.from_mapping(dify_config.model_dump())
# populate configs into system environment variables
for key, value in dify_app.config.items():
if isinstance(value, str):
os.environ[key] = value
elif isinstance(value, int | float | bool):
os.environ[key] = str(value)
elif value is None:
os.environ[key] = ""
return dify_app
def create_app() -> Flask:
app = create_flask_app_with_configs()
app.secret_key = app.config["SECRET_KEY"]
log_handlers = None
log_file = app.config.get("LOG_FILE")
if log_file:
log_dir = os.path.dirname(log_file)
os.makedirs(log_dir, exist_ok=True)
log_handlers = [
RotatingFileHandler(
filename=log_file,
maxBytes=1024 * 1024 * 1024,
backupCount=5,
),
logging.StreamHandler(sys.stdout),
]
logging.basicConfig(
level=app.config.get("LOG_LEVEL"),
format=app.config.get("LOG_FORMAT"),
datefmt=app.config.get("LOG_DATEFORMAT"),
handlers=log_handlers,
force=True,
)
log_tz = app.config.get("LOG_TZ")
if log_tz:
from datetime import datetime
import pytz
timezone = pytz.timezone(log_tz)
def time_converter(seconds):
return datetime.utcfromtimestamp(seconds).astimezone(timezone).timetuple()
for handler in logging.root.handlers:
handler.formatter.converter = time_converter
initialize_extensions(app)
register_blueprints(app)
register_commands(app)
return app
def initialize_extensions(app):
# Since the application instance is now created, pass it to each Flask
# extension instance to bind it to the Flask application instance (app)
ext_compress.init_app(app)
ext_code_based_extension.init()
ext_database.init_app(app)
ext_migrate.init(app, db)
ext_redis.init_app(app)
ext_storage.init_app(app)
ext_celery.init_app(app)
ext_login.init_app(app)
ext_mail.init_app(app)
ext_hosting_provider.init_app(app)
ext_sentry.init_app(app)
ext_proxy_fix.init_app(app)
# Flask-Login configuration
@login_manager.request_loader
def load_user_from_request(request_from_flask_login):
"""Load user based on the request."""
if request.blueprint not in {"console", "inner_api"}:
return None
# Check if the user_id contains a dot, indicating the old format
auth_header = request.headers.get("Authorization", "")
if not auth_header:
auth_token = request.args.get("_token")
if not auth_token:
raise Unauthorized("Invalid Authorization token.")
else:
if " " not in auth_header:
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
auth_scheme, auth_token = auth_header.split(None, 1)
auth_scheme = auth_scheme.lower()
if auth_scheme != "bearer":
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
decoded = PassportService().verify(auth_token)
user_id = decoded.get("user_id")
logged_in_account = AccountService.load_logged_in_account(account_id=user_id)
if logged_in_account:
contexts.tenant_id.set(logged_in_account.current_tenant_id)
return logged_in_account
@login_manager.unauthorized_handler
def unauthorized_handler():
"""Handle unauthorized requests."""
return Response(
json.dumps({"code": "unauthorized", "message": "Unauthorized."}),
status=401,
content_type="application/json",
)
# register blueprint routers
def register_blueprints(app):
from controllers.console import bp as console_app_bp
from controllers.files import bp as files_bp
from controllers.inner_api import bp as inner_api_bp
from controllers.service_api import bp as service_api_bp
from controllers.web import bp as web_bp
CORS(
service_api_bp,
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
)
app.register_blueprint(service_api_bp)
CORS(
web_bp,
resources={r"/*": {"origins": app.config["WEB_API_CORS_ALLOW_ORIGINS"]}},
supports_credentials=True,
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
expose_headers=["X-Version", "X-Env"],
)
app.register_blueprint(web_bp)
CORS(
console_app_bp,
resources={r"/*": {"origins": app.config["CONSOLE_CORS_ALLOW_ORIGINS"]}},
supports_credentials=True,
allow_headers=["Content-Type", "Authorization"],
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
expose_headers=["X-Version", "X-Env"],
)
app.register_blueprint(console_app_bp)
CORS(files_bp, allow_headers=["Content-Type"], methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"])
app.register_blueprint(files_bp)
app.register_blueprint(inner_api_bp)

View File

@ -259,6 +259,25 @@ def migrate_knowledge_vector_database():
skipped_count = 0
total_count = 0
vector_type = dify_config.VECTOR_STORE
upper_colletion_vector_types = {
VectorType.MILVUS,
VectorType.PGVECTOR,
VectorType.RELYT,
VectorType.WEAVIATE,
VectorType.ORACLE,
VectorType.ELASTICSEARCH,
}
lower_colletion_vector_types = {
VectorType.ANALYTICDB,
VectorType.CHROMA,
VectorType.MYSCALE,
VectorType.PGVECTO_RS,
VectorType.TIDB_VECTOR,
VectorType.OPENSEARCH,
VectorType.TENCENT,
VectorType.BAIDU,
VectorType.VIKINGDB,
}
page = 1
while True:
try:
@ -284,11 +303,9 @@ def migrate_knowledge_vector_database():
skipped_count = skipped_count + 1
continue
collection_name = ""
if vector_type == VectorType.WEAVIATE:
dataset_id = dataset.id
dataset_id = dataset.id
if vector_type in upper_colletion_vector_types:
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {"type": VectorType.WEAVIATE, "vector_store": {"class_prefix": collection_name}}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == VectorType.QDRANT:
if dataset.collection_binding_id:
dataset_collection_binding = (
@ -301,63 +318,15 @@ def migrate_knowledge_vector_database():
else:
raise ValueError("Dataset Collection Binding not found")
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {"type": VectorType.QDRANT, "vector_store": {"class_prefix": collection_name}}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == VectorType.MILVUS:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {"type": VectorType.MILVUS, "vector_store": {"class_prefix": collection_name}}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == VectorType.RELYT:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {"type": "relyt", "vector_store": {"class_prefix": collection_name}}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == VectorType.TENCENT:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {"type": VectorType.TENCENT, "vector_store": {"class_prefix": collection_name}}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == VectorType.PGVECTOR:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {"type": VectorType.PGVECTOR, "vector_store": {"class_prefix": collection_name}}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == VectorType.OPENSEARCH:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": VectorType.OPENSEARCH,
"vector_store": {"class_prefix": collection_name},
}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == VectorType.ANALYTICDB:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": VectorType.ANALYTICDB,
"vector_store": {"class_prefix": collection_name},
}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == VectorType.ELASTICSEARCH:
dataset_id = dataset.id
index_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {"type": "elasticsearch", "vector_store": {"class_prefix": index_name}}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == VectorType.BAIDU:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": VectorType.BAIDU,
"vector_store": {"class_prefix": collection_name},
}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type in lower_colletion_vector_types:
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
else:
raise ValueError(f"Vector store {vector_type} is not supported.")
index_struct_dict = {"type": vector_type, "vector_store": {"class_prefix": collection_name}}
dataset.index_struct = json.dumps(index_struct_dict)
vector = Vector(dataset)
click.echo(f"Migrating dataset {dataset.id}.")

View File

@ -506,11 +506,16 @@ class DataSetConfig(BaseSettings):
Configuration for dataset management
"""
CLEAN_DAY_SETTING: PositiveInt = Field(
description="Interval in days for dataset cleanup operations",
PLAN_SANDBOX_CLEAN_DAY_SETTING: PositiveInt = Field(
description="Interval in days for dataset cleanup operations - plan: sandbox",
default=30,
)
PLAN_PRO_CLEAN_DAY_SETTING: PositiveInt = Field(
description="Interval in days for dataset cleanup operations - plan: pro and team",
default=7,
)
DATASET_OPERATOR_ENABLED: bool = Field(
description="Enable or disable dataset operator functionality",
default=False,

View File

@ -14,7 +14,7 @@ class OracleConfig(BaseSettings):
default=None,
)
ORACLE_PORT: Optional[PositiveInt] = Field(
ORACLE_PORT: PositiveInt = Field(
description="Port number on which the Oracle database server is listening (default is 1521)",
default=1521,
)

View File

@ -14,7 +14,7 @@ class PGVectorConfig(BaseSettings):
default=None,
)
PGVECTOR_PORT: Optional[PositiveInt] = Field(
PGVECTOR_PORT: PositiveInt = Field(
description="Port number on which the PostgreSQL server is listening (default is 5433)",
default=5433,
)

View File

@ -14,7 +14,7 @@ class PGVectoRSConfig(BaseSettings):
default=None,
)
PGVECTO_RS_PORT: Optional[PositiveInt] = Field(
PGVECTO_RS_PORT: PositiveInt = Field(
description="Port number on which the PostgreSQL server with PGVecto.RS is listening (default is 5431)",
default=5431,
)

View File

@ -11,27 +11,39 @@ class VikingDBConfig(BaseModel):
"""
VIKINGDB_ACCESS_KEY: Optional[str] = Field(
default=None, description="The Access Key provided by Volcengine VikingDB for API authentication."
description="The Access Key provided by Volcengine VikingDB for API authentication."
"Refer to the following documentation for details on obtaining credentials:"
"https://www.volcengine.com/docs/6291/65568",
default=None,
)
VIKINGDB_SECRET_KEY: Optional[str] = Field(
default=None, description="The Secret Key provided by Volcengine VikingDB for API authentication."
description="The Secret Key provided by Volcengine VikingDB for API authentication.",
default=None,
)
VIKINGDB_REGION: Optional[str] = Field(
default="cn-shanghai",
VIKINGDB_REGION: str = Field(
description="The region of the Volcengine VikingDB service.(e.g., 'cn-shanghai', 'cn-beijing').",
default="cn-shanghai",
)
VIKINGDB_HOST: Optional[str] = Field(
default="api-vikingdb.mlp.cn-shanghai.volces.com",
VIKINGDB_HOST: str = Field(
description="The host of the Volcengine VikingDB service.(e.g., 'api-vikingdb.volces.com', \
'api-vikingdb.mlp.cn-shanghai.volces.com')",
default="api-vikingdb.mlp.cn-shanghai.volces.com",
)
VIKINGDB_SCHEME: Optional[str] = Field(
default="http",
VIKINGDB_SCHEME: str = Field(
description="The scheme of the Volcengine VikingDB service.(e.g., 'http', 'https').",
default="http",
)
VIKINGDB_CONNECTION_TIMEOUT: Optional[int] = Field(
default=30, description="The connection timeout of the Volcengine VikingDB service."
VIKINGDB_CONNECTION_TIMEOUT: int = Field(
description="The connection timeout of the Volcengine VikingDB service.",
default=30,
)
VIKINGDB_SOCKET_TIMEOUT: Optional[int] = Field(
default=30, description="The socket timeout of the Volcengine VikingDB service."
VIKINGDB_SOCKET_TIMEOUT: int = Field(
description="The socket timeout of the Volcengine VikingDB service.",
default=30,
)

View File

@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
CURRENT_VERSION: str = Field(
description="Dify version",
default="0.9.1",
default="0.9.2",
)
COMMIT_SHA: str = Field(

View File

@ -1,88 +1,24 @@
import logging
from flask_restful import Resource
from flask_login import current_user
from flask_restful import Resource, marshal, reqparse
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
import services
from controllers.console import api
from controllers.console.app.error import (
CompletionRequestError,
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.console.datasets.error import DatasetNotInitializedError
from controllers.console.datasets.hit_testing_base import DatasetsHitTestingBase
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.errors.error import (
LLMBadRequestError,
ModelCurrentlyNotSupportError,
ProviderTokenNotInitError,
QuotaExceededError,
)
from core.model_runtime.errors.invoke import InvokeError
from fields.hit_testing_fields import hit_testing_record_fields
from libs.login import login_required
from services.dataset_service import DatasetService
from services.hit_testing_service import HitTestingService
class HitTestingApi(Resource):
class HitTestingApi(Resource, DatasetsHitTestingBase):
@setup_required
@login_required
@account_initialization_required
def post(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
dataset = self.get_and_validate_dataset(dataset_id_str)
args = self.parse_args()
self.hit_testing_args_check(args)
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
parser = reqparse.RequestParser()
parser.add_argument("query", type=str, location="json")
parser.add_argument("retrieval_model", type=dict, required=False, location="json")
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
args = parser.parse_args()
HitTestingService.hit_testing_args_check(args)
try:
response = HitTestingService.retrieve(
dataset=dataset,
query=args["query"],
account=current_user,
retrieval_model=args["retrieval_model"],
external_retrieval_model=args["external_retrieval_model"],
limit=10,
)
return {"query": response["query"], "records": marshal(response["records"], hit_testing_record_fields)}
except services.errors.index.IndexNotInitializedError:
raise DatasetNotInitializedError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model or Reranking Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise ValueError(str(e))
except Exception as e:
logging.exception("Hit testing failed.")
raise InternalServerError(str(e))
return self.perform_hit_testing(dataset, args)
api.add_resource(HitTestingApi, "/datasets/<uuid:dataset_id>/hit-testing")

View File

@ -0,0 +1,85 @@
import logging
from flask_login import current_user
from flask_restful import marshal, reqparse
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
import services.dataset_service
from controllers.console.app.error import (
CompletionRequestError,
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.console.datasets.error import DatasetNotInitializedError
from core.errors.error import (
LLMBadRequestError,
ModelCurrentlyNotSupportError,
ProviderTokenNotInitError,
QuotaExceededError,
)
from core.model_runtime.errors.invoke import InvokeError
from fields.hit_testing_fields import hit_testing_record_fields
from services.dataset_service import DatasetService
from services.hit_testing_service import HitTestingService
class DatasetsHitTestingBase:
@staticmethod
def get_and_validate_dataset(dataset_id: str):
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
return dataset
@staticmethod
def hit_testing_args_check(args):
HitTestingService.hit_testing_args_check(args)
@staticmethod
def parse_args():
parser = reqparse.RequestParser()
parser.add_argument("query", type=str, location="json")
parser.add_argument("retrieval_model", type=dict, required=False, location="json")
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
return parser.parse_args()
@staticmethod
def perform_hit_testing(dataset, args):
try:
response = HitTestingService.retrieve(
dataset=dataset,
query=args["query"],
account=current_user,
retrieval_model=args["retrieval_model"],
external_retrieval_model=args["external_retrieval_model"],
limit=10,
)
return {"query": response["query"], "records": marshal(response["records"], hit_testing_record_fields)}
except services.errors.index.IndexNotInitializedError:
raise DatasetNotInitializedError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model or Reranking Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise ValueError(str(e))
except Exception as e:
logging.exception("Hit testing failed.")
raise InternalServerError(str(e))

View File

@ -5,7 +5,6 @@ from libs.external_api import ExternalApi
bp = Blueprint("service_api", __name__, url_prefix="/v1")
api = ExternalApi(bp)
from . import index
from .app import app, audio, completion, conversation, file, message, workflow
from .dataset import dataset, document, segment
from .dataset import dataset, document, hit_testing, segment

View File

@ -4,7 +4,6 @@ from flask_restful import Resource, reqparse
from werkzeug.exceptions import InternalServerError, NotFound
import services
from constants import UUID_NIL
from controllers.service_api import api
from controllers.service_api.app.error import (
AppUnavailableError,
@ -108,7 +107,6 @@ class ChatApi(Resource):
parser.add_argument("conversation_id", type=uuid_value, location="json")
parser.add_argument("retriever_from", type=str, required=False, default="dev", location="json")
parser.add_argument("auto_generate_name", type=bool, required=False, default=True, location="json")
parser.add_argument("parent_message_id", type=uuid_value, required=False, default=UUID_NIL, location="json")
args = parser.parse_args()

View File

@ -0,0 +1,17 @@
from controllers.console.datasets.hit_testing_base import DatasetsHitTestingBase
from controllers.service_api import api
from controllers.service_api.wraps import DatasetApiResource
class HitTestingApi(DatasetApiResource, DatasetsHitTestingBase):
def post(self, tenant_id, dataset_id):
dataset_id_str = str(dataset_id)
dataset = self.get_and_validate_dataset(dataset_id_str)
args = self.parse_args()
self.hit_testing_args_check(args)
return self.perform_hit_testing(dataset, args)
api.add_resource(HitTestingApi, "/datasets/<uuid:dataset_id>/hit-testing")

View File

@ -62,6 +62,8 @@ class CotAgentOutputParser:
thought_str = "thought:"
thought_idx = 0
last_character = ""
for response in llm_response:
if response.delta.usage:
usage_dict["usage"] = response.delta.usage
@ -74,35 +76,38 @@ class CotAgentOutputParser:
while index < len(response):
steps = 1
delta = response[index : index + steps]
last_character = response[index - 1] if index > 0 else ""
yield_delta = False
if delta == "`":
last_character = delta
code_block_cache += delta
code_block_delimiter_count += 1
else:
if not in_code_block:
if code_block_delimiter_count > 0:
last_character = delta
yield code_block_cache
code_block_cache = ""
else:
last_character = delta
code_block_cache += delta
code_block_delimiter_count = 0
if not in_code_block and not in_json:
if delta.lower() == action_str[action_idx] and action_idx == 0:
if last_character not in {"\n", " ", ""}:
yield_delta = True
else:
last_character = delta
action_cache += delta
action_idx += 1
if action_idx == len(action_str):
action_cache = ""
action_idx = 0
index += steps
yield delta
continue
action_cache += delta
action_idx += 1
if action_idx == len(action_str):
action_cache = ""
action_idx = 0
index += steps
continue
elif delta.lower() == action_str[action_idx] and action_idx > 0:
last_character = delta
action_cache += delta
action_idx += 1
if action_idx == len(action_str):
@ -112,24 +117,25 @@ class CotAgentOutputParser:
continue
else:
if action_cache:
last_character = delta
yield action_cache
action_cache = ""
action_idx = 0
if delta.lower() == thought_str[thought_idx] and thought_idx == 0:
if last_character not in {"\n", " ", ""}:
yield_delta = True
else:
last_character = delta
thought_cache += delta
thought_idx += 1
if thought_idx == len(thought_str):
thought_cache = ""
thought_idx = 0
index += steps
yield delta
continue
thought_cache += delta
thought_idx += 1
if thought_idx == len(thought_str):
thought_cache = ""
thought_idx = 0
index += steps
continue
elif delta.lower() == thought_str[thought_idx] and thought_idx > 0:
last_character = delta
thought_cache += delta
thought_idx += 1
if thought_idx == len(thought_str):
@ -139,12 +145,20 @@ class CotAgentOutputParser:
continue
else:
if thought_cache:
last_character = delta
yield thought_cache
thought_cache = ""
thought_idx = 0
if yield_delta:
index += steps
last_character = delta
yield delta
continue
if code_block_delimiter_count == 3:
if in_code_block:
last_character = delta
yield from extra_json_from_code_block(code_block_cache)
code_block_cache = ""
@ -156,8 +170,10 @@ class CotAgentOutputParser:
if delta == "{":
json_quote_count += 1
in_json = True
last_character = delta
json_cache += delta
elif delta == "}":
last_character = delta
json_cache += delta
if json_quote_count > 0:
json_quote_count -= 1
@ -168,16 +184,19 @@ class CotAgentOutputParser:
continue
else:
if in_json:
last_character = delta
json_cache += delta
if got_json:
got_json = False
last_character = delta
yield parse_action(json_cache)
json_cache = ""
json_quote_count = 0
in_json = False
if not in_code_block and not in_json:
last_character = delta
yield delta.replace("`", "")
index += steps

View File

@ -10,6 +10,7 @@ from flask import Flask, current_app
from pydantic import ValidationError
import contexts
from constants import UUID_NIL
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfigManager
from core.app.apps.advanced_chat.app_runner import AdvancedChatAppRunner
@ -122,7 +123,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
inputs=conversation.inputs if conversation else self._get_cleaned_inputs(inputs, app_config),
query=query,
files=file_objs,
parent_message_id=args.get("parent_message_id"),
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
user_id=user.id,
stream=stream,
invoke_from=invoke_from,

View File

@ -8,6 +8,7 @@ from typing import Any, Literal, Union, overload
from flask import Flask, current_app
from pydantic import ValidationError
from constants import UUID_NIL
from core.app.app_config.easy_ui_based_app.model_config.converter import ModelConfigConverter
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfigManager
@ -127,7 +128,7 @@ class AgentChatAppGenerator(MessageBasedAppGenerator):
inputs=conversation.inputs if conversation else self._get_cleaned_inputs(inputs, app_config),
query=query,
files=file_objs,
parent_message_id=args.get("parent_message_id"),
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
user_id=user.id,
stream=stream,
invoke_from=invoke_from,

View File

@ -8,6 +8,7 @@ from typing import Any, Literal, Union, overload
from flask import Flask, current_app
from pydantic import ValidationError
from constants import UUID_NIL
from core.app.app_config.easy_ui_based_app.model_config.converter import ModelConfigConverter
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.base_app_queue_manager import AppQueueManager, GenerateTaskStoppedError, PublishFrom
@ -128,7 +129,7 @@ class ChatAppGenerator(MessageBasedAppGenerator):
inputs=conversation.inputs if conversation else self._get_cleaned_inputs(inputs, app_config),
query=query,
files=file_objs,
parent_message_id=args.get("parent_message_id"),
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
user_id=user.id,
stream=stream,
invoke_from=invoke_from,

View File

@ -2,8 +2,9 @@ from collections.abc import Mapping
from enum import Enum
from typing import Any, Optional
from pydantic import BaseModel, ConfigDict
from pydantic import BaseModel, ConfigDict, Field, ValidationInfo, field_validator
from constants import UUID_NIL
from core.app.app_config.entities import AppConfig, EasyUIBasedAppConfig, WorkflowUIBasedAppConfig
from core.entities.provider_configuration import ProviderModelBundle
from core.file.file_obj import FileVar
@ -116,13 +117,36 @@ class EasyUIBasedAppGenerateEntity(AppGenerateEntity):
model_config = ConfigDict(protected_namespaces=())
class ChatAppGenerateEntity(EasyUIBasedAppGenerateEntity):
class ConversationAppGenerateEntity(AppGenerateEntity):
"""
Base entity for conversation-based app generation.
"""
conversation_id: Optional[str] = None
parent_message_id: Optional[str] = Field(
default=None,
description=(
"Starting from v0.9.0, parent_message_id is used to support message regeneration for internal chat API."
"For service API, we need to ensure its forward compatibility, "
"so passing in the parent_message_id as request arg is not supported for now. "
"It needs to be set to UUID_NIL so that the subsequent processing will treat it as legacy messages."
),
)
@field_validator("parent_message_id")
@classmethod
def validate_parent_message_id(cls, v, info: ValidationInfo):
if info.data.get("invoke_from") == InvokeFrom.SERVICE_API and v != UUID_NIL:
raise ValueError("parent_message_id should be UUID_NIL for service API")
return v
class ChatAppGenerateEntity(ConversationAppGenerateEntity, EasyUIBasedAppGenerateEntity):
"""
Chat Application Generate Entity.
"""
conversation_id: Optional[str] = None
parent_message_id: Optional[str] = None
pass
class CompletionAppGenerateEntity(EasyUIBasedAppGenerateEntity):
@ -133,16 +157,15 @@ class CompletionAppGenerateEntity(EasyUIBasedAppGenerateEntity):
pass
class AgentChatAppGenerateEntity(EasyUIBasedAppGenerateEntity):
class AgentChatAppGenerateEntity(ConversationAppGenerateEntity, EasyUIBasedAppGenerateEntity):
"""
Agent Chat Application Generate Entity.
"""
conversation_id: Optional[str] = None
parent_message_id: Optional[str] = None
pass
class AdvancedChatAppGenerateEntity(AppGenerateEntity):
class AdvancedChatAppGenerateEntity(ConversationAppGenerateEntity):
"""
Advanced Chat Application Generate Entity.
"""
@ -150,8 +173,6 @@ class AdvancedChatAppGenerateEntity(AppGenerateEntity):
# app config
app_config: WorkflowUIBasedAppConfig
conversation_id: Optional[str] = None
parent_message_id: Optional[str] = None
workflow_run_id: Optional[str] = None
query: str

View File

@ -3,7 +3,7 @@ import os
from collections.abc import Callable, Generator, Sequence
from typing import IO, Optional, Union, cast
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
from core.entities.provider_entities import ModelLoadBalancingConfiguration
from core.errors.error import ProviderTokenNotInitError

View File

@ -4,7 +4,7 @@ from typing import Optional
from pydantic import ConfigDict
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
from core.model_runtime.model_providers.__base.ai_model import AIModel

View File

@ -1098,6 +1098,14 @@ LLM_BASE_MODELS = [
ModelPropertyKey.CONTEXT_SIZE: 128000,
},
parameter_rules=[
ParameterRule(
name="temperature",
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TEMPERATURE],
),
ParameterRule(
name="top_p",
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TOP_P],
),
ParameterRule(
name="response_format",
label=I18nObject(zh_Hans="回复格式", en_US="response_format"),
@ -1135,6 +1143,14 @@ LLM_BASE_MODELS = [
ModelPropertyKey.CONTEXT_SIZE: 128000,
},
parameter_rules=[
ParameterRule(
name="temperature",
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TEMPERATURE],
),
ParameterRule(
name="top_p",
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TOP_P],
),
ParameterRule(
name="response_format",
label=I18nObject(zh_Hans="回复格式", en_US="response_format"),

View File

@ -119,7 +119,15 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
try:
client = AzureOpenAI(**self._to_credential_kwargs(credentials))
if ai_model_entity.entity.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT.value:
if model.startswith("o1"):
client.chat.completions.create(
messages=[{"role": "user", "content": "ping"}],
model=model,
temperature=1,
max_completion_tokens=20,
stream=False,
)
elif ai_model_entity.entity.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT.value:
# chat model
client.chat.completions.create(
messages=[{"role": "user", "content": "ping"}],

View File

@ -7,7 +7,7 @@ import numpy as np
import tiktoken
from openai import AzureOpenAI
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.model_entities import AIModelEntity, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.validate import CredentialsValidateFailedError

View File

@ -4,7 +4,7 @@ from typing import Optional
from requests import post
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (

View File

@ -52,6 +52,8 @@ parameter_rules:
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.00025'
output: '0.00125'

View File

@ -51,6 +51,8 @@ parameter_rules:
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.003'
output: '0.015'

View File

@ -51,6 +51,8 @@ parameter_rules:
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.003'
output: '0.015'

View File

@ -52,6 +52,8 @@ parameter_rules:
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.00025'
output: '0.00125'

View File

@ -52,6 +52,8 @@ parameter_rules:
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.015'
output: '0.075'

View File

@ -51,6 +51,8 @@ parameter_rules:
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.003'
output: '0.015'

View File

@ -51,6 +51,8 @@ parameter_rules:
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.003'
output: '0.015'

View File

@ -13,7 +13,7 @@ from botocore.exceptions import (
UnknownServiceError,
)
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (

View File

@ -5,7 +5,7 @@ import cohere
import numpy as np
from cohere.core import RequestOptions
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (

View File

@ -18,6 +18,7 @@ supported_model_types:
- text-embedding
configurate_methods:
- predefined-model
- customizable-model
provider_credential_schema:
credential_form_schemas:
- variable: fireworks_api_key
@ -28,3 +29,75 @@ provider_credential_schema:
placeholder:
zh_Hans: 在此输入您的 API Key
en_US: Enter your API Key
model_credential_schema:
model:
label:
en_US: Model URL
zh_Hans: 模型URL
placeholder:
en_US: Enter your Model URL
zh_Hans: 输入模型URL
credential_form_schemas:
- variable: model_label_zh_Hanns
label:
zh_Hans: 模型中文名称
en_US: The zh_Hans of Model
required: true
type: text-input
placeholder:
zh_Hans: 在此输入您的模型中文名称
en_US: Enter your zh_Hans of Model
- variable: model_label_en_US
label:
zh_Hans: 模型英文名称
en_US: The en_US of Model
required: true
type: text-input
placeholder:
zh_Hans: 在此输入您的模型英文名称
en_US: Enter your en_US of Model
- variable: fireworks_api_key
label:
en_US: API Key
type: secret-input
required: true
placeholder:
zh_Hans: 在此输入您的 API Key
en_US: Enter your API Key
- variable: context_size
label:
zh_Hans: 模型上下文长度
en_US: Model context size
required: true
type: text-input
default: '4096'
placeholder:
zh_Hans: 在此输入您的模型上下文长度
en_US: Enter your Model context size
- variable: max_tokens
label:
zh_Hans: 最大 token 上限
en_US: Upper bound for max tokens
default: '4096'
type: text-input
show_on:
- variable: __model_type
value: llm
- variable: function_calling_type
label:
en_US: Function calling
type: select
required: false
default: no_call
options:
- value: no_call
label:
en_US: Not Support
zh_Hans: 不支持
- value: function_call
label:
en_US: Support
zh_Hans: 支持
show_on:
- variable: __model_type
value: llm

View File

@ -43,3 +43,4 @@ pricing:
output: '0.2'
unit: '0.000001'
currency: USD
deprecated: true

View File

@ -8,7 +8,8 @@ from openai.types.chat.chat_completion_chunk import ChoiceDeltaFunctionCall, Cho
from openai.types.chat.chat_completion_message import FunctionCall
from core.model_runtime.callbacks.base_callback import Callback
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
ImagePromptMessageContent,
@ -20,6 +21,15 @@ from core.model_runtime.entities.message_entities import (
ToolPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import (
AIModelEntity,
FetchFrom,
ModelFeature,
ModelPropertyKey,
ModelType,
ParameterRule,
ParameterType,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.model_providers.fireworks._common import _CommonFireworks
@ -608,3 +618,50 @@ class FireworksLargeLanguageModel(_CommonFireworks, LargeLanguageModel):
num_tokens += self._get_num_tokens_by_gpt2(required_field)
return num_tokens
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity:
return AIModelEntity(
model=model,
label=I18nObject(
en_US=credentials.get("model_label_en_US", model),
zh_Hans=credentials.get("model_label_zh_Hanns", model),
),
model_type=ModelType.LLM,
features=[ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL, ModelFeature.STREAM_TOOL_CALL]
if credentials.get("function_calling_type") == "function_call"
else [],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
ModelPropertyKey.CONTEXT_SIZE: int(credentials.get("context_size", 4096)),
ModelPropertyKey.MODE: LLMMode.CHAT.value,
},
parameter_rules=[
ParameterRule(
name="temperature",
use_template="temperature",
label=I18nObject(en_US="Temperature", zh_Hans="温度"),
type=ParameterType.FLOAT,
),
ParameterRule(
name="max_tokens",
use_template="max_tokens",
default=512,
min=1,
max=int(credentials.get("max_tokens", 4096)),
label=I18nObject(en_US="Max Tokens", zh_Hans="最大标记"),
type=ParameterType.INT,
),
ParameterRule(
name="top_p",
use_template="top_p",
label=I18nObject(en_US="Top P", zh_Hans="Top P"),
type=ParameterType.FLOAT,
),
ParameterRule(
name="top_k",
use_template="top_k",
label=I18nObject(en_US="Top K", zh_Hans="Top K"),
type=ParameterType.FLOAT,
),
],
)

View File

@ -0,0 +1,46 @@
model: accounts/fireworks/models/qwen2p5-72b-instruct
label:
zh_Hans: Qwen2.5 72B Instruct
en_US: Qwen2.5 72B Instruct
model_type: llm
features:
- agent-thought
- tool-call
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
- name: max_tokens
use_template: max_tokens
- name: context_length_exceeded_behavior
default: None
label:
zh_Hans: 上下文长度超出行为
en_US: Context Length Exceeded Behavior
help:
zh_Hans: 上下文长度超出行为
en_US: Context Length Exceeded Behavior
type: string
options:
- None
- truncate
- error
- name: response_format
use_template: response_format
pricing:
input: '0.9'
output: '0.9'
unit: '0.000001'
currency: USD

View File

@ -5,7 +5,7 @@ from typing import Optional, Union
import numpy as np
from openai import OpenAI
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.validate import CredentialsValidateFailedError

View File

@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@ -32,15 +32,6 @@ parameter_rules:
max: 8192
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@ -27,15 +27,6 @@ parameter_rules:
default: 4096
min: 1
max: 4096
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@ -31,15 +31,6 @@ parameter_rules:
max: 2048
- name: response_format
use_template: response_format
- name: stream
label:
zh_Hans: 流式输出
en_US: Stream
type: boolean
help:
zh_Hans: 流式输出允许模型在生成文本的过程中逐步返回结果,而不是一次性生成全部结果后再返回。
en_US: Streaming output allows the model to return results incrementally as it generates text, rather than generating all the results at once.
default: false
pricing:
input: '0.00'
output: '0.00'

View File

@ -6,7 +6,7 @@ import numpy as np
import requests
from huggingface_hub import HfApi, InferenceClient
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult

View File

@ -1,7 +1,7 @@
import time
from typing import Optional
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult

View File

@ -9,7 +9,7 @@ from tencentcloud.common.profile.client_profile import ClientProfile
from tencentcloud.common.profile.http_profile import HttpProfile
from tencentcloud.hunyuan.v20230901 import hunyuan_client, models
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (

View File

@ -4,7 +4,7 @@ from typing import Optional
from requests import post
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult

View File

@ -5,7 +5,7 @@ from typing import Optional
from requests import post
from yarl import URL
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult

View File

@ -0,0 +1,44 @@
model: abab6.5t-chat
label:
en_US: Abab6.5t-Chat
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
min: 0.01
max: 1
default: 0.9
- name: top_p
use_template: top_p
min: 0.01
max: 1
default: 0.95
- name: max_tokens
use_template: max_tokens
required: true
default: 3072
min: 1
max: 8192
- name: mask_sensitive_info
type: boolean
default: true
label:
zh_Hans: 隐私保护
en_US: Moderate
help:
zh_Hans: 对输出中易涉及隐私问题的文本信息进行打码目前包括但不限于邮箱、域名、链接、证件号、家庭住址等默认true即开启打码
en_US: Mask the sensitive info of the generated content, such as email/domain/link/address/phone/id..
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
pricing:
input: '0.005'
output: '0.005'
unit: '0.001'
currency: RMB

View File

@ -4,7 +4,7 @@ from typing import Optional
from requests import post
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (
@ -61,7 +61,8 @@ class MinimaxTextEmbeddingModel(TextEmbeddingModel):
url = f"{self.api_base}?GroupId={group_id}"
headers = {"Authorization": "Bearer " + api_key, "Content-Type": "application/json"}
data = {"model": "embo-01", "texts": texts, "type": "db"}
embedding_type = "db" if input_type == EmbeddingInputType.DOCUMENT else "query"
data = {"model": "embo-01", "texts": texts, "type": embedding_type}
try:
response = post(url, headers=headers, data=dumps(data))

View File

@ -4,7 +4,7 @@ from typing import Optional
import requests
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult

View File

@ -5,7 +5,7 @@ from typing import Optional
from nomic import embed
from nomic import login as nomic_login
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import (
EmbeddingUsage,

View File

@ -4,7 +4,7 @@ from typing import Optional
from requests import post
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (

View File

@ -6,7 +6,7 @@ from typing import Optional
import numpy as np
import oci
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (

View File

@ -8,7 +8,7 @@ from urllib.parse import urljoin
import numpy as np
import requests
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import (
AIModelEntity,

View File

@ -19,9 +19,9 @@ class OpenAIProvider(ModelProvider):
try:
model_instance = self.get_model_instance(ModelType.LLM)
# Use `gpt-3.5-turbo` model for validate,
# Use `gpt-4o-mini` model for validate,
# no matter what model you pass in, text completion model or chat model
model_instance.validate_credentials(model="gpt-3.5-turbo", credentials=credentials)
model_instance.validate_credentials(model="gpt-4o-mini", credentials=credentials)
except CredentialsValidateFailedError as ex:
raise ex
except Exception as ex:

View File

@ -6,7 +6,7 @@ import numpy as np
import tiktoken
from openai import OpenAI
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.validate import CredentialsValidateFailedError

View File

@ -7,7 +7,7 @@ from urllib.parse import urljoin
import numpy as np
import requests
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import (
AIModelEntity,

View File

@ -5,7 +5,7 @@ from typing import Optional
from requests import post
from requests.exceptions import ConnectionError, InvalidSchema, MissingSchema
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (

View File

@ -35,6 +35,15 @@ parameter_rules:
help:
zh_Hans: 控制生成结果的随机性。数值越小随机性越弱数值越大随机性越强。一般而言top_p 和 temperature 两个参数选择一个进行调整即可。
en_US: Control the randomness of generated results. The smaller the value, the weaker the randomness; the larger the value, the stronger the randomness. Generally speaking, you can adjust one of the two parameters top_p and temperature.
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: frequency_penalty
use_template: frequency_penalty
default: 0

View File

@ -18,6 +18,15 @@ parameter_rules:
min: 0
max: 1
default: 1
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_tokens
use_template: max_tokens
min: 1

View File

@ -14,6 +14,15 @@ parameter_rules:
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty

View File

@ -14,6 +14,15 @@ parameter_rules:
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty

View File

@ -14,6 +14,15 @@ parameter_rules:
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty

View File

@ -16,6 +16,15 @@ parameter_rules:
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty

View File

@ -15,6 +15,15 @@ parameter_rules:
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty

View File

@ -15,6 +15,15 @@ parameter_rules:
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty

View File

@ -10,6 +10,15 @@ parameter_rules:
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_tokens
use_template: max_tokens
required: true

View File

@ -10,6 +10,15 @@ parameter_rules:
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_tokens
use_template: max_tokens
required: true

View File

@ -10,6 +10,15 @@ parameter_rules:
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_tokens
use_template: max_tokens
required: true

View File

@ -10,6 +10,15 @@ parameter_rules:
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_tokens
use_template: max_tokens
required: true

View File

@ -10,6 +10,15 @@ parameter_rules:
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_tokens
use_template: max_tokens
required: true

View File

@ -18,6 +18,15 @@ parameter_rules:
default: 1
min: 0
max: 1
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_tokens
use_template: max_tokens
default: 1024

View File

@ -18,6 +18,15 @@ parameter_rules:
default: 1
min: 0
max: 1
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_tokens
use_template: max_tokens
default: 1024

View File

@ -19,6 +19,15 @@ parameter_rules:
default: 1
min: 0
max: 1
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_tokens
use_template: max_tokens
default: 1024

View File

@ -12,6 +12,15 @@ parameter_rules:
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty

View File

@ -12,6 +12,15 @@ parameter_rules:
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty

View File

@ -21,6 +21,15 @@ parameter_rules:
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: frequency_penalty
use_template: frequency_penalty
pricing:

View File

@ -21,6 +21,15 @@ parameter_rules:
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: frequency_penalty
use_template: frequency_penalty
pricing:

View File

@ -7,7 +7,7 @@ from urllib.parse import urljoin
import numpy as np
import requests
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import (
AIModelEntity,

View File

@ -4,7 +4,7 @@ from typing import Optional
from replicate import Client as ReplicateClient
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult

View File

@ -14,6 +14,7 @@ from core.model_runtime.errors.invoke import (
InvokeRateLimitError,
InvokeServerUnavailableError,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
from core.model_runtime.model_providers.sagemaker.sagemaker import generate_presigned_url
@ -77,7 +78,8 @@ class SageMakerSpeech2TextModel(Speech2TextModel):
json_obj = json.loads(json_str)
asr_text = json_obj["text"]
except Exception as e:
logger.exception(f"Exception {e}, line : {line}")
logger.exception(f"failed to invoke speech2text model, {e}")
raise CredentialsValidateFailedError(str(e))
return asr_text

View File

@ -6,7 +6,7 @@ from typing import Any, Optional
import boto3
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult

View File

@ -21,6 +21,15 @@ parameter_rules:
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: frequency_penalty
use_template: frequency_penalty
pricing:

Some files were not shown because too many files have changed in this diff Show More