mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-13 09:59:01 +08:00
feat: moonshot function call (#3227)
This commit is contained in:
parent
4ad3f2cdc2
commit
a2c068d949
@ -687,4 +687,4 @@ class CotAgentRunner(BaseAgentRunner):
|
||||
try:
|
||||
return json.dumps(tools, ensure_ascii=False)
|
||||
except json.JSONDecodeError:
|
||||
return json.dumps(tools)
|
||||
return json.dumps(tools)
|
@ -207,19 +207,25 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
)
|
||||
)
|
||||
|
||||
assistant_message = AssistantPromptMessage(
|
||||
content='',
|
||||
tool_calls=[]
|
||||
)
|
||||
if tool_calls:
|
||||
prompt_messages.append(AssistantPromptMessage(
|
||||
content='',
|
||||
name='',
|
||||
tool_calls=[AssistantPromptMessage.ToolCall(
|
||||
assistant_message.tool_calls=[
|
||||
AssistantPromptMessage.ToolCall(
|
||||
id=tool_call[0],
|
||||
type='function',
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name=tool_call[1],
|
||||
arguments=json.dumps(tool_call[2], ensure_ascii=False)
|
||||
)
|
||||
) for tool_call in tool_calls]
|
||||
))
|
||||
) for tool_call in tool_calls
|
||||
]
|
||||
else:
|
||||
assistant_message.content = response
|
||||
|
||||
prompt_messages.append(assistant_message)
|
||||
|
||||
# save thought
|
||||
self.save_agent_thought(
|
||||
@ -239,12 +245,6 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
|
||||
final_answer += response + '\n'
|
||||
|
||||
# update prompt messages
|
||||
if response.strip():
|
||||
prompt_messages.append(AssistantPromptMessage(
|
||||
content=response,
|
||||
))
|
||||
|
||||
# call tools
|
||||
tool_responses = []
|
||||
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
|
||||
|
@ -1,8 +1,31 @@
|
||||
import json
|
||||
from collections.abc import Generator
|
||||
from typing import Optional, Union
|
||||
from typing import Optional, Union, cast
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
|
||||
import requests
|
||||
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
ImagePromptMessageContent,
|
||||
PromptMessage,
|
||||
PromptMessageContent,
|
||||
PromptMessageContentType,
|
||||
PromptMessageTool,
|
||||
SystemPromptMessage,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
FetchFrom,
|
||||
ModelFeature,
|
||||
ModelPropertyKey,
|
||||
ModelType,
|
||||
ParameterRule,
|
||||
ParameterType,
|
||||
)
|
||||
from core.model_runtime.model_providers.openai_api_compatible.llm.llm import OAIAPICompatLargeLanguageModel
|
||||
|
||||
|
||||
@ -13,6 +36,7 @@ class MoonshotLargeLanguageModel(OAIAPICompatLargeLanguageModel):
|
||||
stream: bool = True, user: Optional[str] = None) \
|
||||
-> Union[LLMResult, Generator]:
|
||||
self._add_custom_parameters(credentials)
|
||||
self._add_function_call(model, credentials)
|
||||
user = user[:32] if user else None
|
||||
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream, user)
|
||||
|
||||
@ -20,7 +44,293 @@ class MoonshotLargeLanguageModel(OAIAPICompatLargeLanguageModel):
|
||||
self._add_custom_parameters(credentials)
|
||||
super().validate_credentials(model, credentials)
|
||||
|
||||
@staticmethod
|
||||
def _add_custom_parameters(credentials: dict) -> None:
|
||||
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
|
||||
return AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(en_US=model, zh_Hans=model),
|
||||
model_type=ModelType.LLM,
|
||||
features=[ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL, ModelFeature.STREAM_TOOL_CALL]
|
||||
if credentials.get('function_calling_type') == 'tool_call'
|
||||
else [],
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_properties={
|
||||
ModelPropertyKey.CONTEXT_SIZE: int(credentials.get('context_size', 4096)),
|
||||
ModelPropertyKey.MODE: LLMMode.CHAT.value,
|
||||
},
|
||||
parameter_rules=[
|
||||
ParameterRule(
|
||||
name='temperature',
|
||||
use_template='temperature',
|
||||
label=I18nObject(en_US='Temperature', zh_Hans='温度'),
|
||||
type=ParameterType.FLOAT,
|
||||
),
|
||||
ParameterRule(
|
||||
name='max_tokens',
|
||||
use_template='max_tokens',
|
||||
default=512,
|
||||
min=1,
|
||||
max=int(credentials.get('max_tokens', 4096)),
|
||||
label=I18nObject(en_US='Max Tokens', zh_Hans='最大标记'),
|
||||
type=ParameterType.INT,
|
||||
),
|
||||
ParameterRule(
|
||||
name='top_p',
|
||||
use_template='top_p',
|
||||
label=I18nObject(en_US='Top P', zh_Hans='Top P'),
|
||||
type=ParameterType.FLOAT,
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def _add_custom_parameters(self, credentials: dict) -> None:
|
||||
credentials['mode'] = 'chat'
|
||||
credentials['endpoint_url'] = 'https://api.moonshot.cn/v1'
|
||||
|
||||
def _add_function_call(self, model: str, credentials: dict) -> None:
|
||||
model_schema = self.get_model_schema(model, credentials)
|
||||
if model_schema and set([
|
||||
ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL
|
||||
]).intersection(model_schema.features or []):
|
||||
credentials['function_calling_type'] = 'tool_call'
|
||||
|
||||
def _convert_prompt_message_to_dict(self, message: PromptMessage) -> dict:
|
||||
"""
|
||||
Convert PromptMessage to dict for OpenAI API format
|
||||
"""
|
||||
if isinstance(message, UserPromptMessage):
|
||||
message = cast(UserPromptMessage, message)
|
||||
if isinstance(message.content, str):
|
||||
message_dict = {"role": "user", "content": message.content}
|
||||
else:
|
||||
sub_messages = []
|
||||
for message_content in message.content:
|
||||
if message_content.type == PromptMessageContentType.TEXT:
|
||||
message_content = cast(PromptMessageContent, message_content)
|
||||
sub_message_dict = {
|
||||
"type": "text",
|
||||
"text": message_content.data
|
||||
}
|
||||
sub_messages.append(sub_message_dict)
|
||||
elif message_content.type == PromptMessageContentType.IMAGE:
|
||||
message_content = cast(ImagePromptMessageContent, message_content)
|
||||
sub_message_dict = {
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": message_content.data,
|
||||
"detail": message_content.detail.value
|
||||
}
|
||||
}
|
||||
sub_messages.append(sub_message_dict)
|
||||
message_dict = {"role": "user", "content": sub_messages}
|
||||
elif isinstance(message, AssistantPromptMessage):
|
||||
message = cast(AssistantPromptMessage, message)
|
||||
message_dict = {"role": "assistant", "content": message.content}
|
||||
if message.tool_calls:
|
||||
message_dict["tool_calls"] = []
|
||||
for function_call in message.tool_calls:
|
||||
message_dict["tool_calls"].append({
|
||||
"id": function_call.id,
|
||||
"type": function_call.type,
|
||||
"function": {
|
||||
"name": f"functions.{function_call.function.name}",
|
||||
"arguments": function_call.function.arguments
|
||||
}
|
||||
})
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
message = cast(ToolPromptMessage, message)
|
||||
message_dict = {"role": "tool", "content": message.content, "tool_call_id": message.tool_call_id}
|
||||
if not message.name.startswith("functions."):
|
||||
message.name = f"functions.{message.name}"
|
||||
elif isinstance(message, SystemPromptMessage):
|
||||
message = cast(SystemPromptMessage, message)
|
||||
message_dict = {"role": "system", "content": message.content}
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
|
||||
if message.name:
|
||||
message_dict["name"] = message.name
|
||||
|
||||
return message_dict
|
||||
|
||||
def _extract_response_tool_calls(self, response_tool_calls: list[dict]) -> list[AssistantPromptMessage.ToolCall]:
|
||||
"""
|
||||
Extract tool calls from response
|
||||
|
||||
:param response_tool_calls: response tool calls
|
||||
:return: list of tool calls
|
||||
"""
|
||||
tool_calls = []
|
||||
if response_tool_calls:
|
||||
for response_tool_call in response_tool_calls:
|
||||
function = AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name=response_tool_call["function"]["name"] if response_tool_call.get("function", {}).get("name") else "",
|
||||
arguments=response_tool_call["function"]["arguments"] if response_tool_call.get("function", {}).get("arguments") else ""
|
||||
)
|
||||
|
||||
tool_call = AssistantPromptMessage.ToolCall(
|
||||
id=response_tool_call["id"] if response_tool_call.get("id") else "",
|
||||
type=response_tool_call["type"] if response_tool_call.get("type") else "",
|
||||
function=function
|
||||
)
|
||||
tool_calls.append(tool_call)
|
||||
|
||||
return tool_calls
|
||||
|
||||
def _handle_generate_stream_response(self, model: str, credentials: dict, response: requests.Response,
|
||||
prompt_messages: list[PromptMessage]) -> Generator:
|
||||
"""
|
||||
Handle llm stream response
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param response: streamed response
|
||||
:param prompt_messages: prompt messages
|
||||
:return: llm response chunk generator
|
||||
"""
|
||||
full_assistant_content = ''
|
||||
chunk_index = 0
|
||||
|
||||
def create_final_llm_result_chunk(index: int, message: AssistantPromptMessage, finish_reason: str) \
|
||||
-> LLMResultChunk:
|
||||
# calculate num tokens
|
||||
prompt_tokens = self._num_tokens_from_string(model, prompt_messages[0].content)
|
||||
completion_tokens = self._num_tokens_from_string(model, full_assistant_content)
|
||||
|
||||
# transform usage
|
||||
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
||||
|
||||
return LLMResultChunk(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=index,
|
||||
message=message,
|
||||
finish_reason=finish_reason,
|
||||
usage=usage
|
||||
)
|
||||
)
|
||||
|
||||
tools_calls: list[AssistantPromptMessage.ToolCall] = []
|
||||
finish_reason = "Unknown"
|
||||
|
||||
def increase_tool_call(new_tool_calls: list[AssistantPromptMessage.ToolCall]):
|
||||
def get_tool_call(tool_name: str):
|
||||
if not tool_name:
|
||||
return tools_calls[-1]
|
||||
|
||||
tool_call = next((tool_call for tool_call in tools_calls if tool_call.function.name == tool_name), None)
|
||||
if tool_call is None:
|
||||
tool_call = AssistantPromptMessage.ToolCall(
|
||||
id='',
|
||||
type='',
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name=tool_name, arguments="")
|
||||
)
|
||||
tools_calls.append(tool_call)
|
||||
|
||||
return tool_call
|
||||
|
||||
for new_tool_call in new_tool_calls:
|
||||
# get tool call
|
||||
tool_call = get_tool_call(new_tool_call.function.name)
|
||||
# update tool call
|
||||
if new_tool_call.id:
|
||||
tool_call.id = new_tool_call.id
|
||||
if new_tool_call.type:
|
||||
tool_call.type = new_tool_call.type
|
||||
if new_tool_call.function.name:
|
||||
# remove the functions. prefix
|
||||
if new_tool_call.function.name.startswith('functions.'):
|
||||
parts = new_tool_call.function.name.split('functions.')
|
||||
if len(parts) > 1:
|
||||
new_tool_call.function.name = parts[1]
|
||||
tool_call.function.name = new_tool_call.function.name
|
||||
if new_tool_call.function.arguments:
|
||||
tool_call.function.arguments += new_tool_call.function.arguments
|
||||
|
||||
for chunk in response.iter_lines(decode_unicode=True, delimiter="\n\n"):
|
||||
if chunk:
|
||||
# ignore sse comments
|
||||
if chunk.startswith(':'):
|
||||
continue
|
||||
decoded_chunk = chunk.strip().lstrip('data: ').lstrip()
|
||||
chunk_json = None
|
||||
try:
|
||||
chunk_json = json.loads(decoded_chunk)
|
||||
# stream ended
|
||||
except json.JSONDecodeError as e:
|
||||
yield create_final_llm_result_chunk(
|
||||
index=chunk_index + 1,
|
||||
message=AssistantPromptMessage(content=""),
|
||||
finish_reason="Non-JSON encountered."
|
||||
)
|
||||
break
|
||||
if not chunk_json or len(chunk_json['choices']) == 0:
|
||||
continue
|
||||
|
||||
choice = chunk_json['choices'][0]
|
||||
finish_reason = chunk_json['choices'][0].get('finish_reason')
|
||||
chunk_index += 1
|
||||
|
||||
if 'delta' in choice:
|
||||
delta = choice['delta']
|
||||
delta_content = delta.get('content')
|
||||
|
||||
assistant_message_tool_calls = delta.get('tool_calls', None)
|
||||
# assistant_message_function_call = delta.delta.function_call
|
||||
|
||||
# extract tool calls from response
|
||||
if assistant_message_tool_calls:
|
||||
tool_calls = self._extract_response_tool_calls(assistant_message_tool_calls)
|
||||
increase_tool_call(tool_calls)
|
||||
|
||||
if delta_content is None or delta_content == '':
|
||||
continue
|
||||
|
||||
# transform assistant message to prompt message
|
||||
assistant_prompt_message = AssistantPromptMessage(
|
||||
content=delta_content,
|
||||
tool_calls=tool_calls if assistant_message_tool_calls else []
|
||||
)
|
||||
|
||||
full_assistant_content += delta_content
|
||||
elif 'text' in choice:
|
||||
choice_text = choice.get('text', '')
|
||||
if choice_text == '':
|
||||
continue
|
||||
|
||||
# transform assistant message to prompt message
|
||||
assistant_prompt_message = AssistantPromptMessage(content=choice_text)
|
||||
full_assistant_content += choice_text
|
||||
else:
|
||||
continue
|
||||
|
||||
# check payload indicator for completion
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=chunk_index,
|
||||
message=assistant_prompt_message,
|
||||
)
|
||||
)
|
||||
|
||||
chunk_index += 1
|
||||
|
||||
if tools_calls:
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=chunk_index,
|
||||
message=AssistantPromptMessage(
|
||||
tool_calls=tools_calls,
|
||||
content=""
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
yield create_final_llm_result_chunk(
|
||||
index=chunk_index,
|
||||
message=AssistantPromptMessage(content=""),
|
||||
finish_reason=finish_reason
|
||||
)
|
@ -20,6 +20,7 @@ supported_model_types:
|
||||
- llm
|
||||
configurate_methods:
|
||||
- predefined-model
|
||||
- customizable-model
|
||||
provider_credential_schema:
|
||||
credential_form_schemas:
|
||||
- variable: api_key
|
||||
@ -30,3 +31,51 @@ provider_credential_schema:
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的 API Key
|
||||
en_US: Enter your API Key
|
||||
model_credential_schema:
|
||||
model:
|
||||
label:
|
||||
en_US: Model Name
|
||||
zh_Hans: 模型名称
|
||||
placeholder:
|
||||
en_US: Enter your model name
|
||||
zh_Hans: 输入模型名称
|
||||
credential_form_schemas:
|
||||
- variable: api_key
|
||||
label:
|
||||
en_US: API Key
|
||||
type: secret-input
|
||||
required: true
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的 API Key
|
||||
en_US: Enter your API Key
|
||||
- variable: context_size
|
||||
label:
|
||||
zh_Hans: 模型上下文长度
|
||||
en_US: Model context size
|
||||
required: true
|
||||
type: text-input
|
||||
default: '4096'
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的模型上下文长度
|
||||
en_US: Enter your Model context size
|
||||
- variable: max_tokens
|
||||
label:
|
||||
zh_Hans: 最大 token 上限
|
||||
en_US: Upper bound for max tokens
|
||||
default: '4096'
|
||||
type: text-input
|
||||
- variable: function_calling_type
|
||||
label:
|
||||
en_US: Function calling
|
||||
type: select
|
||||
required: false
|
||||
default: no_call
|
||||
options:
|
||||
- value: no_call
|
||||
label:
|
||||
en_US: Not supported
|
||||
zh_Hans: 不支持
|
||||
- value: tool_call
|
||||
label:
|
||||
en_US: Tool Call
|
||||
zh_Hans: Tool Call
|
||||
|
@ -378,6 +378,34 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
||||
delimiter = credentials.get("stream_mode_delimiter", "\n\n")
|
||||
delimiter = codecs.decode(delimiter, "unicode_escape")
|
||||
|
||||
tools_calls: list[AssistantPromptMessage.ToolCall] = []
|
||||
|
||||
def increase_tool_call(new_tool_calls: list[AssistantPromptMessage.ToolCall]):
|
||||
def get_tool_call(tool_call_id: str):
|
||||
tool_call = next(
|
||||
(tool_call for tool_call in tools_calls if tool_call.id == tool_call_id), None
|
||||
)
|
||||
if tool_call is None:
|
||||
tool_call = AssistantPromptMessage.ToolCall(
|
||||
id='',
|
||||
type='function',
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name='',
|
||||
arguments=''
|
||||
)
|
||||
)
|
||||
tools_calls.append(tool_call)
|
||||
return tool_call
|
||||
|
||||
for new_tool_call in new_tool_calls:
|
||||
# get tool call
|
||||
tool_call = get_tool_call(new_tool_call.id)
|
||||
# update tool call
|
||||
tool_call.id = new_tool_call.id
|
||||
tool_call.type = new_tool_call.type
|
||||
tool_call.function.name = new_tool_call.function.name
|
||||
tool_call.function.arguments += new_tool_call.function.arguments
|
||||
|
||||
for chunk in response.iter_lines(decode_unicode=True, delimiter=delimiter):
|
||||
if chunk:
|
||||
# ignore sse comments
|
||||
@ -405,8 +433,6 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
||||
if 'delta' in choice:
|
||||
delta = choice['delta']
|
||||
delta_content = delta.get('content')
|
||||
if delta_content is None or delta_content == '':
|
||||
continue
|
||||
|
||||
assistant_message_tool_calls = delta.get('tool_calls', None)
|
||||
# assistant_message_function_call = delta.delta.function_call
|
||||
@ -414,6 +440,11 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
||||
# extract tool calls from response
|
||||
if assistant_message_tool_calls:
|
||||
tool_calls = self._extract_response_tool_calls(assistant_message_tool_calls)
|
||||
increase_tool_call(tool_calls)
|
||||
|
||||
if delta_content is None or delta_content == '':
|
||||
continue
|
||||
|
||||
# function_call = self._extract_response_function_call(assistant_message_function_call)
|
||||
# tool_calls = [function_call] if function_call else []
|
||||
|
||||
@ -437,6 +468,18 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
||||
|
||||
# check payload indicator for completion
|
||||
if finish_reason is not None:
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=chunk_index,
|
||||
message=AssistantPromptMessage(
|
||||
tool_calls=tools_calls,
|
||||
),
|
||||
finish_reason=finish_reason
|
||||
)
|
||||
)
|
||||
|
||||
yield create_final_llm_result_chunk(
|
||||
index=chunk_index,
|
||||
message=assistant_prompt_message,
|
||||
@ -735,4 +778,4 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
||||
function=function
|
||||
)
|
||||
|
||||
return tool_call
|
||||
return tool_call
|
Loading…
x
Reference in New Issue
Block a user