mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-13 02:49:02 +08:00
parent
5397799aac
commit
b1fd1b3ab3
@ -1,4 +1,5 @@
|
||||
import datetime
|
||||
import json
|
||||
import math
|
||||
import random
|
||||
import string
|
||||
@ -6,10 +7,16 @@ import time
|
||||
|
||||
import click
|
||||
from flask import current_app
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
from core.embedding.cached_embedding import CacheEmbedding
|
||||
from core.index.index import IndexBuilder
|
||||
from core.model_providers.model_factory import ModelFactory
|
||||
from core.model_providers.models.embedding.openai_embedding import OpenAIEmbedding
|
||||
from core.model_providers.models.entity.model_params import ModelType
|
||||
from core.model_providers.providers.hosted import hosted_model_providers
|
||||
from core.model_providers.providers.openai_provider import OpenAIProvider
|
||||
from libs.password import password_pattern, valid_password, hash_password
|
||||
from libs.helper import email as email_validate
|
||||
from extensions.ext_database import db
|
||||
@ -296,6 +303,66 @@ def sync_anthropic_hosted_providers():
|
||||
click.echo(click.style('Congratulations! Synced {} anthropic hosted providers.'.format(count), fg='green'))
|
||||
|
||||
|
||||
@click.command('create-qdrant-indexes', help='Create qdrant indexes.')
|
||||
def create_qdrant_indexes():
|
||||
click.echo(click.style('Start create qdrant indexes.', fg='green'))
|
||||
create_count = 0
|
||||
|
||||
page = 1
|
||||
while True:
|
||||
try:
|
||||
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
|
||||
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
|
||||
except NotFound:
|
||||
break
|
||||
|
||||
page += 1
|
||||
for dataset in datasets:
|
||||
try:
|
||||
click.echo('Create dataset qdrant index: {}'.format(dataset.id))
|
||||
try:
|
||||
embedding_model = ModelFactory.get_embedding_model(
|
||||
tenant_id=dataset.tenant_id,
|
||||
model_provider_name=dataset.embedding_model_provider,
|
||||
model_name=dataset.embedding_model
|
||||
)
|
||||
except Exception:
|
||||
provider = Provider(
|
||||
id='provider_id',
|
||||
tenant_id='tenant_id',
|
||||
provider_name='openai',
|
||||
provider_type=ProviderType.CUSTOM.value,
|
||||
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
|
||||
is_valid=True,
|
||||
)
|
||||
model_provider = OpenAIProvider(provider=provider)
|
||||
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002", model_provider=model_provider)
|
||||
embeddings = CacheEmbedding(embedding_model)
|
||||
|
||||
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
|
||||
|
||||
index = QdrantVectorIndex(
|
||||
dataset=dataset,
|
||||
config=QdrantConfig(
|
||||
endpoint=current_app.config.get('QDRANT_URL'),
|
||||
api_key=current_app.config.get('QDRANT_API_KEY'),
|
||||
root_path=current_app.root_path
|
||||
),
|
||||
embeddings=embeddings
|
||||
)
|
||||
if index:
|
||||
index.create_qdrant_dataset(dataset)
|
||||
create_count += 1
|
||||
else:
|
||||
click.echo('passed.')
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
|
||||
continue
|
||||
|
||||
click.echo(click.style('Congratulations! Create {} dataset indexes.'.format(create_count), fg='green'))
|
||||
|
||||
|
||||
def register_commands(app):
|
||||
app.cli.add_command(reset_password)
|
||||
app.cli.add_command(reset_email)
|
||||
@ -304,3 +371,4 @@ def register_commands(app):
|
||||
app.cli.add_command(recreate_all_dataset_indexes)
|
||||
app.cli.add_command(sync_anthropic_hosted_providers)
|
||||
app.cli.add_command(clean_unused_dataset_indexes)
|
||||
app.cli.add_command(create_qdrant_indexes)
|
||||
|
@ -38,7 +38,7 @@ class ExcelLoader(BaseLoader):
|
||||
else:
|
||||
row_dict = dict(zip(keys, list(map(str, row))))
|
||||
row_dict = {k: v for k, v in row_dict.items() if v}
|
||||
item = ''.join(f'{k}:{v}\n' for k, v in row_dict.items())
|
||||
item = ''.join(f'{k}:{v};' for k, v in row_dict.items())
|
||||
document = Document(page_content=item, metadata={'source': self._file_path})
|
||||
data.append(document)
|
||||
|
||||
|
@ -173,3 +173,49 @@ class BaseVectorIndex(BaseIndex):
|
||||
|
||||
self.dataset = dataset
|
||||
logging.info(f"Dataset {dataset.id} recreate successfully.")
|
||||
|
||||
def create_qdrant_dataset(self, dataset: Dataset):
|
||||
logging.info(f"create_qdrant_dataset {dataset.id}")
|
||||
|
||||
try:
|
||||
self.delete()
|
||||
except UnexpectedStatusCodeException as e:
|
||||
if e.status_code != 400:
|
||||
# 400 means index not exists
|
||||
raise e
|
||||
|
||||
dataset_documents = db.session.query(DatasetDocument).filter(
|
||||
DatasetDocument.dataset_id == dataset.id,
|
||||
DatasetDocument.indexing_status == 'completed',
|
||||
DatasetDocument.enabled == True,
|
||||
DatasetDocument.archived == False,
|
||||
).all()
|
||||
|
||||
documents = []
|
||||
for dataset_document in dataset_documents:
|
||||
segments = db.session.query(DocumentSegment).filter(
|
||||
DocumentSegment.document_id == dataset_document.id,
|
||||
DocumentSegment.status == 'completed',
|
||||
DocumentSegment.enabled == True
|
||||
).all()
|
||||
|
||||
for segment in segments:
|
||||
document = Document(
|
||||
page_content=segment.content,
|
||||
metadata={
|
||||
"doc_id": segment.index_node_id,
|
||||
"doc_hash": segment.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
}
|
||||
)
|
||||
|
||||
documents.append(document)
|
||||
|
||||
if documents:
|
||||
try:
|
||||
self.create(documents)
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
logging.info(f"Dataset {dataset.id} recreate successfully.")
|
114
api/core/index/vector_index/milvus_vector_index.py
Normal file
114
api/core/index/vector_index/milvus_vector_index.py
Normal file
@ -0,0 +1,114 @@
|
||||
from typing import Optional, cast
|
||||
|
||||
from langchain.embeddings.base import Embeddings
|
||||
from langchain.schema import Document, BaseRetriever
|
||||
from langchain.vectorstores import VectorStore, milvus
|
||||
from pydantic import BaseModel, root_validator
|
||||
|
||||
from core.index.base import BaseIndex
|
||||
from core.index.vector_index.base import BaseVectorIndex
|
||||
from core.vector_store.milvus_vector_store import MilvusVectorStore
|
||||
from core.vector_store.weaviate_vector_store import WeaviateVectorStore
|
||||
from models.dataset import Dataset
|
||||
|
||||
|
||||
class MilvusConfig(BaseModel):
|
||||
endpoint: str
|
||||
user: str
|
||||
password: str
|
||||
batch_size: int = 100
|
||||
|
||||
@root_validator()
|
||||
def validate_config(cls, values: dict) -> dict:
|
||||
if not values['endpoint']:
|
||||
raise ValueError("config MILVUS_ENDPOINT is required")
|
||||
if not values['user']:
|
||||
raise ValueError("config MILVUS_USER is required")
|
||||
if not values['password']:
|
||||
raise ValueError("config MILVUS_PASSWORD is required")
|
||||
return values
|
||||
|
||||
|
||||
class MilvusVectorIndex(BaseVectorIndex):
|
||||
def __init__(self, dataset: Dataset, config: MilvusConfig, embeddings: Embeddings):
|
||||
super().__init__(dataset, embeddings)
|
||||
self._client = self._init_client(config)
|
||||
|
||||
def get_type(self) -> str:
|
||||
return 'milvus'
|
||||
|
||||
def get_index_name(self, dataset: Dataset) -> str:
|
||||
if self.dataset.index_struct_dict:
|
||||
class_prefix: str = self.dataset.index_struct_dict['vector_store']['class_prefix']
|
||||
if not class_prefix.endswith('_Node'):
|
||||
# original class_prefix
|
||||
class_prefix += '_Node'
|
||||
|
||||
return class_prefix
|
||||
|
||||
dataset_id = dataset.id
|
||||
return "Vector_index_" + dataset_id.replace("-", "_") + '_Node'
|
||||
|
||||
|
||||
def to_index_struct(self) -> dict:
|
||||
return {
|
||||
"type": self.get_type(),
|
||||
"vector_store": {"class_prefix": self.get_index_name(self.dataset)}
|
||||
}
|
||||
|
||||
def create(self, texts: list[Document], **kwargs) -> BaseIndex:
|
||||
uuids = self._get_uuids(texts)
|
||||
self._vector_store = WeaviateVectorStore.from_documents(
|
||||
texts,
|
||||
self._embeddings,
|
||||
client=self._client,
|
||||
index_name=self.get_index_name(self.dataset),
|
||||
uuids=uuids,
|
||||
by_text=False
|
||||
)
|
||||
|
||||
return self
|
||||
|
||||
def _get_vector_store(self) -> VectorStore:
|
||||
"""Only for created index."""
|
||||
if self._vector_store:
|
||||
return self._vector_store
|
||||
|
||||
attributes = ['doc_id', 'dataset_id', 'document_id']
|
||||
if self._is_origin():
|
||||
attributes = ['doc_id']
|
||||
|
||||
return WeaviateVectorStore(
|
||||
client=self._client,
|
||||
index_name=self.get_index_name(self.dataset),
|
||||
text_key='text',
|
||||
embedding=self._embeddings,
|
||||
attributes=attributes,
|
||||
by_text=False
|
||||
)
|
||||
|
||||
def _get_vector_store_class(self) -> type:
|
||||
return MilvusVectorStore
|
||||
|
||||
def delete_by_document_id(self, document_id: str):
|
||||
if self._is_origin():
|
||||
self.recreate_dataset(self.dataset)
|
||||
return
|
||||
|
||||
vector_store = self._get_vector_store()
|
||||
vector_store = cast(self._get_vector_store_class(), vector_store)
|
||||
|
||||
vector_store.del_texts({
|
||||
"operator": "Equal",
|
||||
"path": ["document_id"],
|
||||
"valueText": document_id
|
||||
})
|
||||
|
||||
def _is_origin(self):
|
||||
if self.dataset.index_struct_dict:
|
||||
class_prefix: str = self.dataset.index_struct_dict['vector_store']['class_prefix']
|
||||
if not class_prefix.endswith('_Node'):
|
||||
# original class_prefix
|
||||
return True
|
||||
|
||||
return False
|
1691
api/core/index/vector_index/qdrant.py
Normal file
1691
api/core/index/vector_index/qdrant.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -44,15 +44,20 @@ class QdrantVectorIndex(BaseVectorIndex):
|
||||
|
||||
def get_index_name(self, dataset: Dataset) -> str:
|
||||
if self.dataset.index_struct_dict:
|
||||
return self.dataset.index_struct_dict['vector_store']['collection_name']
|
||||
class_prefix: str = self.dataset.index_struct_dict['vector_store']['class_prefix']
|
||||
if not class_prefix.endswith('_Node'):
|
||||
# original class_prefix
|
||||
class_prefix += '_Node'
|
||||
|
||||
return class_prefix
|
||||
|
||||
dataset_id = dataset.id
|
||||
return "Index_" + dataset_id.replace("-", "_")
|
||||
return "Vector_index_" + dataset_id.replace("-", "_") + '_Node'
|
||||
|
||||
def to_index_struct(self) -> dict:
|
||||
return {
|
||||
"type": self.get_type(),
|
||||
"vector_store": {"collection_name": self.get_index_name(self.dataset)}
|
||||
"vector_store": {"class_prefix": self.get_index_name(self.dataset)}
|
||||
}
|
||||
|
||||
def create(self, texts: list[Document], **kwargs) -> BaseIndex:
|
||||
@ -62,7 +67,7 @@ class QdrantVectorIndex(BaseVectorIndex):
|
||||
self._embeddings,
|
||||
collection_name=self.get_index_name(self.dataset),
|
||||
ids=uuids,
|
||||
content_payload_key='text',
|
||||
content_payload_key='page_content',
|
||||
**self._client_config.to_qdrant_params()
|
||||
)
|
||||
|
||||
@ -72,7 +77,9 @@ class QdrantVectorIndex(BaseVectorIndex):
|
||||
"""Only for created index."""
|
||||
if self._vector_store:
|
||||
return self._vector_store
|
||||
|
||||
attributes = ['doc_id', 'dataset_id', 'document_id']
|
||||
if self._is_origin():
|
||||
attributes = ['doc_id']
|
||||
client = qdrant_client.QdrantClient(
|
||||
**self._client_config.to_qdrant_params()
|
||||
)
|
||||
@ -81,7 +88,7 @@ class QdrantVectorIndex(BaseVectorIndex):
|
||||
client=client,
|
||||
collection_name=self.get_index_name(self.dataset),
|
||||
embeddings=self._embeddings,
|
||||
content_payload_key='text'
|
||||
content_payload_key='page_content'
|
||||
)
|
||||
|
||||
def _get_vector_store_class(self) -> type:
|
||||
@ -108,8 +115,8 @@ class QdrantVectorIndex(BaseVectorIndex):
|
||||
|
||||
def _is_origin(self):
|
||||
if self.dataset.index_struct_dict:
|
||||
class_prefix: str = self.dataset.index_struct_dict['vector_store']['collection_name']
|
||||
if class_prefix.startswith('Vector_'):
|
||||
class_prefix: str = self.dataset.index_struct_dict['vector_store']['class_prefix']
|
||||
if not class_prefix.endswith('_Node'):
|
||||
# original class_prefix
|
||||
return True
|
||||
|
||||
|
38
api/core/vector_store/milvus_vector_store.py
Normal file
38
api/core/vector_store/milvus_vector_store.py
Normal file
@ -0,0 +1,38 @@
|
||||
from langchain.vectorstores import Milvus
|
||||
|
||||
|
||||
class MilvusVectorStore(Milvus):
|
||||
def del_texts(self, where_filter: dict):
|
||||
if not where_filter:
|
||||
raise ValueError('where_filter must not be empty')
|
||||
|
||||
self._client.batch.delete_objects(
|
||||
class_name=self._index_name,
|
||||
where=where_filter,
|
||||
output='minimal'
|
||||
)
|
||||
|
||||
def del_text(self, uuid: str) -> None:
|
||||
self._client.data_object.delete(
|
||||
uuid,
|
||||
class_name=self._index_name
|
||||
)
|
||||
|
||||
def text_exists(self, uuid: str) -> bool:
|
||||
result = self._client.query.get(self._index_name).with_additional(["id"]).with_where({
|
||||
"path": ["doc_id"],
|
||||
"operator": "Equal",
|
||||
"valueText": uuid,
|
||||
}).with_limit(1).do()
|
||||
|
||||
if "errors" in result:
|
||||
raise ValueError(f"Error during query: {result['errors']}")
|
||||
|
||||
entries = result["data"]["Get"][self._index_name]
|
||||
if len(entries) == 0:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def delete(self):
|
||||
self._client.schema.delete_class(self._index_name)
|
@ -1,10 +1,11 @@
|
||||
from typing import cast, Any
|
||||
|
||||
from langchain.schema import Document
|
||||
from langchain.vectorstores import Qdrant
|
||||
from qdrant_client.http.models import Filter, PointIdsList, FilterSelector
|
||||
from qdrant_client.local.qdrant_local import QdrantLocal
|
||||
|
||||
from core.index.vector_index.qdrant import Qdrant
|
||||
|
||||
|
||||
class QdrantVectorStore(Qdrant):
|
||||
def del_texts(self, filter: Filter):
|
||||
|
Loading…
x
Reference in New Issue
Block a user