mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-12 21:48:58 +08:00
Remove langchain dataset retrival agent logic (#3311)
This commit is contained in:
parent
8cefa6b82e
commit
b6de97ad53
@ -156,6 +156,8 @@ class ChatAppRunner(AppRunner):
|
|||||||
|
|
||||||
dataset_retrieval = DatasetRetrieval()
|
dataset_retrieval = DatasetRetrieval()
|
||||||
context = dataset_retrieval.retrieve(
|
context = dataset_retrieval.retrieve(
|
||||||
|
app_id=app_record.id,
|
||||||
|
user_id=application_generate_entity.user_id,
|
||||||
tenant_id=app_record.tenant_id,
|
tenant_id=app_record.tenant_id,
|
||||||
model_config=application_generate_entity.model_config,
|
model_config=application_generate_entity.model_config,
|
||||||
config=app_config.dataset,
|
config=app_config.dataset,
|
||||||
|
@ -116,6 +116,8 @@ class CompletionAppRunner(AppRunner):
|
|||||||
|
|
||||||
dataset_retrieval = DatasetRetrieval()
|
dataset_retrieval = DatasetRetrieval()
|
||||||
context = dataset_retrieval.retrieve(
|
context = dataset_retrieval.retrieve(
|
||||||
|
app_id=app_record.id,
|
||||||
|
user_id=application_generate_entity.user_id,
|
||||||
tenant_id=app_record.tenant_id,
|
tenant_id=app_record.tenant_id,
|
||||||
model_config=application_generate_entity.model_config,
|
model_config=application_generate_entity.model_config,
|
||||||
config=dataset_config,
|
config=dataset_config,
|
||||||
|
@ -1,59 +0,0 @@
|
|||||||
import time
|
|
||||||
from collections.abc import Mapping
|
|
||||||
from typing import Any, Optional
|
|
||||||
|
|
||||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
|
||||||
from langchain.chat_models.base import SimpleChatModel
|
|
||||||
from langchain.schema import AIMessage, BaseMessage, ChatGeneration, ChatResult
|
|
||||||
|
|
||||||
|
|
||||||
class FakeLLM(SimpleChatModel):
|
|
||||||
"""Fake ChatModel for testing purposes."""
|
|
||||||
|
|
||||||
streaming: bool = False
|
|
||||||
"""Whether to stream the results or not."""
|
|
||||||
response: str
|
|
||||||
|
|
||||||
@property
|
|
||||||
def _llm_type(self) -> str:
|
|
||||||
return "fake-chat-model"
|
|
||||||
|
|
||||||
def _call(
|
|
||||||
self,
|
|
||||||
messages: list[BaseMessage],
|
|
||||||
stop: Optional[list[str]] = None,
|
|
||||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
||||||
**kwargs: Any,
|
|
||||||
) -> str:
|
|
||||||
"""First try to lookup in queries, else return 'foo' or 'bar'."""
|
|
||||||
return self.response
|
|
||||||
|
|
||||||
@property
|
|
||||||
def _identifying_params(self) -> Mapping[str, Any]:
|
|
||||||
return {"response": self.response}
|
|
||||||
|
|
||||||
def get_num_tokens(self, text: str) -> int:
|
|
||||||
return 0
|
|
||||||
|
|
||||||
def _generate(
|
|
||||||
self,
|
|
||||||
messages: list[BaseMessage],
|
|
||||||
stop: Optional[list[str]] = None,
|
|
||||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
||||||
**kwargs: Any,
|
|
||||||
) -> ChatResult:
|
|
||||||
output_str = self._call(messages, stop=stop, run_manager=run_manager, **kwargs)
|
|
||||||
if self.streaming:
|
|
||||||
for token in output_str:
|
|
||||||
if run_manager:
|
|
||||||
run_manager.on_llm_new_token(token)
|
|
||||||
time.sleep(0.01)
|
|
||||||
|
|
||||||
message = AIMessage(content=output_str)
|
|
||||||
generation = ChatGeneration(message=message)
|
|
||||||
llm_output = {"token_usage": {
|
|
||||||
'prompt_tokens': 0,
|
|
||||||
'completion_tokens': 0,
|
|
||||||
'total_tokens': 0,
|
|
||||||
}}
|
|
||||||
return ChatResult(generations=[generation], llm_output=llm_output)
|
|
@ -1,46 +0,0 @@
|
|||||||
from typing import Any, Optional
|
|
||||||
|
|
||||||
from langchain import LLMChain as LCLLMChain
|
|
||||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
|
||||||
from langchain.schema import Generation, LLMResult
|
|
||||||
from langchain.schema.language_model import BaseLanguageModel
|
|
||||||
|
|
||||||
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
|
|
||||||
from core.entities.message_entities import lc_messages_to_prompt_messages
|
|
||||||
from core.model_manager import ModelInstance
|
|
||||||
from core.rag.retrieval.agent.fake_llm import FakeLLM
|
|
||||||
|
|
||||||
|
|
||||||
class LLMChain(LCLLMChain):
|
|
||||||
model_config: ModelConfigWithCredentialsEntity
|
|
||||||
"""The language model instance to use."""
|
|
||||||
llm: BaseLanguageModel = FakeLLM(response="")
|
|
||||||
parameters: dict[str, Any] = {}
|
|
||||||
|
|
||||||
def generate(
|
|
||||||
self,
|
|
||||||
input_list: list[dict[str, Any]],
|
|
||||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
||||||
) -> LLMResult:
|
|
||||||
"""Generate LLM result from inputs."""
|
|
||||||
prompts, stop = self.prep_prompts(input_list, run_manager=run_manager)
|
|
||||||
messages = prompts[0].to_messages()
|
|
||||||
prompt_messages = lc_messages_to_prompt_messages(messages)
|
|
||||||
|
|
||||||
model_instance = ModelInstance(
|
|
||||||
provider_model_bundle=self.model_config.provider_model_bundle,
|
|
||||||
model=self.model_config.model,
|
|
||||||
)
|
|
||||||
|
|
||||||
result = model_instance.invoke_llm(
|
|
||||||
prompt_messages=prompt_messages,
|
|
||||||
stream=False,
|
|
||||||
stop=stop,
|
|
||||||
model_parameters=self.parameters
|
|
||||||
)
|
|
||||||
|
|
||||||
generations = [
|
|
||||||
[Generation(text=result.message.content)]
|
|
||||||
]
|
|
||||||
|
|
||||||
return LLMResult(generations=generations)
|
|
@ -1,179 +0,0 @@
|
|||||||
from collections.abc import Sequence
|
|
||||||
from typing import Any, Optional, Union
|
|
||||||
|
|
||||||
from langchain.agents import BaseSingleActionAgent, OpenAIFunctionsAgent
|
|
||||||
from langchain.agents.openai_functions_agent.base import _format_intermediate_steps, _parse_ai_message
|
|
||||||
from langchain.callbacks.base import BaseCallbackManager
|
|
||||||
from langchain.callbacks.manager import Callbacks
|
|
||||||
from langchain.prompts.chat import BaseMessagePromptTemplate
|
|
||||||
from langchain.schema import AgentAction, AgentFinish, AIMessage, SystemMessage
|
|
||||||
from langchain.tools import BaseTool
|
|
||||||
from pydantic import root_validator
|
|
||||||
|
|
||||||
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
|
|
||||||
from core.entities.message_entities import lc_messages_to_prompt_messages
|
|
||||||
from core.model_manager import ModelInstance
|
|
||||||
from core.model_runtime.entities.message_entities import PromptMessageTool
|
|
||||||
from core.rag.retrieval.agent.fake_llm import FakeLLM
|
|
||||||
|
|
||||||
|
|
||||||
class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
|
|
||||||
"""
|
|
||||||
An Multi Dataset Retrieve Agent driven by Router.
|
|
||||||
"""
|
|
||||||
model_config: ModelConfigWithCredentialsEntity
|
|
||||||
|
|
||||||
class Config:
|
|
||||||
"""Configuration for this pydantic object."""
|
|
||||||
|
|
||||||
arbitrary_types_allowed = True
|
|
||||||
|
|
||||||
@root_validator
|
|
||||||
def validate_llm(cls, values: dict) -> dict:
|
|
||||||
return values
|
|
||||||
|
|
||||||
def should_use_agent(self, query: str):
|
|
||||||
"""
|
|
||||||
return should use agent
|
|
||||||
|
|
||||||
:param query:
|
|
||||||
:return:
|
|
||||||
"""
|
|
||||||
return True
|
|
||||||
|
|
||||||
def plan(
|
|
||||||
self,
|
|
||||||
intermediate_steps: list[tuple[AgentAction, str]],
|
|
||||||
callbacks: Callbacks = None,
|
|
||||||
**kwargs: Any,
|
|
||||||
) -> Union[AgentAction, AgentFinish]:
|
|
||||||
"""Given input, decided what to do.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
intermediate_steps: Steps the LLM has taken to date, along with observations
|
|
||||||
**kwargs: User inputs.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Action specifying what tool to use.
|
|
||||||
"""
|
|
||||||
if len(self.tools) == 0:
|
|
||||||
return AgentFinish(return_values={"output": ''}, log='')
|
|
||||||
elif len(self.tools) == 1:
|
|
||||||
tool = next(iter(self.tools))
|
|
||||||
rst = tool.run(tool_input={'query': kwargs['input']})
|
|
||||||
# output = ''
|
|
||||||
# rst_json = json.loads(rst)
|
|
||||||
# for item in rst_json:
|
|
||||||
# output += f'{item["content"]}\n'
|
|
||||||
return AgentFinish(return_values={"output": rst}, log=rst)
|
|
||||||
|
|
||||||
if intermediate_steps:
|
|
||||||
_, observation = intermediate_steps[-1]
|
|
||||||
return AgentFinish(return_values={"output": observation}, log=observation)
|
|
||||||
|
|
||||||
try:
|
|
||||||
agent_decision = self.real_plan(intermediate_steps, callbacks, **kwargs)
|
|
||||||
if isinstance(agent_decision, AgentAction):
|
|
||||||
tool_inputs = agent_decision.tool_input
|
|
||||||
if isinstance(tool_inputs, dict) and 'query' in tool_inputs and 'chat_history' not in kwargs:
|
|
||||||
tool_inputs['query'] = kwargs['input']
|
|
||||||
agent_decision.tool_input = tool_inputs
|
|
||||||
else:
|
|
||||||
agent_decision.return_values['output'] = ''
|
|
||||||
return agent_decision
|
|
||||||
except Exception as e:
|
|
||||||
raise e
|
|
||||||
|
|
||||||
def real_plan(
|
|
||||||
self,
|
|
||||||
intermediate_steps: list[tuple[AgentAction, str]],
|
|
||||||
callbacks: Callbacks = None,
|
|
||||||
**kwargs: Any,
|
|
||||||
) -> Union[AgentAction, AgentFinish]:
|
|
||||||
"""Given input, decided what to do.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
intermediate_steps: Steps the LLM has taken to date, along with observations
|
|
||||||
**kwargs: User inputs.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Action specifying what tool to use.
|
|
||||||
"""
|
|
||||||
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
|
|
||||||
selected_inputs = {
|
|
||||||
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
|
|
||||||
}
|
|
||||||
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
|
|
||||||
prompt = self.prompt.format_prompt(**full_inputs)
|
|
||||||
messages = prompt.to_messages()
|
|
||||||
prompt_messages = lc_messages_to_prompt_messages(messages)
|
|
||||||
|
|
||||||
model_instance = ModelInstance(
|
|
||||||
provider_model_bundle=self.model_config.provider_model_bundle,
|
|
||||||
model=self.model_config.model,
|
|
||||||
)
|
|
||||||
|
|
||||||
tools = []
|
|
||||||
for function in self.functions:
|
|
||||||
tool = PromptMessageTool(
|
|
||||||
**function
|
|
||||||
)
|
|
||||||
|
|
||||||
tools.append(tool)
|
|
||||||
|
|
||||||
result = model_instance.invoke_llm(
|
|
||||||
prompt_messages=prompt_messages,
|
|
||||||
tools=tools,
|
|
||||||
stream=False,
|
|
||||||
model_parameters={
|
|
||||||
'temperature': 0.2,
|
|
||||||
'top_p': 0.3,
|
|
||||||
'max_tokens': 1500
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
ai_message = AIMessage(
|
|
||||||
content=result.message.content or "",
|
|
||||||
additional_kwargs={
|
|
||||||
'function_call': {
|
|
||||||
'id': result.message.tool_calls[0].id,
|
|
||||||
**result.message.tool_calls[0].function.dict()
|
|
||||||
} if result.message.tool_calls else None
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
agent_decision = _parse_ai_message(ai_message)
|
|
||||||
return agent_decision
|
|
||||||
|
|
||||||
async def aplan(
|
|
||||||
self,
|
|
||||||
intermediate_steps: list[tuple[AgentAction, str]],
|
|
||||||
callbacks: Callbacks = None,
|
|
||||||
**kwargs: Any,
|
|
||||||
) -> Union[AgentAction, AgentFinish]:
|
|
||||||
raise NotImplementedError()
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_llm_and_tools(
|
|
||||||
cls,
|
|
||||||
model_config: ModelConfigWithCredentialsEntity,
|
|
||||||
tools: Sequence[BaseTool],
|
|
||||||
callback_manager: Optional[BaseCallbackManager] = None,
|
|
||||||
extra_prompt_messages: Optional[list[BaseMessagePromptTemplate]] = None,
|
|
||||||
system_message: Optional[SystemMessage] = SystemMessage(
|
|
||||||
content="You are a helpful AI assistant."
|
|
||||||
),
|
|
||||||
**kwargs: Any,
|
|
||||||
) -> BaseSingleActionAgent:
|
|
||||||
prompt = cls.create_prompt(
|
|
||||||
extra_prompt_messages=extra_prompt_messages,
|
|
||||||
system_message=system_message,
|
|
||||||
)
|
|
||||||
return cls(
|
|
||||||
model_config=model_config,
|
|
||||||
llm=FakeLLM(response=''),
|
|
||||||
prompt=prompt,
|
|
||||||
tools=tools,
|
|
||||||
callback_manager=callback_manager,
|
|
||||||
**kwargs,
|
|
||||||
)
|
|
@ -1,259 +0,0 @@
|
|||||||
import re
|
|
||||||
from collections.abc import Sequence
|
|
||||||
from typing import Any, Optional, Union, cast
|
|
||||||
|
|
||||||
from langchain import BasePromptTemplate, PromptTemplate
|
|
||||||
from langchain.agents import Agent, AgentOutputParser, StructuredChatAgent
|
|
||||||
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
|
|
||||||
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
|
|
||||||
from langchain.callbacks.base import BaseCallbackManager
|
|
||||||
from langchain.callbacks.manager import Callbacks
|
|
||||||
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
|
|
||||||
from langchain.schema import AgentAction, AgentFinish, OutputParserException
|
|
||||||
from langchain.tools import BaseTool
|
|
||||||
|
|
||||||
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
|
|
||||||
from core.rag.retrieval.agent.llm_chain import LLMChain
|
|
||||||
|
|
||||||
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
|
||||||
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
|
|
||||||
Valid "action" values: "Final Answer" or {tool_names}
|
|
||||||
|
|
||||||
Provide only ONE action per $JSON_BLOB, as shown:
|
|
||||||
|
|
||||||
```
|
|
||||||
{{{{
|
|
||||||
"action": $TOOL_NAME,
|
|
||||||
"action_input": $INPUT
|
|
||||||
}}}}
|
|
||||||
```
|
|
||||||
|
|
||||||
Follow this format:
|
|
||||||
|
|
||||||
Question: input question to answer
|
|
||||||
Thought: consider previous and subsequent steps
|
|
||||||
Action:
|
|
||||||
```
|
|
||||||
$JSON_BLOB
|
|
||||||
```
|
|
||||||
Observation: action result
|
|
||||||
... (repeat Thought/Action/Observation N times)
|
|
||||||
Thought: I know what to respond
|
|
||||||
Action:
|
|
||||||
```
|
|
||||||
{{{{
|
|
||||||
"action": "Final Answer",
|
|
||||||
"action_input": "Final response to human"
|
|
||||||
}}}}
|
|
||||||
```"""
|
|
||||||
|
|
||||||
|
|
||||||
class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
|
|
||||||
dataset_tools: Sequence[BaseTool]
|
|
||||||
|
|
||||||
class Config:
|
|
||||||
"""Configuration for this pydantic object."""
|
|
||||||
|
|
||||||
arbitrary_types_allowed = True
|
|
||||||
|
|
||||||
def should_use_agent(self, query: str):
|
|
||||||
"""
|
|
||||||
return should use agent
|
|
||||||
Using the ReACT mode to determine whether an agent is needed is costly,
|
|
||||||
so it's better to just use an Agent for reasoning, which is cheaper.
|
|
||||||
|
|
||||||
:param query:
|
|
||||||
:return:
|
|
||||||
"""
|
|
||||||
return True
|
|
||||||
|
|
||||||
def plan(
|
|
||||||
self,
|
|
||||||
intermediate_steps: list[tuple[AgentAction, str]],
|
|
||||||
callbacks: Callbacks = None,
|
|
||||||
**kwargs: Any,
|
|
||||||
) -> Union[AgentAction, AgentFinish]:
|
|
||||||
"""Given input, decided what to do.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
intermediate_steps: Steps the LLM has taken to date,
|
|
||||||
along with observations
|
|
||||||
callbacks: Callbacks to run.
|
|
||||||
**kwargs: User inputs.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Action specifying what tool to use.
|
|
||||||
"""
|
|
||||||
if len(self.dataset_tools) == 0:
|
|
||||||
return AgentFinish(return_values={"output": ''}, log='')
|
|
||||||
elif len(self.dataset_tools) == 1:
|
|
||||||
tool = next(iter(self.dataset_tools))
|
|
||||||
rst = tool.run(tool_input={'query': kwargs['input']})
|
|
||||||
return AgentFinish(return_values={"output": rst}, log=rst)
|
|
||||||
|
|
||||||
if intermediate_steps:
|
|
||||||
_, observation = intermediate_steps[-1]
|
|
||||||
return AgentFinish(return_values={"output": observation}, log=observation)
|
|
||||||
|
|
||||||
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
|
|
||||||
|
|
||||||
try:
|
|
||||||
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
|
|
||||||
except Exception as e:
|
|
||||||
raise e
|
|
||||||
|
|
||||||
try:
|
|
||||||
agent_decision = self.output_parser.parse(full_output)
|
|
||||||
if isinstance(agent_decision, AgentAction):
|
|
||||||
tool_inputs = agent_decision.tool_input
|
|
||||||
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
|
|
||||||
tool_inputs['query'] = kwargs['input']
|
|
||||||
agent_decision.tool_input = tool_inputs
|
|
||||||
elif isinstance(tool_inputs, str):
|
|
||||||
agent_decision.tool_input = kwargs['input']
|
|
||||||
else:
|
|
||||||
agent_decision.return_values['output'] = ''
|
|
||||||
return agent_decision
|
|
||||||
except OutputParserException:
|
|
||||||
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
|
|
||||||
"I don't know how to respond to that."}, "")
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def create_prompt(
|
|
||||||
cls,
|
|
||||||
tools: Sequence[BaseTool],
|
|
||||||
prefix: str = PREFIX,
|
|
||||||
suffix: str = SUFFIX,
|
|
||||||
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
|
|
||||||
format_instructions: str = FORMAT_INSTRUCTIONS,
|
|
||||||
input_variables: Optional[list[str]] = None,
|
|
||||||
memory_prompts: Optional[list[BasePromptTemplate]] = None,
|
|
||||||
) -> BasePromptTemplate:
|
|
||||||
tool_strings = []
|
|
||||||
for tool in tools:
|
|
||||||
args_schema = re.sub("}", "}}}}", re.sub("{", "{{{{", str(tool.args)))
|
|
||||||
tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}")
|
|
||||||
formatted_tools = "\n".join(tool_strings)
|
|
||||||
unique_tool_names = set(tool.name for tool in tools)
|
|
||||||
tool_names = ", ".join('"' + name + '"' for name in unique_tool_names)
|
|
||||||
format_instructions = format_instructions.format(tool_names=tool_names)
|
|
||||||
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix])
|
|
||||||
if input_variables is None:
|
|
||||||
input_variables = ["input", "agent_scratchpad"]
|
|
||||||
_memory_prompts = memory_prompts or []
|
|
||||||
messages = [
|
|
||||||
SystemMessagePromptTemplate.from_template(template),
|
|
||||||
*_memory_prompts,
|
|
||||||
HumanMessagePromptTemplate.from_template(human_message_template),
|
|
||||||
]
|
|
||||||
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def create_completion_prompt(
|
|
||||||
cls,
|
|
||||||
tools: Sequence[BaseTool],
|
|
||||||
prefix: str = PREFIX,
|
|
||||||
format_instructions: str = FORMAT_INSTRUCTIONS,
|
|
||||||
input_variables: Optional[list[str]] = None,
|
|
||||||
) -> PromptTemplate:
|
|
||||||
"""Create prompt in the style of the zero shot agent.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
tools: List of tools the agent will have access to, used to format the
|
|
||||||
prompt.
|
|
||||||
prefix: String to put before the list of tools.
|
|
||||||
input_variables: List of input variables the final prompt will expect.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
A PromptTemplate with the template assembled from the pieces here.
|
|
||||||
"""
|
|
||||||
suffix = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
|
|
||||||
Question: {input}
|
|
||||||
Thought: {agent_scratchpad}
|
|
||||||
"""
|
|
||||||
|
|
||||||
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
|
|
||||||
tool_names = ", ".join([tool.name for tool in tools])
|
|
||||||
format_instructions = format_instructions.format(tool_names=tool_names)
|
|
||||||
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
|
|
||||||
if input_variables is None:
|
|
||||||
input_variables = ["input", "agent_scratchpad"]
|
|
||||||
return PromptTemplate(template=template, input_variables=input_variables)
|
|
||||||
|
|
||||||
def _construct_scratchpad(
|
|
||||||
self, intermediate_steps: list[tuple[AgentAction, str]]
|
|
||||||
) -> str:
|
|
||||||
agent_scratchpad = ""
|
|
||||||
for action, observation in intermediate_steps:
|
|
||||||
agent_scratchpad += action.log
|
|
||||||
agent_scratchpad += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
|
|
||||||
|
|
||||||
if not isinstance(agent_scratchpad, str):
|
|
||||||
raise ValueError("agent_scratchpad should be of type string.")
|
|
||||||
if agent_scratchpad:
|
|
||||||
llm_chain = cast(LLMChain, self.llm_chain)
|
|
||||||
if llm_chain.model_config.mode == "chat":
|
|
||||||
return (
|
|
||||||
f"This was your previous work "
|
|
||||||
f"(but I haven't seen any of it! I only see what "
|
|
||||||
f"you return as final answer):\n{agent_scratchpad}"
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
return agent_scratchpad
|
|
||||||
else:
|
|
||||||
return agent_scratchpad
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_llm_and_tools(
|
|
||||||
cls,
|
|
||||||
model_config: ModelConfigWithCredentialsEntity,
|
|
||||||
tools: Sequence[BaseTool],
|
|
||||||
callback_manager: Optional[BaseCallbackManager] = None,
|
|
||||||
output_parser: Optional[AgentOutputParser] = None,
|
|
||||||
prefix: str = PREFIX,
|
|
||||||
suffix: str = SUFFIX,
|
|
||||||
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
|
|
||||||
format_instructions: str = FORMAT_INSTRUCTIONS,
|
|
||||||
input_variables: Optional[list[str]] = None,
|
|
||||||
memory_prompts: Optional[list[BasePromptTemplate]] = None,
|
|
||||||
**kwargs: Any,
|
|
||||||
) -> Agent:
|
|
||||||
"""Construct an agent from an LLM and tools."""
|
|
||||||
cls._validate_tools(tools)
|
|
||||||
if model_config.mode == "chat":
|
|
||||||
prompt = cls.create_prompt(
|
|
||||||
tools,
|
|
||||||
prefix=prefix,
|
|
||||||
suffix=suffix,
|
|
||||||
human_message_template=human_message_template,
|
|
||||||
format_instructions=format_instructions,
|
|
||||||
input_variables=input_variables,
|
|
||||||
memory_prompts=memory_prompts,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
prompt = cls.create_completion_prompt(
|
|
||||||
tools,
|
|
||||||
prefix=prefix,
|
|
||||||
format_instructions=format_instructions,
|
|
||||||
input_variables=input_variables
|
|
||||||
)
|
|
||||||
|
|
||||||
llm_chain = LLMChain(
|
|
||||||
model_config=model_config,
|
|
||||||
prompt=prompt,
|
|
||||||
callback_manager=callback_manager,
|
|
||||||
parameters={
|
|
||||||
'temperature': 0.2,
|
|
||||||
'top_p': 0.3,
|
|
||||||
'max_tokens': 1500
|
|
||||||
}
|
|
||||||
)
|
|
||||||
tool_names = [tool.name for tool in tools]
|
|
||||||
_output_parser = output_parser
|
|
||||||
return cls(
|
|
||||||
llm_chain=llm_chain,
|
|
||||||
allowed_tools=tool_names,
|
|
||||||
output_parser=_output_parser,
|
|
||||||
dataset_tools=tools,
|
|
||||||
**kwargs,
|
|
||||||
)
|
|
@ -1,117 +0,0 @@
|
|||||||
import logging
|
|
||||||
from typing import Optional, Union
|
|
||||||
|
|
||||||
from langchain.agents import AgentExecutor as LCAgentExecutor
|
|
||||||
from langchain.agents import BaseMultiActionAgent, BaseSingleActionAgent
|
|
||||||
from langchain.callbacks.manager import Callbacks
|
|
||||||
from langchain.tools import BaseTool
|
|
||||||
from pydantic import BaseModel, Extra
|
|
||||||
|
|
||||||
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
|
|
||||||
from core.entities.agent_entities import PlanningStrategy
|
|
||||||
from core.entities.message_entities import prompt_messages_to_lc_messages
|
|
||||||
from core.helper import moderation
|
|
||||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
|
||||||
from core.model_runtime.errors.invoke import InvokeError
|
|
||||||
from core.rag.retrieval.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
|
|
||||||
from core.rag.retrieval.agent.output_parser.structured_chat import StructuredChatOutputParser
|
|
||||||
from core.rag.retrieval.agent.structed_multi_dataset_router_agent import StructuredMultiDatasetRouterAgent
|
|
||||||
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
|
|
||||||
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
|
|
||||||
|
|
||||||
|
|
||||||
class AgentConfiguration(BaseModel):
|
|
||||||
strategy: PlanningStrategy
|
|
||||||
model_config: ModelConfigWithCredentialsEntity
|
|
||||||
tools: list[BaseTool]
|
|
||||||
summary_model_config: Optional[ModelConfigWithCredentialsEntity] = None
|
|
||||||
memory: Optional[TokenBufferMemory] = None
|
|
||||||
callbacks: Callbacks = None
|
|
||||||
max_iterations: int = 6
|
|
||||||
max_execution_time: Optional[float] = None
|
|
||||||
early_stopping_method: str = "generate"
|
|
||||||
# `generate` will continue to complete the last inference after reaching the iteration limit or request time limit
|
|
||||||
|
|
||||||
class Config:
|
|
||||||
"""Configuration for this pydantic object."""
|
|
||||||
|
|
||||||
extra = Extra.forbid
|
|
||||||
arbitrary_types_allowed = True
|
|
||||||
|
|
||||||
|
|
||||||
class AgentExecuteResult(BaseModel):
|
|
||||||
strategy: PlanningStrategy
|
|
||||||
output: Optional[str]
|
|
||||||
configuration: AgentConfiguration
|
|
||||||
|
|
||||||
|
|
||||||
class AgentExecutor:
|
|
||||||
def __init__(self, configuration: AgentConfiguration):
|
|
||||||
self.configuration = configuration
|
|
||||||
self.agent = self._init_agent()
|
|
||||||
|
|
||||||
def _init_agent(self) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]:
|
|
||||||
if self.configuration.strategy == PlanningStrategy.ROUTER:
|
|
||||||
self.configuration.tools = [t for t in self.configuration.tools
|
|
||||||
if isinstance(t, DatasetRetrieverTool)
|
|
||||||
or isinstance(t, DatasetMultiRetrieverTool)]
|
|
||||||
agent = MultiDatasetRouterAgent.from_llm_and_tools(
|
|
||||||
model_config=self.configuration.model_config,
|
|
||||||
tools=self.configuration.tools,
|
|
||||||
extra_prompt_messages=prompt_messages_to_lc_messages(self.configuration.memory.get_history_prompt_messages())
|
|
||||||
if self.configuration.memory else None,
|
|
||||||
verbose=True
|
|
||||||
)
|
|
||||||
elif self.configuration.strategy == PlanningStrategy.REACT_ROUTER:
|
|
||||||
self.configuration.tools = [t for t in self.configuration.tools
|
|
||||||
if isinstance(t, DatasetRetrieverTool)
|
|
||||||
or isinstance(t, DatasetMultiRetrieverTool)]
|
|
||||||
agent = StructuredMultiDatasetRouterAgent.from_llm_and_tools(
|
|
||||||
model_config=self.configuration.model_config,
|
|
||||||
tools=self.configuration.tools,
|
|
||||||
output_parser=StructuredChatOutputParser(),
|
|
||||||
verbose=True
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise NotImplementedError(f"Unknown Agent Strategy: {self.configuration.strategy}")
|
|
||||||
|
|
||||||
return agent
|
|
||||||
|
|
||||||
def should_use_agent(self, query: str) -> bool:
|
|
||||||
return self.agent.should_use_agent(query)
|
|
||||||
|
|
||||||
def run(self, query: str) -> AgentExecuteResult:
|
|
||||||
moderation_result = moderation.check_moderation(
|
|
||||||
self.configuration.model_config,
|
|
||||||
query
|
|
||||||
)
|
|
||||||
|
|
||||||
if moderation_result:
|
|
||||||
return AgentExecuteResult(
|
|
||||||
output="I apologize for any confusion, but I'm an AI assistant to be helpful, harmless, and honest.",
|
|
||||||
strategy=self.configuration.strategy,
|
|
||||||
configuration=self.configuration
|
|
||||||
)
|
|
||||||
|
|
||||||
agent_executor = LCAgentExecutor.from_agent_and_tools(
|
|
||||||
agent=self.agent,
|
|
||||||
tools=self.configuration.tools,
|
|
||||||
max_iterations=self.configuration.max_iterations,
|
|
||||||
max_execution_time=self.configuration.max_execution_time,
|
|
||||||
early_stopping_method=self.configuration.early_stopping_method,
|
|
||||||
callbacks=self.configuration.callbacks
|
|
||||||
)
|
|
||||||
|
|
||||||
try:
|
|
||||||
output = agent_executor.run(input=query)
|
|
||||||
except InvokeError as ex:
|
|
||||||
raise ex
|
|
||||||
except Exception as ex:
|
|
||||||
logging.exception("agent_executor run failed")
|
|
||||||
output = None
|
|
||||||
|
|
||||||
return AgentExecuteResult(
|
|
||||||
output=output,
|
|
||||||
strategy=self.configuration.strategy,
|
|
||||||
configuration=self.configuration
|
|
||||||
)
|
|
@ -1,23 +1,40 @@
|
|||||||
|
import threading
|
||||||
from typing import Optional, cast
|
from typing import Optional, cast
|
||||||
|
|
||||||
from langchain.tools import BaseTool
|
from flask import Flask, current_app
|
||||||
|
|
||||||
from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
|
from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
|
||||||
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
|
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
|
||||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||||
from core.entities.agent_entities import PlanningStrategy
|
from core.entities.agent_entities import PlanningStrategy
|
||||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||||
from core.model_runtime.entities.model_entities import ModelFeature
|
from core.model_manager import ModelInstance, ModelManager
|
||||||
|
from core.model_runtime.entities.message_entities import PromptMessageTool
|
||||||
|
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
||||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||||
from core.rag.retrieval.agent_based_dataset_executor import AgentConfiguration, AgentExecutor
|
from core.rag.datasource.retrieval_service import RetrievalService
|
||||||
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
|
from core.rag.models.document import Document
|
||||||
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
|
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
|
||||||
|
from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
|
||||||
|
from core.rerank.rerank import RerankRunner
|
||||||
from extensions.ext_database import db
|
from extensions.ext_database import db
|
||||||
from models.dataset import Dataset
|
from models.dataset import Dataset, DatasetQuery, DocumentSegment
|
||||||
|
from models.dataset import Document as DatasetDocument
|
||||||
|
|
||||||
|
default_retrieval_model = {
|
||||||
|
'search_method': 'semantic_search',
|
||||||
|
'reranking_enable': False,
|
||||||
|
'reranking_model': {
|
||||||
|
'reranking_provider_name': '',
|
||||||
|
'reranking_model_name': ''
|
||||||
|
},
|
||||||
|
'top_k': 2,
|
||||||
|
'score_threshold_enabled': False
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
class DatasetRetrieval:
|
class DatasetRetrieval:
|
||||||
def retrieve(self, tenant_id: str,
|
def retrieve(self, app_id: str, user_id: str, tenant_id: str,
|
||||||
model_config: ModelConfigWithCredentialsEntity,
|
model_config: ModelConfigWithCredentialsEntity,
|
||||||
config: DatasetEntity,
|
config: DatasetEntity,
|
||||||
query: str,
|
query: str,
|
||||||
@ -27,6 +44,8 @@ class DatasetRetrieval:
|
|||||||
memory: Optional[TokenBufferMemory] = None) -> Optional[str]:
|
memory: Optional[TokenBufferMemory] = None) -> Optional[str]:
|
||||||
"""
|
"""
|
||||||
Retrieve dataset.
|
Retrieve dataset.
|
||||||
|
:param app_id: app_id
|
||||||
|
:param user_id: user_id
|
||||||
:param tenant_id: tenant id
|
:param tenant_id: tenant id
|
||||||
:param model_config: model config
|
:param model_config: model config
|
||||||
:param config: dataset config
|
:param config: dataset config
|
||||||
@ -38,12 +57,22 @@ class DatasetRetrieval:
|
|||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
dataset_ids = config.dataset_ids
|
dataset_ids = config.dataset_ids
|
||||||
|
if len(dataset_ids) == 0:
|
||||||
|
return None
|
||||||
retrieve_config = config.retrieve_config
|
retrieve_config = config.retrieve_config
|
||||||
|
|
||||||
# check model is support tool calling
|
# check model is support tool calling
|
||||||
model_type_instance = model_config.provider_model_bundle.model_type_instance
|
model_type_instance = model_config.provider_model_bundle.model_type_instance
|
||||||
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
||||||
|
|
||||||
|
model_manager = ModelManager()
|
||||||
|
model_instance = model_manager.get_model_instance(
|
||||||
|
tenant_id=tenant_id,
|
||||||
|
model_type=ModelType.LLM,
|
||||||
|
provider=model_config.provider,
|
||||||
|
model=model_config.model
|
||||||
|
)
|
||||||
|
|
||||||
# get model schema
|
# get model schema
|
||||||
model_schema = model_type_instance.get_model_schema(
|
model_schema = model_type_instance.get_model_schema(
|
||||||
model=model_config.model,
|
model=model_config.model,
|
||||||
@ -59,56 +88,6 @@ class DatasetRetrieval:
|
|||||||
if ModelFeature.TOOL_CALL in features \
|
if ModelFeature.TOOL_CALL in features \
|
||||||
or ModelFeature.MULTI_TOOL_CALL in features:
|
or ModelFeature.MULTI_TOOL_CALL in features:
|
||||||
planning_strategy = PlanningStrategy.ROUTER
|
planning_strategy = PlanningStrategy.ROUTER
|
||||||
|
|
||||||
dataset_retriever_tools = self.to_dataset_retriever_tool(
|
|
||||||
tenant_id=tenant_id,
|
|
||||||
dataset_ids=dataset_ids,
|
|
||||||
retrieve_config=retrieve_config,
|
|
||||||
return_resource=show_retrieve_source,
|
|
||||||
invoke_from=invoke_from,
|
|
||||||
hit_callback=hit_callback
|
|
||||||
)
|
|
||||||
|
|
||||||
if len(dataset_retriever_tools) == 0:
|
|
||||||
return None
|
|
||||||
|
|
||||||
agent_configuration = AgentConfiguration(
|
|
||||||
strategy=planning_strategy,
|
|
||||||
model_config=model_config,
|
|
||||||
tools=dataset_retriever_tools,
|
|
||||||
memory=memory,
|
|
||||||
max_iterations=10,
|
|
||||||
max_execution_time=400.0,
|
|
||||||
early_stopping_method="generate"
|
|
||||||
)
|
|
||||||
|
|
||||||
agent_executor = AgentExecutor(agent_configuration)
|
|
||||||
|
|
||||||
should_use_agent = agent_executor.should_use_agent(query)
|
|
||||||
if not should_use_agent:
|
|
||||||
return None
|
|
||||||
|
|
||||||
result = agent_executor.run(query)
|
|
||||||
|
|
||||||
return result.output
|
|
||||||
|
|
||||||
def to_dataset_retriever_tool(self, tenant_id: str,
|
|
||||||
dataset_ids: list[str],
|
|
||||||
retrieve_config: DatasetRetrieveConfigEntity,
|
|
||||||
return_resource: bool,
|
|
||||||
invoke_from: InvokeFrom,
|
|
||||||
hit_callback: DatasetIndexToolCallbackHandler) \
|
|
||||||
-> Optional[list[BaseTool]]:
|
|
||||||
"""
|
|
||||||
A dataset tool is a tool that can be used to retrieve information from a dataset
|
|
||||||
:param tenant_id: tenant id
|
|
||||||
:param dataset_ids: dataset ids
|
|
||||||
:param retrieve_config: retrieve config
|
|
||||||
:param return_resource: return resource
|
|
||||||
:param invoke_from: invoke from
|
|
||||||
:param hit_callback: hit callback
|
|
||||||
"""
|
|
||||||
tools = []
|
|
||||||
available_datasets = []
|
available_datasets = []
|
||||||
for dataset_id in dataset_ids:
|
for dataset_id in dataset_ids:
|
||||||
# get dataset from dataset id
|
# get dataset from dataset id
|
||||||
@ -127,56 +106,270 @@ class DatasetRetrieval:
|
|||||||
continue
|
continue
|
||||||
|
|
||||||
available_datasets.append(dataset)
|
available_datasets.append(dataset)
|
||||||
|
all_documents = []
|
||||||
|
user_from = 'account' if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'
|
||||||
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
|
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
|
||||||
# get retrieval model config
|
all_documents = self.single_retrieve(app_id, tenant_id, user_id, user_from, available_datasets, query,
|
||||||
default_retrieval_model = {
|
model_instance,
|
||||||
'search_method': 'semantic_search',
|
model_config, planning_strategy)
|
||||||
'reranking_enable': False,
|
elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
|
||||||
'reranking_model': {
|
all_documents = self.multiple_retrieve(app_id, tenant_id, user_id, user_from,
|
||||||
'reranking_provider_name': '',
|
available_datasets, query, retrieve_config.top_k,
|
||||||
'reranking_model_name': ''
|
retrieve_config.score_threshold,
|
||||||
},
|
retrieve_config.reranking_model.get('reranking_provider_name'),
|
||||||
'top_k': 2,
|
retrieve_config.reranking_model.get('reranking_model_name'))
|
||||||
'score_threshold_enabled': False
|
|
||||||
}
|
|
||||||
|
|
||||||
for dataset in available_datasets:
|
document_score_list = {}
|
||||||
|
for item in all_documents:
|
||||||
|
if 'score' in item.metadata and item.metadata['score']:
|
||||||
|
document_score_list[item.metadata['doc_id']] = item.metadata['score']
|
||||||
|
|
||||||
|
document_context_list = []
|
||||||
|
index_node_ids = [document.metadata['doc_id'] for document in all_documents]
|
||||||
|
segments = DocumentSegment.query.filter(
|
||||||
|
DocumentSegment.dataset_id.in_(dataset_ids),
|
||||||
|
DocumentSegment.completed_at.isnot(None),
|
||||||
|
DocumentSegment.status == 'completed',
|
||||||
|
DocumentSegment.enabled == True,
|
||||||
|
DocumentSegment.index_node_id.in_(index_node_ids)
|
||||||
|
).all()
|
||||||
|
|
||||||
|
if segments:
|
||||||
|
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
|
||||||
|
sorted_segments = sorted(segments,
|
||||||
|
key=lambda segment: index_node_id_to_position.get(segment.index_node_id,
|
||||||
|
float('inf')))
|
||||||
|
for segment in sorted_segments:
|
||||||
|
if segment.answer:
|
||||||
|
document_context_list.append(f'question:{segment.content} answer:{segment.answer}')
|
||||||
|
else:
|
||||||
|
document_context_list.append(segment.content)
|
||||||
|
if show_retrieve_source:
|
||||||
|
context_list = []
|
||||||
|
resource_number = 1
|
||||||
|
for segment in sorted_segments:
|
||||||
|
dataset = Dataset.query.filter_by(
|
||||||
|
id=segment.dataset_id
|
||||||
|
).first()
|
||||||
|
document = DatasetDocument.query.filter(DatasetDocument.id == segment.document_id,
|
||||||
|
DatasetDocument.enabled == True,
|
||||||
|
DatasetDocument.archived == False,
|
||||||
|
).first()
|
||||||
|
if dataset and document:
|
||||||
|
source = {
|
||||||
|
'position': resource_number,
|
||||||
|
'dataset_id': dataset.id,
|
||||||
|
'dataset_name': dataset.name,
|
||||||
|
'document_id': document.id,
|
||||||
|
'document_name': document.name,
|
||||||
|
'data_source_type': document.data_source_type,
|
||||||
|
'segment_id': segment.id,
|
||||||
|
'retriever_from': invoke_from.to_source(),
|
||||||
|
'score': document_score_list.get(segment.index_node_id, None)
|
||||||
|
}
|
||||||
|
|
||||||
|
if invoke_from.to_source() == 'dev':
|
||||||
|
source['hit_count'] = segment.hit_count
|
||||||
|
source['word_count'] = segment.word_count
|
||||||
|
source['segment_position'] = segment.position
|
||||||
|
source['index_node_hash'] = segment.index_node_hash
|
||||||
|
if segment.answer:
|
||||||
|
source['content'] = f'question:{segment.content} \nanswer:{segment.answer}'
|
||||||
|
else:
|
||||||
|
source['content'] = segment.content
|
||||||
|
context_list.append(source)
|
||||||
|
resource_number += 1
|
||||||
|
if hit_callback:
|
||||||
|
hit_callback.return_retriever_resource_info(context_list)
|
||||||
|
|
||||||
|
return str("\n".join(document_context_list))
|
||||||
|
return ''
|
||||||
|
|
||||||
|
def single_retrieve(self, app_id: str,
|
||||||
|
tenant_id: str,
|
||||||
|
user_id: str,
|
||||||
|
user_from: str,
|
||||||
|
available_datasets: list,
|
||||||
|
query: str,
|
||||||
|
model_instance: ModelInstance,
|
||||||
|
model_config: ModelConfigWithCredentialsEntity,
|
||||||
|
planning_strategy: PlanningStrategy,
|
||||||
|
):
|
||||||
|
tools = []
|
||||||
|
for dataset in available_datasets:
|
||||||
|
description = dataset.description
|
||||||
|
if not description:
|
||||||
|
description = 'useful for when you want to answer queries about the ' + dataset.name
|
||||||
|
|
||||||
|
description = description.replace('\n', '').replace('\r', '')
|
||||||
|
message_tool = PromptMessageTool(
|
||||||
|
name=dataset.id,
|
||||||
|
description=description,
|
||||||
|
parameters={
|
||||||
|
"type": "object",
|
||||||
|
"properties": {},
|
||||||
|
"required": [],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
tools.append(message_tool)
|
||||||
|
dataset_id = None
|
||||||
|
if planning_strategy == PlanningStrategy.REACT_ROUTER:
|
||||||
|
react_multi_dataset_router = ReactMultiDatasetRouter()
|
||||||
|
dataset_id = react_multi_dataset_router.invoke(query, tools, model_config, model_instance,
|
||||||
|
user_id, tenant_id)
|
||||||
|
|
||||||
|
elif planning_strategy == PlanningStrategy.ROUTER:
|
||||||
|
function_call_router = FunctionCallMultiDatasetRouter()
|
||||||
|
dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
|
||||||
|
|
||||||
|
if dataset_id:
|
||||||
|
# get retrieval model config
|
||||||
|
dataset = db.session.query(Dataset).filter(
|
||||||
|
Dataset.id == dataset_id
|
||||||
|
).first()
|
||||||
|
if dataset:
|
||||||
retrieval_model_config = dataset.retrieval_model \
|
retrieval_model_config = dataset.retrieval_model \
|
||||||
if dataset.retrieval_model else default_retrieval_model
|
if dataset.retrieval_model else default_retrieval_model
|
||||||
|
|
||||||
# get top k
|
# get top k
|
||||||
top_k = retrieval_model_config['top_k']
|
top_k = retrieval_model_config['top_k']
|
||||||
|
# get retrieval method
|
||||||
|
if dataset.indexing_technique == "economy":
|
||||||
|
retrival_method = 'keyword_search'
|
||||||
|
else:
|
||||||
|
retrival_method = retrieval_model_config['search_method']
|
||||||
|
# get reranking model
|
||||||
|
reranking_model = retrieval_model_config['reranking_model'] \
|
||||||
|
if retrieval_model_config['reranking_enable'] else None
|
||||||
# get score threshold
|
# get score threshold
|
||||||
score_threshold = None
|
score_threshold = .0
|
||||||
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
|
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
|
||||||
if score_threshold_enabled:
|
if score_threshold_enabled:
|
||||||
score_threshold = retrieval_model_config.get("score_threshold")
|
score_threshold = retrieval_model_config.get("score_threshold")
|
||||||
|
|
||||||
tool = DatasetRetrieverTool.from_dataset(
|
results = RetrievalService.retrieve(retrival_method=retrival_method, dataset_id=dataset.id,
|
||||||
dataset=dataset,
|
query=query,
|
||||||
top_k=top_k,
|
top_k=top_k, score_threshold=score_threshold,
|
||||||
score_threshold=score_threshold,
|
reranking_model=reranking_model)
|
||||||
hit_callbacks=[hit_callback],
|
self._on_query(query, [dataset_id], app_id, user_from, user_id)
|
||||||
return_resource=return_resource,
|
if results:
|
||||||
retriever_from=invoke_from.to_source()
|
self._on_retrival_end(results)
|
||||||
)
|
return results
|
||||||
|
return []
|
||||||
|
|
||||||
tools.append(tool)
|
def multiple_retrieve(self,
|
||||||
elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
|
app_id: str,
|
||||||
tool = DatasetMultiRetrieverTool.from_dataset(
|
tenant_id: str,
|
||||||
dataset_ids=[dataset.id for dataset in available_datasets],
|
user_id: str,
|
||||||
tenant_id=tenant_id,
|
user_from: str,
|
||||||
top_k=retrieve_config.top_k or 2,
|
available_datasets: list,
|
||||||
score_threshold=retrieve_config.score_threshold,
|
query: str,
|
||||||
hit_callbacks=[hit_callback],
|
top_k: int,
|
||||||
return_resource=return_resource,
|
score_threshold: float,
|
||||||
retriever_from=invoke_from.to_source(),
|
reranking_provider_name: str,
|
||||||
reranking_provider_name=retrieve_config.reranking_model.get('reranking_provider_name'),
|
reranking_model_name: str):
|
||||||
reranking_model_name=retrieve_config.reranking_model.get('reranking_model_name')
|
threads = []
|
||||||
|
all_documents = []
|
||||||
|
dataset_ids = [dataset.id for dataset in available_datasets]
|
||||||
|
for dataset in available_datasets:
|
||||||
|
retrieval_thread = threading.Thread(target=self._retriever, kwargs={
|
||||||
|
'flask_app': current_app._get_current_object(),
|
||||||
|
'dataset_id': dataset.id,
|
||||||
|
'query': query,
|
||||||
|
'top_k': top_k,
|
||||||
|
'all_documents': all_documents,
|
||||||
|
})
|
||||||
|
threads.append(retrieval_thread)
|
||||||
|
retrieval_thread.start()
|
||||||
|
for thread in threads:
|
||||||
|
thread.join()
|
||||||
|
# do rerank for searched documents
|
||||||
|
model_manager = ModelManager()
|
||||||
|
rerank_model_instance = model_manager.get_model_instance(
|
||||||
|
tenant_id=tenant_id,
|
||||||
|
provider=reranking_provider_name,
|
||||||
|
model_type=ModelType.RERANK,
|
||||||
|
model=reranking_model_name
|
||||||
|
)
|
||||||
|
|
||||||
|
rerank_runner = RerankRunner(rerank_model_instance)
|
||||||
|
all_documents = rerank_runner.run(query, all_documents,
|
||||||
|
score_threshold,
|
||||||
|
top_k)
|
||||||
|
self._on_query(query, dataset_ids, app_id, user_from, user_id)
|
||||||
|
if all_documents:
|
||||||
|
self._on_retrival_end(all_documents)
|
||||||
|
return all_documents
|
||||||
|
|
||||||
|
def _on_retrival_end(self, documents: list[Document]) -> None:
|
||||||
|
"""Handle retrival end."""
|
||||||
|
for document in documents:
|
||||||
|
query = db.session.query(DocumentSegment).filter(
|
||||||
|
DocumentSegment.index_node_id == document.metadata['doc_id']
|
||||||
)
|
)
|
||||||
|
|
||||||
tools.append(tool)
|
# if 'dataset_id' in document.metadata:
|
||||||
|
if 'dataset_id' in document.metadata:
|
||||||
|
query = query.filter(DocumentSegment.dataset_id == document.metadata['dataset_id'])
|
||||||
|
|
||||||
return tools
|
# add hit count to document segment
|
||||||
|
query.update(
|
||||||
|
{DocumentSegment.hit_count: DocumentSegment.hit_count + 1},
|
||||||
|
synchronize_session=False
|
||||||
|
)
|
||||||
|
|
||||||
|
db.session.commit()
|
||||||
|
|
||||||
|
def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
|
||||||
|
"""
|
||||||
|
Handle query.
|
||||||
|
"""
|
||||||
|
if not query:
|
||||||
|
return
|
||||||
|
for dataset_id in dataset_ids:
|
||||||
|
dataset_query = DatasetQuery(
|
||||||
|
dataset_id=dataset_id,
|
||||||
|
content=query,
|
||||||
|
source='app',
|
||||||
|
source_app_id=app_id,
|
||||||
|
created_by_role=user_from,
|
||||||
|
created_by=user_id
|
||||||
|
)
|
||||||
|
db.session.add(dataset_query)
|
||||||
|
db.session.commit()
|
||||||
|
|
||||||
|
def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
|
||||||
|
with flask_app.app_context():
|
||||||
|
dataset = db.session.query(Dataset).filter(
|
||||||
|
Dataset.id == dataset_id
|
||||||
|
).first()
|
||||||
|
|
||||||
|
if not dataset:
|
||||||
|
return []
|
||||||
|
|
||||||
|
# get retrieval model , if the model is not setting , using default
|
||||||
|
retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
|
||||||
|
|
||||||
|
if dataset.indexing_technique == "economy":
|
||||||
|
# use keyword table query
|
||||||
|
documents = RetrievalService.retrieve(retrival_method='keyword_search',
|
||||||
|
dataset_id=dataset.id,
|
||||||
|
query=query,
|
||||||
|
top_k=top_k
|
||||||
|
)
|
||||||
|
if documents:
|
||||||
|
all_documents.extend(documents)
|
||||||
|
else:
|
||||||
|
if top_k > 0:
|
||||||
|
# retrieval source
|
||||||
|
documents = RetrievalService.retrieve(retrival_method=retrieval_model['search_method'],
|
||||||
|
dataset_id=dataset.id,
|
||||||
|
query=query,
|
||||||
|
top_k=top_k,
|
||||||
|
score_threshold=retrieval_model['score_threshold']
|
||||||
|
if retrieval_model['score_threshold_enabled'] else None,
|
||||||
|
reranking_model=retrieval_model['reranking_model']
|
||||||
|
if retrieval_model['reranking_enable'] else None
|
||||||
|
)
|
||||||
|
|
||||||
|
all_documents.extend(documents)
|
||||||
|
@ -12,8 +12,7 @@ from core.model_runtime.entities.llm_entities import LLMUsage
|
|||||||
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageRole, PromptMessageTool
|
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageRole, PromptMessageTool
|
||||||
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
|
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
|
||||||
from core.prompt.entities.advanced_prompt_entities import ChatModelMessage
|
from core.prompt.entities.advanced_prompt_entities import ChatModelMessage
|
||||||
from core.rag.retrieval.agent.output_parser.structured_chat import StructuredChatOutputParser
|
from core.rag.retrieval.output_parser.structured_chat import StructuredChatOutputParser
|
||||||
from core.workflow.nodes.knowledge_retrieval.entities import KnowledgeRetrievalNodeData
|
|
||||||
from core.workflow.nodes.llm.llm_node import LLMNode
|
from core.workflow.nodes.llm.llm_node import LLMNode
|
||||||
|
|
||||||
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
||||||
@ -55,11 +54,10 @@ class ReactMultiDatasetRouter:
|
|||||||
self,
|
self,
|
||||||
query: str,
|
query: str,
|
||||||
dataset_tools: list[PromptMessageTool],
|
dataset_tools: list[PromptMessageTool],
|
||||||
node_data: KnowledgeRetrievalNodeData,
|
|
||||||
model_config: ModelConfigWithCredentialsEntity,
|
model_config: ModelConfigWithCredentialsEntity,
|
||||||
model_instance: ModelInstance,
|
model_instance: ModelInstance,
|
||||||
user_id: str,
|
user_id: str,
|
||||||
tenant_id: str,
|
tenant_id: str
|
||||||
|
|
||||||
) -> Union[str, None]:
|
) -> Union[str, None]:
|
||||||
"""Given input, decided what to do.
|
"""Given input, decided what to do.
|
||||||
@ -72,7 +70,8 @@ class ReactMultiDatasetRouter:
|
|||||||
return dataset_tools[0].name
|
return dataset_tools[0].name
|
||||||
|
|
||||||
try:
|
try:
|
||||||
return self._react_invoke(query=query, node_data=node_data, model_config=model_config, model_instance=model_instance,
|
return self._react_invoke(query=query, model_config=model_config,
|
||||||
|
model_instance=model_instance,
|
||||||
tools=dataset_tools, user_id=user_id, tenant_id=tenant_id)
|
tools=dataset_tools, user_id=user_id, tenant_id=tenant_id)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return None
|
return None
|
||||||
@ -80,7 +79,6 @@ class ReactMultiDatasetRouter:
|
|||||||
def _react_invoke(
|
def _react_invoke(
|
||||||
self,
|
self,
|
||||||
query: str,
|
query: str,
|
||||||
node_data: KnowledgeRetrievalNodeData,
|
|
||||||
model_config: ModelConfigWithCredentialsEntity,
|
model_config: ModelConfigWithCredentialsEntity,
|
||||||
model_instance: ModelInstance,
|
model_instance: ModelInstance,
|
||||||
tools: Sequence[PromptMessageTool],
|
tools: Sequence[PromptMessageTool],
|
||||||
@ -121,7 +119,7 @@ class ReactMultiDatasetRouter:
|
|||||||
model_config=model_config
|
model_config=model_config
|
||||||
)
|
)
|
||||||
result_text, usage = self._invoke_llm(
|
result_text, usage = self._invoke_llm(
|
||||||
node_data=node_data,
|
completion_param=model_config.parameters,
|
||||||
model_instance=model_instance,
|
model_instance=model_instance,
|
||||||
prompt_messages=prompt_messages,
|
prompt_messages=prompt_messages,
|
||||||
stop=stop,
|
stop=stop,
|
||||||
@ -134,10 +132,11 @@ class ReactMultiDatasetRouter:
|
|||||||
return agent_decision.tool
|
return agent_decision.tool
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def _invoke_llm(self, node_data: KnowledgeRetrievalNodeData,
|
def _invoke_llm(self, completion_param: dict,
|
||||||
model_instance: ModelInstance,
|
model_instance: ModelInstance,
|
||||||
prompt_messages: list[PromptMessage],
|
prompt_messages: list[PromptMessage],
|
||||||
stop: list[str], user_id: str, tenant_id: str) -> tuple[str, LLMUsage]:
|
stop: list[str], user_id: str, tenant_id: str
|
||||||
|
) -> tuple[str, LLMUsage]:
|
||||||
"""
|
"""
|
||||||
Invoke large language model
|
Invoke large language model
|
||||||
:param node_data: node data
|
:param node_data: node data
|
||||||
@ -148,7 +147,7 @@ class ReactMultiDatasetRouter:
|
|||||||
"""
|
"""
|
||||||
invoke_result = model_instance.invoke_llm(
|
invoke_result = model_instance.invoke_llm(
|
||||||
prompt_messages=prompt_messages,
|
prompt_messages=prompt_messages,
|
||||||
model_parameters=node_data.single_retrieval_config.model.completion_params,
|
model_parameters=completion_param,
|
||||||
stop=stop,
|
stop=stop,
|
||||||
stream=True,
|
stream=True,
|
||||||
user=user_id,
|
user=user_id,
|
||||||
@ -203,7 +202,8 @@ class ReactMultiDatasetRouter:
|
|||||||
) -> list[ChatModelMessage]:
|
) -> list[ChatModelMessage]:
|
||||||
tool_strings = []
|
tool_strings = []
|
||||||
for tool in tools:
|
for tool in tools:
|
||||||
tool_strings.append(f"{tool.name}: {tool.description}, args: {{'query': {{'title': 'Query', 'description': 'Query for the dataset to be used to retrieve the dataset.', 'type': 'string'}}}}")
|
tool_strings.append(
|
||||||
|
f"{tool.name}: {tool.description}, args: {{'query': {{'title': 'Query', 'description': 'Query for the dataset to be used to retrieve the dataset.', 'type': 'string'}}}}")
|
||||||
formatted_tools = "\n".join(tool_strings)
|
formatted_tools = "\n".join(tool_strings)
|
||||||
unique_tool_names = set(tool.name for tool in tools)
|
unique_tool_names = set(tool.name for tool in tools)
|
||||||
tool_names = ", ".join('"' + name + '"' for name in unique_tool_names)
|
tool_names = ", ".join('"' + name + '"' for name in unique_tool_names)
|
@ -1,28 +1,21 @@
|
|||||||
import threading
|
|
||||||
from typing import Any, cast
|
from typing import Any, cast
|
||||||
|
|
||||||
from flask import Flask, current_app
|
|
||||||
|
|
||||||
from core.app.app_config.entities import DatasetRetrieveConfigEntity
|
from core.app.app_config.entities import DatasetRetrieveConfigEntity
|
||||||
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
|
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
|
||||||
from core.entities.agent_entities import PlanningStrategy
|
from core.entities.agent_entities import PlanningStrategy
|
||||||
from core.entities.model_entities import ModelStatus
|
from core.entities.model_entities import ModelStatus
|
||||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||||
from core.model_manager import ModelInstance, ModelManager
|
from core.model_manager import ModelInstance, ModelManager
|
||||||
from core.model_runtime.entities.message_entities import PromptMessageTool
|
|
||||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
||||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||||
from core.rag.datasource.retrieval_service import RetrievalService
|
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
|
||||||
from core.rerank.rerank import RerankRunner
|
|
||||||
from core.workflow.entities.base_node_data_entities import BaseNodeData
|
from core.workflow.entities.base_node_data_entities import BaseNodeData
|
||||||
from core.workflow.entities.node_entities import NodeRunResult, NodeType
|
from core.workflow.entities.node_entities import NodeRunResult, NodeType
|
||||||
from core.workflow.entities.variable_pool import VariablePool
|
from core.workflow.entities.variable_pool import VariablePool
|
||||||
from core.workflow.nodes.base_node import BaseNode
|
from core.workflow.nodes.base_node import BaseNode
|
||||||
from core.workflow.nodes.knowledge_retrieval.entities import KnowledgeRetrievalNodeData
|
from core.workflow.nodes.knowledge_retrieval.entities import KnowledgeRetrievalNodeData
|
||||||
from core.workflow.nodes.knowledge_retrieval.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
|
|
||||||
from core.workflow.nodes.knowledge_retrieval.multi_dataset_react_route import ReactMultiDatasetRouter
|
|
||||||
from extensions.ext_database import db
|
from extensions.ext_database import db
|
||||||
from models.dataset import Dataset, DatasetQuery, Document, DocumentSegment
|
from models.dataset import Dataset, Document, DocumentSegment
|
||||||
from models.workflow import WorkflowNodeExecutionStatus
|
from models.workflow import WorkflowNodeExecutionStatus
|
||||||
|
|
||||||
default_retrieval_model = {
|
default_retrieval_model = {
|
||||||
@ -106,10 +99,45 @@ class KnowledgeRetrievalNode(BaseNode):
|
|||||||
|
|
||||||
available_datasets.append(dataset)
|
available_datasets.append(dataset)
|
||||||
all_documents = []
|
all_documents = []
|
||||||
|
dataset_retrieval = DatasetRetrieval()
|
||||||
if node_data.retrieval_mode == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE.value:
|
if node_data.retrieval_mode == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE.value:
|
||||||
all_documents = self._single_retrieve(available_datasets, node_data, query)
|
# fetch model config
|
||||||
|
model_instance, model_config = self._fetch_model_config(node_data)
|
||||||
|
# check model is support tool calling
|
||||||
|
model_type_instance = model_config.provider_model_bundle.model_type_instance
|
||||||
|
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
||||||
|
# get model schema
|
||||||
|
model_schema = model_type_instance.get_model_schema(
|
||||||
|
model=model_config.model,
|
||||||
|
credentials=model_config.credentials
|
||||||
|
)
|
||||||
|
|
||||||
|
if model_schema:
|
||||||
|
planning_strategy = PlanningStrategy.REACT_ROUTER
|
||||||
|
features = model_schema.features
|
||||||
|
if features:
|
||||||
|
if ModelFeature.TOOL_CALL in features \
|
||||||
|
or ModelFeature.MULTI_TOOL_CALL in features:
|
||||||
|
planning_strategy = PlanningStrategy.ROUTER
|
||||||
|
all_documents = dataset_retrieval.single_retrieve(
|
||||||
|
available_datasets=available_datasets,
|
||||||
|
tenant_id=self.tenant_id,
|
||||||
|
user_id=self.user_id,
|
||||||
|
app_id=self.app_id,
|
||||||
|
user_from=self.user_from.value,
|
||||||
|
query=query,
|
||||||
|
model_config=model_config,
|
||||||
|
model_instance=model_instance,
|
||||||
|
planning_strategy=planning_strategy
|
||||||
|
)
|
||||||
elif node_data.retrieval_mode == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE.value:
|
elif node_data.retrieval_mode == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE.value:
|
||||||
all_documents = self._multiple_retrieve(available_datasets, node_data, query)
|
all_documents = dataset_retrieval.multiple_retrieve(self.app_id, self.tenant_id, self.user_id,
|
||||||
|
self.user_from.value,
|
||||||
|
available_datasets, query,
|
||||||
|
node_data.multiple_retrieval_config.top_k,
|
||||||
|
node_data.multiple_retrieval_config.score_threshold,
|
||||||
|
node_data.multiple_retrieval_config.reranking_model.provider,
|
||||||
|
node_data.multiple_retrieval_config.reranking_model.model)
|
||||||
|
|
||||||
context_list = []
|
context_list = []
|
||||||
if all_documents:
|
if all_documents:
|
||||||
@ -184,87 +212,6 @@ class KnowledgeRetrievalNode(BaseNode):
|
|||||||
variable_mapping['query'] = node_data.query_variable_selector
|
variable_mapping['query'] = node_data.query_variable_selector
|
||||||
return variable_mapping
|
return variable_mapping
|
||||||
|
|
||||||
def _single_retrieve(self, available_datasets, node_data, query):
|
|
||||||
tools = []
|
|
||||||
for dataset in available_datasets:
|
|
||||||
description = dataset.description
|
|
||||||
if not description:
|
|
||||||
description = 'useful for when you want to answer queries about the ' + dataset.name
|
|
||||||
|
|
||||||
description = description.replace('\n', '').replace('\r', '')
|
|
||||||
message_tool = PromptMessageTool(
|
|
||||||
name=dataset.id,
|
|
||||||
description=description,
|
|
||||||
parameters={
|
|
||||||
"type": "object",
|
|
||||||
"properties": {},
|
|
||||||
"required": [],
|
|
||||||
}
|
|
||||||
)
|
|
||||||
tools.append(message_tool)
|
|
||||||
# fetch model config
|
|
||||||
model_instance, model_config = self._fetch_model_config(node_data)
|
|
||||||
# check model is support tool calling
|
|
||||||
model_type_instance = model_config.provider_model_bundle.model_type_instance
|
|
||||||
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
|
||||||
# get model schema
|
|
||||||
model_schema = model_type_instance.get_model_schema(
|
|
||||||
model=model_config.model,
|
|
||||||
credentials=model_config.credentials
|
|
||||||
)
|
|
||||||
|
|
||||||
if not model_schema:
|
|
||||||
return None
|
|
||||||
planning_strategy = PlanningStrategy.REACT_ROUTER
|
|
||||||
features = model_schema.features
|
|
||||||
if features:
|
|
||||||
if ModelFeature.TOOL_CALL in features \
|
|
||||||
or ModelFeature.MULTI_TOOL_CALL in features:
|
|
||||||
planning_strategy = PlanningStrategy.ROUTER
|
|
||||||
dataset_id = None
|
|
||||||
if planning_strategy == PlanningStrategy.REACT_ROUTER:
|
|
||||||
react_multi_dataset_router = ReactMultiDatasetRouter()
|
|
||||||
dataset_id = react_multi_dataset_router.invoke(query, tools, node_data, model_config, model_instance,
|
|
||||||
self.user_id, self.tenant_id)
|
|
||||||
|
|
||||||
elif planning_strategy == PlanningStrategy.ROUTER:
|
|
||||||
function_call_router = FunctionCallMultiDatasetRouter()
|
|
||||||
dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
|
|
||||||
if dataset_id:
|
|
||||||
# get retrieval model config
|
|
||||||
dataset = db.session.query(Dataset).filter(
|
|
||||||
Dataset.id == dataset_id
|
|
||||||
).first()
|
|
||||||
if dataset:
|
|
||||||
retrieval_model_config = dataset.retrieval_model \
|
|
||||||
if dataset.retrieval_model else default_retrieval_model
|
|
||||||
|
|
||||||
# get top k
|
|
||||||
top_k = retrieval_model_config['top_k']
|
|
||||||
# get retrieval method
|
|
||||||
if dataset.indexing_technique == "economy":
|
|
||||||
retrival_method = 'keyword_search'
|
|
||||||
else:
|
|
||||||
retrival_method = retrieval_model_config['search_method']
|
|
||||||
# get reranking model
|
|
||||||
reranking_model=retrieval_model_config['reranking_model'] \
|
|
||||||
if retrieval_model_config['reranking_enable'] else None
|
|
||||||
# get score threshold
|
|
||||||
score_threshold = .0
|
|
||||||
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
|
|
||||||
if score_threshold_enabled:
|
|
||||||
score_threshold = retrieval_model_config.get("score_threshold")
|
|
||||||
|
|
||||||
results = RetrievalService.retrieve(retrival_method=retrival_method, dataset_id=dataset.id,
|
|
||||||
query=query,
|
|
||||||
top_k=top_k, score_threshold=score_threshold,
|
|
||||||
reranking_model=reranking_model)
|
|
||||||
self._on_query(query, [dataset_id])
|
|
||||||
if results:
|
|
||||||
self._on_retrival_end(results)
|
|
||||||
return results
|
|
||||||
return []
|
|
||||||
|
|
||||||
def _fetch_model_config(self, node_data: KnowledgeRetrievalNodeData) -> tuple[
|
def _fetch_model_config(self, node_data: KnowledgeRetrievalNodeData) -> tuple[
|
||||||
ModelInstance, ModelConfigWithCredentialsEntity]:
|
ModelInstance, ModelConfigWithCredentialsEntity]:
|
||||||
"""
|
"""
|
||||||
@ -335,112 +282,3 @@ class KnowledgeRetrievalNode(BaseNode):
|
|||||||
parameters=completion_params,
|
parameters=completion_params,
|
||||||
stop=stop,
|
stop=stop,
|
||||||
)
|
)
|
||||||
|
|
||||||
def _multiple_retrieve(self, available_datasets, node_data, query):
|
|
||||||
threads = []
|
|
||||||
all_documents = []
|
|
||||||
dataset_ids = [dataset.id for dataset in available_datasets]
|
|
||||||
for dataset in available_datasets:
|
|
||||||
retrieval_thread = threading.Thread(target=self._retriever, kwargs={
|
|
||||||
'flask_app': current_app._get_current_object(),
|
|
||||||
'dataset_id': dataset.id,
|
|
||||||
'query': query,
|
|
||||||
'top_k': node_data.multiple_retrieval_config.top_k,
|
|
||||||
'all_documents': all_documents,
|
|
||||||
})
|
|
||||||
threads.append(retrieval_thread)
|
|
||||||
retrieval_thread.start()
|
|
||||||
for thread in threads:
|
|
||||||
thread.join()
|
|
||||||
# do rerank for searched documents
|
|
||||||
model_manager = ModelManager()
|
|
||||||
rerank_model_instance = model_manager.get_model_instance(
|
|
||||||
tenant_id=self.tenant_id,
|
|
||||||
provider=node_data.multiple_retrieval_config.reranking_model.provider,
|
|
||||||
model_type=ModelType.RERANK,
|
|
||||||
model=node_data.multiple_retrieval_config.reranking_model.model
|
|
||||||
)
|
|
||||||
|
|
||||||
rerank_runner = RerankRunner(rerank_model_instance)
|
|
||||||
all_documents = rerank_runner.run(query, all_documents,
|
|
||||||
node_data.multiple_retrieval_config.score_threshold,
|
|
||||||
node_data.multiple_retrieval_config.top_k)
|
|
||||||
self._on_query(query, dataset_ids)
|
|
||||||
if all_documents:
|
|
||||||
self._on_retrival_end(all_documents)
|
|
||||||
return all_documents
|
|
||||||
|
|
||||||
def _on_retrival_end(self, documents: list[Document]) -> None:
|
|
||||||
"""Handle retrival end."""
|
|
||||||
for document in documents:
|
|
||||||
query = db.session.query(DocumentSegment).filter(
|
|
||||||
DocumentSegment.index_node_id == document.metadata['doc_id']
|
|
||||||
)
|
|
||||||
|
|
||||||
# if 'dataset_id' in document.metadata:
|
|
||||||
if 'dataset_id' in document.metadata:
|
|
||||||
query = query.filter(DocumentSegment.dataset_id == document.metadata['dataset_id'])
|
|
||||||
|
|
||||||
# add hit count to document segment
|
|
||||||
query.update(
|
|
||||||
{DocumentSegment.hit_count: DocumentSegment.hit_count + 1},
|
|
||||||
synchronize_session=False
|
|
||||||
)
|
|
||||||
|
|
||||||
db.session.commit()
|
|
||||||
|
|
||||||
def _on_query(self, query: str, dataset_ids: list[str]) -> None:
|
|
||||||
"""
|
|
||||||
Handle query.
|
|
||||||
"""
|
|
||||||
if not query:
|
|
||||||
return
|
|
||||||
for dataset_id in dataset_ids:
|
|
||||||
dataset_query = DatasetQuery(
|
|
||||||
dataset_id=dataset_id,
|
|
||||||
content=query,
|
|
||||||
source='app',
|
|
||||||
source_app_id=self.app_id,
|
|
||||||
created_by_role=self.user_from.value,
|
|
||||||
created_by=self.user_id
|
|
||||||
)
|
|
||||||
db.session.add(dataset_query)
|
|
||||||
db.session.commit()
|
|
||||||
|
|
||||||
def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
|
|
||||||
with flask_app.app_context():
|
|
||||||
dataset = db.session.query(Dataset).filter(
|
|
||||||
Dataset.tenant_id == self.tenant_id,
|
|
||||||
Dataset.id == dataset_id
|
|
||||||
).first()
|
|
||||||
|
|
||||||
if not dataset:
|
|
||||||
return []
|
|
||||||
|
|
||||||
# get retrieval model , if the model is not setting , using default
|
|
||||||
retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
|
|
||||||
|
|
||||||
if dataset.indexing_technique == "economy":
|
|
||||||
# use keyword table query
|
|
||||||
documents = RetrievalService.retrieve(retrival_method='keyword_search',
|
|
||||||
dataset_id=dataset.id,
|
|
||||||
query=query,
|
|
||||||
top_k=top_k
|
|
||||||
)
|
|
||||||
if documents:
|
|
||||||
all_documents.extend(documents)
|
|
||||||
else:
|
|
||||||
if top_k > 0:
|
|
||||||
# retrieval source
|
|
||||||
documents = RetrievalService.retrieve(retrival_method=retrieval_model['search_method'],
|
|
||||||
dataset_id=dataset.id,
|
|
||||||
query=query,
|
|
||||||
top_k=top_k,
|
|
||||||
score_threshold=retrieval_model['score_threshold']
|
|
||||||
if retrieval_model['score_threshold_enabled'] else None,
|
|
||||||
reranking_model=retrieval_model['reranking_model']
|
|
||||||
if retrieval_model['reranking_enable'] else None
|
|
||||||
)
|
|
||||||
|
|
||||||
all_documents.extend(documents)
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user