feat: added Anthropic Claude3 models to Google Cloud Vertex AI (#4870)

Co-authored-by: pwm <pwm@google.com>
This commit is contained in:
Pan, Wen-Ming 2024-06-04 02:52:46 +08:00 committed by GitHub
parent 696c5308a9
commit b98a1a3303
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 460 additions and 4 deletions

View File

@ -0,0 +1,56 @@
model: claude-3-haiku@20240307
label:
en_US: Claude 3 Haiku
model_type: llm
features:
- agent-thought
- vision
model_properties:
mode: chat
context_size: 200000
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
# docs: https://docs.anthropic.com/claude/docs/system-prompts
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
pricing:
input: '0.00025'
output: '0.00125'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,56 @@
model: claude-3-opus@20240229
label:
en_US: Claude 3 Opus
model_type: llm
features:
- agent-thought
- vision
model_properties:
mode: chat
context_size: 200000
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
# docs: https://docs.anthropic.com/claude/docs/system-prompts
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
pricing:
input: '0.015'
output: '0.075'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,55 @@
model: claude-3-sonnet@20240229
label:
en_US: Claude 3 Sonnet
model_type: llm
features:
- agent-thought
- vision
model_properties:
mode: chat
context_size: 200000
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
pricing:
input: '0.003'
output: '0.015'
unit: '0.001'
currency: USD

View File

@ -2,21 +2,32 @@ import base64
import json
import logging
from collections.abc import Generator
from typing import Optional, Union
from typing import Optional, Union, cast
import google.api_core.exceptions as exceptions
import vertexai.generative_models as glm
from anthropic import AnthropicVertex, Stream
from anthropic.types import (
ContentBlockDeltaEvent,
Message,
MessageDeltaEvent,
MessageStartEvent,
MessageStopEvent,
MessageStreamEvent,
)
from google.cloud import aiplatform
from google.oauth2 import service_account
from vertexai.generative_models import HarmBlockThreshold, HarmCategory
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
ImagePromptMessageContent,
PromptMessage,
PromptMessageContentType,
PromptMessageTool,
SystemPromptMessage,
TextPromptMessageContent,
ToolPromptMessage,
UserPromptMessage,
)
@ -63,9 +74,287 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
:param user: unique user id
:return: full response or stream response chunk generator result
"""
# invoke model
# invoke anthropic models via anthropic official SDK
if "claude" in model:
return self._generate_anthropic(model, credentials, prompt_messages, model_parameters, stop, stream, user)
# invoke Gemini model
return self._generate(model, credentials, prompt_messages, model_parameters, tools, stop, stream, user)
def _generate_anthropic(self, model: str, credentials: dict, prompt_messages: list[PromptMessage], model_parameters: dict,
stop: Optional[list[str]] = None, stream: bool = True, user: Optional[str] = None) -> Union[LLMResult, Generator]:
"""
Invoke Anthropic large language model
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param stop: stop words
:param stream: is stream response
:return: full response or stream response chunk generator result
"""
# use Anthropic official SDK references
# - https://github.com/anthropics/anthropic-sdk-python
project_id = credentials["vertex_project_id"]
if 'opus' in model:
location = 'us-east5'
else:
location = 'us-central1'
client = AnthropicVertex(
region=location,
project_id=project_id
)
extra_model_kwargs = {}
if stop:
extra_model_kwargs['stop_sequences'] = stop
system, prompt_message_dicts = self._convert_claude_prompt_messages(prompt_messages)
if system:
extra_model_kwargs['system'] = system
response = client.messages.create(
model=model,
messages=prompt_message_dicts,
stream=stream,
**model_parameters,
**extra_model_kwargs
)
if stream:
return self._handle_claude_stream_response(model, credentials, response, prompt_messages)
return self._handle_claude_response(model, credentials, response, prompt_messages)
def _handle_claude_response(self, model: str, credentials: dict, response: Message,
prompt_messages: list[PromptMessage]) -> LLMResult:
"""
Handle llm chat response
:param model: model name
:param credentials: credentials
:param response: response
:param prompt_messages: prompt messages
:return: full response chunk generator result
"""
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content=response.content[0].text
)
# calculate num tokens
if response.usage:
# transform usage
prompt_tokens = response.usage.input_tokens
completion_tokens = response.usage.output_tokens
else:
# calculate num tokens
prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)
completion_tokens = self.get_num_tokens(model, credentials, [assistant_prompt_message])
# transform usage
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
# transform response
response = LLMResult(
model=response.model,
prompt_messages=prompt_messages,
message=assistant_prompt_message,
usage=usage
)
return response
def _handle_claude_stream_response(self, model: str, credentials: dict, response: Stream[MessageStreamEvent],
prompt_messages: list[PromptMessage], ) -> Generator:
"""
Handle llm chat stream response
:param model: model name
:param credentials: credentials
:param response: response
:param prompt_messages: prompt messages
:return: full response or stream response chunk generator result
"""
try:
full_assistant_content = ''
return_model = None
input_tokens = 0
output_tokens = 0
finish_reason = None
index = 0
for chunk in response:
if isinstance(chunk, MessageStartEvent):
return_model = chunk.message.model
input_tokens = chunk.message.usage.input_tokens
elif isinstance(chunk, MessageDeltaEvent):
output_tokens = chunk.usage.output_tokens
finish_reason = chunk.delta.stop_reason
elif isinstance(chunk, MessageStopEvent):
usage = self._calc_response_usage(model, credentials, input_tokens, output_tokens)
yield LLMResultChunk(
model=return_model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=index + 1,
message=AssistantPromptMessage(
content=''
),
finish_reason=finish_reason,
usage=usage
)
)
elif isinstance(chunk, ContentBlockDeltaEvent):
chunk_text = chunk.delta.text if chunk.delta.text else ''
full_assistant_content += chunk_text
assistant_prompt_message = AssistantPromptMessage(
content=chunk_text if chunk_text else '',
)
index = chunk.index
yield LLMResultChunk(
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=index,
message=assistant_prompt_message,
)
)
except Exception as ex:
raise InvokeError(str(ex))
def _calc_claude_response_usage(self, model: str, credentials: dict, prompt_tokens: int, completion_tokens: int) -> LLMUsage:
"""
Calculate response usage
:param model: model name
:param credentials: model credentials
:param prompt_tokens: prompt tokens
:param completion_tokens: completion tokens
:return: usage
"""
# get prompt price info
prompt_price_info = self.get_price(
model=model,
credentials=credentials,
price_type=PriceType.INPUT,
tokens=prompt_tokens,
)
# get completion price info
completion_price_info = self.get_price(
model=model,
credentials=credentials,
price_type=PriceType.OUTPUT,
tokens=completion_tokens
)
# transform usage
usage = LLMUsage(
prompt_tokens=prompt_tokens,
prompt_unit_price=prompt_price_info.unit_price,
prompt_price_unit=prompt_price_info.unit,
prompt_price=prompt_price_info.total_amount,
completion_tokens=completion_tokens,
completion_unit_price=completion_price_info.unit_price,
completion_price_unit=completion_price_info.unit,
completion_price=completion_price_info.total_amount,
total_tokens=prompt_tokens + completion_tokens,
total_price=prompt_price_info.total_amount + completion_price_info.total_amount,
currency=prompt_price_info.currency,
latency=time.perf_counter() - self.started_at
)
return usage
def _convert_claude_prompt_messages(self, prompt_messages: list[PromptMessage]) -> tuple[str, list[dict]]:
"""
Convert prompt messages to dict list and system
"""
system = ""
first_loop = True
for message in prompt_messages:
if isinstance(message, SystemPromptMessage):
message.content=message.content.strip()
if first_loop:
system=message.content
first_loop=False
else:
system+="\n"
system+=message.content
prompt_message_dicts = []
for message in prompt_messages:
if not isinstance(message, SystemPromptMessage):
prompt_message_dicts.append(self._convert_claude_prompt_message_to_dict(message))
return system, prompt_message_dicts
def _convert_claude_prompt_message_to_dict(self, message: PromptMessage) -> dict:
"""
Convert PromptMessage to dict
"""
if isinstance(message, UserPromptMessage):
message = cast(UserPromptMessage, message)
if isinstance(message.content, str):
message_dict = {"role": "user", "content": message.content}
else:
sub_messages = []
for message_content in message.content:
if message_content.type == PromptMessageContentType.TEXT:
message_content = cast(TextPromptMessageContent, message_content)
sub_message_dict = {
"type": "text",
"text": message_content.data
}
sub_messages.append(sub_message_dict)
elif message_content.type == PromptMessageContentType.IMAGE:
message_content = cast(ImagePromptMessageContent, message_content)
if not message_content.data.startswith("data:"):
# fetch image data from url
try:
image_content = requests.get(message_content.data).content
mime_type, _ = mimetypes.guess_type(message_content.data)
base64_data = base64.b64encode(image_content).decode('utf-8')
except Exception as ex:
raise ValueError(f"Failed to fetch image data from url {message_content.data}, {ex}")
else:
data_split = message_content.data.split(";base64,")
mime_type = data_split[0].replace("data:", "")
base64_data = data_split[1]
if mime_type not in ["image/jpeg", "image/png", "image/gif", "image/webp"]:
raise ValueError(f"Unsupported image type {mime_type}, "
f"only support image/jpeg, image/png, image/gif, and image/webp")
sub_message_dict = {
"type": "image",
"source": {
"type": "base64",
"media_type": mime_type,
"data": base64_data
}
}
sub_messages.append(sub_message_dict)
message_dict = {"role": "user", "content": sub_messages}
elif isinstance(message, AssistantPromptMessage):
message = cast(AssistantPromptMessage, message)
message_dict = {"role": "assistant", "content": message.content}
elif isinstance(message, SystemPromptMessage):
message = cast(SystemPromptMessage, message)
message_dict = {"role": "system", "content": message.content}
else:
raise ValueError(f"Got unknown type {message}")
return message_dict
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
tools: Optional[list[PromptMessageTool]] = None) -> int:
"""