From c4d8bdc3dbb8f84239ef3f9676a544685494e97c Mon Sep 17 00:00:00 2001 From: takatost Date: Sat, 9 Sep 2023 00:29:48 +0800 Subject: [PATCH] fix: hf hosted inference check (#1128) --- .../models/llm/huggingface_hub_model.py | 8 ++- .../providers/huggingface_hub_provider.py | 3 +- .../langchain/llms/huggingface_hub_llm.py | 62 +++++++++++++++++++ 3 files changed, 69 insertions(+), 4 deletions(-) create mode 100644 api/core/third_party/langchain/llms/huggingface_hub_llm.py diff --git a/api/core/model_providers/models/llm/huggingface_hub_model.py b/api/core/model_providers/models/llm/huggingface_hub_model.py index e42b597f0b..3eae369fe9 100644 --- a/api/core/model_providers/models/llm/huggingface_hub_model.py +++ b/api/core/model_providers/models/llm/huggingface_hub_model.py @@ -1,6 +1,5 @@ from typing import List, Optional, Any -from langchain import HuggingFaceHub from langchain.callbacks.manager import Callbacks from langchain.schema import LLMResult @@ -9,6 +8,7 @@ from core.model_providers.models.llm.base import BaseLLM from core.model_providers.models.entity.message import PromptMessage from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs from core.third_party.langchain.llms.huggingface_endpoint_llm import HuggingFaceEndpointLLM +from core.third_party.langchain.llms.huggingface_hub_llm import HuggingFaceHubLLM class HuggingfaceHubModel(BaseLLM): @@ -31,7 +31,7 @@ class HuggingfaceHubModel(BaseLLM): streaming=streaming ) else: - client = HuggingFaceHub( + client = HuggingFaceHubLLM( repo_id=self.name, task=self.credentials['task_type'], model_kwargs=provider_model_kwargs, @@ -88,4 +88,6 @@ class HuggingfaceHubModel(BaseLLM): if 'baichuan' in self.name.lower(): return False - return True + return True + else: + return False diff --git a/api/core/model_providers/providers/huggingface_hub_provider.py b/api/core/model_providers/providers/huggingface_hub_provider.py index 0105831136..f033a28963 100644 --- a/api/core/model_providers/providers/huggingface_hub_provider.py +++ b/api/core/model_providers/providers/huggingface_hub_provider.py @@ -89,7 +89,8 @@ class HuggingfaceHubProvider(BaseModelProvider): raise CredentialsValidateFailedError('Task Type must be provided.') if credentials['task_type'] not in ("text2text-generation", "text-generation", "summarization"): - raise CredentialsValidateFailedError('Task Type must be one of text2text-generation, text-generation, summarization.') + raise CredentialsValidateFailedError('Task Type must be one of text2text-generation, ' + 'text-generation, summarization.') try: llm = HuggingFaceEndpointLLM( diff --git a/api/core/third_party/langchain/llms/huggingface_hub_llm.py b/api/core/third_party/langchain/llms/huggingface_hub_llm.py new file mode 100644 index 0000000000..4e8a2e3446 --- /dev/null +++ b/api/core/third_party/langchain/llms/huggingface_hub_llm.py @@ -0,0 +1,62 @@ +from typing import Dict, Optional, List, Any + +from huggingface_hub import HfApi, InferenceApi +from langchain import HuggingFaceHub +from langchain.callbacks.manager import CallbackManagerForLLMRun +from langchain.llms.huggingface_hub import VALID_TASKS +from pydantic import root_validator + +from langchain.utils import get_from_dict_or_env + + +class HuggingFaceHubLLM(HuggingFaceHub): + """HuggingFaceHub models. + + To use, you should have the ``huggingface_hub`` python package installed, and the + environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass + it as a named parameter to the constructor. + + Only supports `text-generation`, `text2text-generation` and `summarization` for now. + + Example: + .. code-block:: python + + from langchain.llms import HuggingFaceHub + hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key") + """ + + @root_validator() + def validate_environment(cls, values: Dict) -> Dict: + """Validate that api key and python package exists in environment.""" + huggingfacehub_api_token = get_from_dict_or_env( + values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN" + ) + client = InferenceApi( + repo_id=values["repo_id"], + token=huggingfacehub_api_token, + task=values.get("task"), + ) + client.options = {"wait_for_model": False, "use_gpu": False} + values["client"] = client + return values + + def _call( + self, + prompt: str, + stop: Optional[List[str]] = None, + run_manager: Optional[CallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> str: + hfapi = HfApi(token=self.huggingfacehub_api_token) + model_info = hfapi.model_info(repo_id=self.repo_id) + if not model_info: + raise ValueError(f"Model {self.repo_id} not found.") + + if 'inference' in model_info.cardData and not model_info.cardData['inference']: + raise ValueError(f"Inference API has been turned off for this model {self.repo_id}.") + + if model_info.pipeline_tag not in VALID_TASKS: + raise ValueError(f"Model {self.repo_id} is not a valid task, " + f"must be one of {VALID_TASKS}.") + + return super()._call(prompt, stop, run_manager, **kwargs)