diff --git a/CONTRIBUTING_CN.md b/CONTRIBUTING_CN.md index 7cd2bb60eb..310c55090a 100644 --- a/CONTRIBUTING_CN.md +++ b/CONTRIBUTING_CN.md @@ -36,7 +36,7 @@ | 被团队成员标记为高优先级的功能 | 高优先级 | | 在 [community feedback board](https://github.com/langgenius/dify/discussions/categories/feedbacks) 内反馈的常见功能请求 | 中等优先级 | | 非核心功能和小幅改进 | 低优先级 | - | 有价值当不紧急 | 未来功能 | + | 有价值但不紧急 | 未来功能 | ### 其他任何事情(例如 bug 报告、性能优化、拼写错误更正): * 立即开始编码。 @@ -138,7 +138,7 @@ Dify 的后端使用 Python 编写,使用 [Flask](https://flask.palletsproject ├── models // 描述数据模型和 API 响应的形状 ├── public // 如 favicon 等元资源 ├── service // 定义 API 操作的形状 -├── test +├── test ├── types // 函数参数和返回值的描述 └── utils // 共享的实用函数 ``` diff --git a/api/core/model_runtime/model_providers/jina/text_embedding/text_embedding.py b/api/core/model_runtime/model_providers/jina/text_embedding/text_embedding.py index 5033f0f748..ceb79567d5 100644 --- a/api/core/model_runtime/model_providers/jina/text_embedding/text_embedding.py +++ b/api/core/model_runtime/model_providers/jina/text_embedding/text_embedding.py @@ -57,7 +57,7 @@ class JinaTextEmbeddingModel(TextEmbeddingModel): data = {"model": model, "input": [transform_jina_input_text(model, text) for text in texts]} if model == "jina-embeddings-v3": - data["task_type"] = "retrieval.passage" + data["task"] = "text-matching" try: response = post(url, headers=headers, data=dumps(data)) diff --git a/api/core/model_runtime/model_providers/openai/llm/gpt-3.5-turbo-0613.yaml b/api/core/model_runtime/model_providers/openai/llm/gpt-3.5-turbo-0613.yaml index 31dc53e89f..a1ad07d712 100644 --- a/api/core/model_runtime/model_providers/openai/llm/gpt-3.5-turbo-0613.yaml +++ b/api/core/model_runtime/model_providers/openai/llm/gpt-3.5-turbo-0613.yaml @@ -31,3 +31,4 @@ pricing: output: '0.002' unit: '0.001' currency: USD +deprecated: true diff --git a/api/core/model_runtime/model_providers/openai/llm/gpt-3.5-turbo-16k-0613.yaml b/api/core/model_runtime/model_providers/openai/llm/gpt-3.5-turbo-16k-0613.yaml index 4a0e2ef191..4e30279284 100644 --- a/api/core/model_runtime/model_providers/openai/llm/gpt-3.5-turbo-16k-0613.yaml +++ b/api/core/model_runtime/model_providers/openai/llm/gpt-3.5-turbo-16k-0613.yaml @@ -31,3 +31,4 @@ pricing: output: '0.004' unit: '0.001' currency: USD +deprecated: true diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen-max-0107.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen-max-0107.yaml new file mode 100644 index 0000000000..7c90afecf5 --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen-max-0107.yaml @@ -0,0 +1,81 @@ +model: qwen-max-0107 +label: + en_US: qwen-max-0107 +model_type: llm +features: + - multi-tool-call + - agent-thought + - stream-tool-call +model_properties: + mode: chat + context_size: 8192 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 2000 + min: 1 + max: 2000 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.04' + output: '0.12' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen-max-1201.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen-max-1201.yaml index 0368a4a01e..dc234783cd 100644 --- a/api/core/model_runtime/model_providers/tongyi/llm/qwen-max-1201.yaml +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen-max-1201.yaml @@ -79,3 +79,4 @@ pricing: output: '0.12' unit: '0.001' currency: RMB +deprecated: true diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen-plus-0206.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen-plus-0206.yaml new file mode 100644 index 0000000000..7940be9e8b --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen-plus-0206.yaml @@ -0,0 +1,79 @@ +model: qwen-plus-0206 +label: + en_US: qwen-plus-0206 +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 32768 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 2000 + min: 1 + max: 2000 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.004' + output: '0.012' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen-plus-0624.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen-plus-0624.yaml new file mode 100644 index 0000000000..0e02526beb --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen-plus-0624.yaml @@ -0,0 +1,79 @@ +model: qwen-plus-0624 +label: + en_US: qwen-plus-0624 +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 32768 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 2000 + min: 1 + max: 2000 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.004' + output: '0.012' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen-plus-0723.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen-plus-0723.yaml new file mode 100644 index 0000000000..65175f1b10 --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen-plus-0723.yaml @@ -0,0 +1,79 @@ +model: qwen-plus-0806 +label: + en_US: qwen-plus-0806 +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 32768 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 2000 + min: 1 + max: 2000 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.004' + output: '0.012' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen-plus-0806.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen-plus-0806.yaml new file mode 100644 index 0000000000..1c530dcba2 --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen-plus-0806.yaml @@ -0,0 +1,79 @@ +model: qwen-plus-0806 +label: + en_US: qwen-plus-0806 +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 131072 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 2000 + min: 1 + max: 2000 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.004' + output: '0.012' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen-plus.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen-plus.yaml index 4be78627f0..e78b77c7f2 100644 --- a/api/core/model_runtime/model_providers/tongyi/llm/qwen-plus.yaml +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen-plus.yaml @@ -6,7 +6,7 @@ features: - agent-thought model_properties: mode: completion - context_size: 32768 + context_size: 131072 parameter_rules: - name: temperature use_template: temperature diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen-turbo-0206.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen-turbo-0206.yaml new file mode 100644 index 0000000000..2c9857cf9f --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen-turbo-0206.yaml @@ -0,0 +1,79 @@ +model: qwen-turbo-0206 +label: + en_US: qwen-turbo-0206 +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 8192 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 1500 + min: 1 + max: 1500 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.002' + output: '0.006' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen-turbo-0624.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen-turbo-0624.yaml new file mode 100644 index 0000000000..7ea5afc795 --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen-turbo-0624.yaml @@ -0,0 +1,79 @@ +model: qwen-turbo-0624 +label: + en_US: qwen-turbo-0624 +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 8192 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 1500 + min: 1 + max: 1500 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.002' + output: '0.006' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-max-0201.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-max-0201.yaml new file mode 100644 index 0000000000..fffd732ca5 --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-max-0201.yaml @@ -0,0 +1,47 @@ +model: qwen-vl-max-0201 +label: + en_US: qwen-vl-max-0201 +model_type: llm +features: + - vision + - agent-thought +model_properties: + mode: chat + context_size: 8192 +parameter_rules: + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: response_format + use_template: response_format +pricing: + input: '0.02' + output: '0.02' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-max-0809.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-max-0809.yaml new file mode 100644 index 0000000000..af8742b981 --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-max-0809.yaml @@ -0,0 +1,47 @@ +model: qwen-vl-max-0809 +label: + en_US: qwen-vl-max-0809 +model_type: llm +features: + - vision + - agent-thought +model_properties: + mode: chat + context_size: 32768 +parameter_rules: + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: response_format + use_template: response_format +pricing: + input: '0.02' + output: '0.02' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-max.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-max.yaml index f917ccaa5d..a93d456428 100644 --- a/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-max.yaml +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-max.yaml @@ -7,7 +7,7 @@ features: - agent-thought model_properties: mode: chat - context_size: 8192 + context_size: 32768 parameter_rules: - name: top_p use_template: top_p diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-plus-0809.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-plus-0809.yaml new file mode 100644 index 0000000000..12573511b9 --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-plus-0809.yaml @@ -0,0 +1,47 @@ +model: qwen-vl-plus-0809 +label: + en_US: qwen-vl-plus-0809 +model_type: llm +features: + - vision + - agent-thought +model_properties: + mode: chat + context_size: 32768 +parameter_rules: + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: response_format + use_template: response_format +pricing: + input: '0.008' + output: '0.008' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-plus.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-plus.yaml index e2dd8c4e57..13468c44ee 100644 --- a/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-plus.yaml +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen-vl-plus.yaml @@ -7,7 +7,7 @@ features: - agent-thought model_properties: mode: chat - context_size: 32768 + context_size: 8192 parameter_rules: - name: top_p use_template: top_p diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen2-math-1.5b-instruct.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen2-math-1.5b-instruct.yaml new file mode 100644 index 0000000000..8b204ff1f0 --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen2-math-1.5b-instruct.yaml @@ -0,0 +1,79 @@ +model: qwen2-math-1.5b-instruct +label: + en_US: qwen2-math-1.5b-instruct +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 4096 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 2000 + min: 1 + max: 2000 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.004' + output: '0.012' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen2-math-72b-instruct.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen2-math-72b-instruct.yaml new file mode 100644 index 0000000000..3875a274e7 --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen2-math-72b-instruct.yaml @@ -0,0 +1,79 @@ +model: qwen2-math-72b-instruct +label: + en_US: qwen2-math-72b-instruct +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 4096 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 2000 + min: 1 + max: 2000 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.004' + output: '0.012' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen2-math-7b-instruct.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen2-math-7b-instruct.yaml new file mode 100644 index 0000000000..0920806845 --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen2-math-7b-instruct.yaml @@ -0,0 +1,79 @@ +model: qwen2-math-7b-instruct +label: + en_US: qwen2-math-7b-instruct +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 4096 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 2000 + min: 1 + max: 2000 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.004' + output: '0.012' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-0.5b-instruct.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-0.5b-instruct.yaml new file mode 100644 index 0000000000..824954323b --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-0.5b-instruct.yaml @@ -0,0 +1,79 @@ +model: qwen2.5-0.5b-instruct +label: + en_US: qwen2.5-0.5b-instruct +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 32768 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 8192 + min: 1 + max: 8192 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.000' + output: '0.000' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-1.5b-instruct.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-1.5b-instruct.yaml new file mode 100644 index 0000000000..c0a4b45be6 --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-1.5b-instruct.yaml @@ -0,0 +1,79 @@ +model: qwen2.5-1.5b-instruct +label: + en_US: qwen2.5-1.5b-instruct +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 32768 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 8192 + min: 1 + max: 8192 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.000' + output: '0.000' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-14b-instruct.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-14b-instruct.yaml new file mode 100644 index 0000000000..92b67804e8 --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-14b-instruct.yaml @@ -0,0 +1,79 @@ +model: qwen2.5-14b-instruct +label: + en_US: qwen2.5-14b-instruct +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 131072 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 8192 + min: 1 + max: 8192 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.002' + output: '0.006' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-32b-instruct.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-32b-instruct.yaml new file mode 100644 index 0000000000..960438e3e7 --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-32b-instruct.yaml @@ -0,0 +1,79 @@ +model: qwen2.5-32b-instruct +label: + en_US: qwen2.5-32b-instruct +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 131072 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 8192 + min: 1 + max: 8192 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.0035' + output: '0.007' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-3b-instruct.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-3b-instruct.yaml new file mode 100644 index 0000000000..59a8827d9e --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-3b-instruct.yaml @@ -0,0 +1,79 @@ +model: qwen2.5-3b-instruct +label: + en_US: qwen2.5-3b-instruct +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 32768 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 8192 + min: 1 + max: 8192 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.000' + output: '0.000' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-72b-instruct.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-72b-instruct.yaml new file mode 100644 index 0000000000..f14ee2daff --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-72b-instruct.yaml @@ -0,0 +1,79 @@ +model: qwen2.5-72b-instruct +label: + en_US: qwen2.5-72b-instruct +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 131072 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 8192 + min: 1 + max: 8192 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.004' + output: '0.012' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-7b-instruct.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-7b-instruct.yaml new file mode 100644 index 0000000000..8ea8166358 --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-7b-instruct.yaml @@ -0,0 +1,79 @@ +model: qwen2.5-7b-instruct +label: + en_US: qwen2.5-7b-instruct +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 131072 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 8192 + min: 1 + max: 8192 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.001' + output: '0.002' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-coder-7b-instruct.yaml b/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-coder-7b-instruct.yaml new file mode 100644 index 0000000000..8ea8166358 --- /dev/null +++ b/api/core/model_runtime/model_providers/tongyi/llm/qwen2.5-coder-7b-instruct.yaml @@ -0,0 +1,79 @@ +model: qwen2.5-7b-instruct +label: + en_US: qwen2.5-7b-instruct +model_type: llm +features: + - agent-thought +model_properties: + mode: completion + context_size: 131072 +parameter_rules: + - name: temperature + use_template: temperature + type: float + default: 0.3 + min: 0.0 + max: 2.0 + help: + zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 + en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain. + - name: max_tokens + use_template: max_tokens + type: int + default: 8192 + min: 1 + max: 8192 + help: + zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。 + en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time. + - name: top_p + use_template: top_p + type: float + default: 0.8 + min: 0.1 + max: 0.9 + help: + zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 + en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated. + - name: top_k + type: int + min: 0 + max: 99 + label: + zh_Hans: 取样数量 + en_US: Top k + help: + zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。 + en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. + - name: seed + required: false + type: int + default: 1234 + label: + zh_Hans: 随机种子 + en_US: Random seed + help: + zh_Hans: 生成时使用的随机数种子,用户控制模型生成内容的随机性。支持无符号64位整数,默认值为 1234。在使用seed时,模型将尽可能生成相同或相似的结果,但目前不保证每次生成的结果完全相同。 + en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time. + - name: repetition_penalty + required: false + type: float + default: 1.1 + label: + en_US: Repetition penalty + help: + zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。 + en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment. + - name: enable_search + type: boolean + default: false + help: + zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。 + en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic. + - name: response_format + use_template: response_format +pricing: + input: '0.001' + output: '0.002' + unit: '0.001' + currency: RMB diff --git a/api/core/model_runtime/model_providers/tongyi/tongyi.yaml b/api/core/model_runtime/model_providers/tongyi/tongyi.yaml index b251391e34..de2c289c94 100644 --- a/api/core/model_runtime/model_providers/tongyi/tongyi.yaml +++ b/api/core/model_runtime/model_providers/tongyi/tongyi.yaml @@ -11,9 +11,9 @@ background: "#EFF1FE" help: title: en_US: Get your API key from AliCloud - zh_Hans: 从阿里云获取 API Key + zh_Hans: 从阿里云百炼获取 API Key url: - en_US: https://dashscope.console.aliyun.com/api-key_management + en_US: https://bailian.console.aliyun.com/?apiKey=1#/api-key supported_model_types: - llm - tts diff --git a/api/core/tools/provider/builtin/comfyui/tools/comfyui_stable_diffusion.py b/api/core/tools/provider/builtin/comfyui/tools/comfyui_stable_diffusion.py index b9b52c0b4d..81fc8cc985 100644 --- a/api/core/tools/provider/builtin/comfyui/tools/comfyui_stable_diffusion.py +++ b/api/core/tools/provider/builtin/comfyui/tools/comfyui_stable_diffusion.py @@ -290,7 +290,7 @@ class ComfyuiStableDiffusionTool(BuiltinTool): draw_options["6"]["inputs"]["text"] = prompt draw_options["7"]["inputs"]["text"] = negative_prompt # if the model is SD3 or FLUX series, the Latent class should be corresponding to SD3 Latent - if model_type in (ModelType.SD3.name, ModelType.FLUX.name): + if model_type in {ModelType.SD3.name, ModelType.FLUX.name}: draw_options["5"]["class_type"] = "EmptySD3LatentImage" if lora_list: diff --git a/api/core/workflow/graph_engine/graph_engine.py b/api/core/workflow/graph_engine/graph_engine.py index 1db9b690ab..57e4f716fd 100644 --- a/api/core/workflow/graph_engine/graph_engine.py +++ b/api/core/workflow/graph_engine/graph_engine.py @@ -61,6 +61,9 @@ class GraphEngineThreadPool(ThreadPoolExecutor): return super().submit(fn, *args, **kwargs) + def task_done_callback(self, future): + self.submit_count -= 1 + def check_is_full(self) -> None: print(f"submit_count: {self.submit_count}, max_submit_count: {self.max_submit_count}") if self.submit_count > self.max_submit_count: @@ -426,20 +429,22 @@ class GraphEngine: ): continue - futures.append( - self.thread_pool.submit( - self._run_parallel_node, - **{ - "flask_app": current_app._get_current_object(), # type: ignore[attr-defined] - "q": q, - "parallel_id": parallel_id, - "parallel_start_node_id": edge.target_node_id, - "parent_parallel_id": in_parallel_id, - "parent_parallel_start_node_id": parallel_start_node_id, - }, - ) + future = self.thread_pool.submit( + self._run_parallel_node, + **{ + "flask_app": current_app._get_current_object(), # type: ignore[attr-defined] + "q": q, + "parallel_id": parallel_id, + "parallel_start_node_id": edge.target_node_id, + "parent_parallel_id": in_parallel_id, + "parent_parallel_start_node_id": parallel_start_node_id, + }, ) + future.add_done_callback(self.thread_pool.task_done_callback) + + futures.append(future) + succeeded_count = 0 while True: try: diff --git a/api/poetry.lock b/api/poetry.lock index 191db600e4..28c688cc9c 100644 --- a/api/poetry.lock +++ b/api/poetry.lock @@ -2296,18 +2296,18 @@ files = [ [[package]] name = "duckduckgo-search" -version = "6.2.11" +version = "6.2.12" description = "Search for words, documents, images, news, maps and text translation using the DuckDuckGo.com search engine." optional = false python-versions = ">=3.8" files = [ - {file = "duckduckgo_search-6.2.11-py3-none-any.whl", hash = "sha256:6fb7069b79e8928f487001de6859034ade19201bdcd257ec198802430e374bfe"}, - {file = "duckduckgo_search-6.2.11.tar.gz", hash = "sha256:6b6ef1b552c5e67f23e252025d2504caf6f9fc14f70e86c6dd512200f386c673"}, + {file = "duckduckgo_search-6.2.12-py3-none-any.whl", hash = "sha256:0d379c1f845b632a41553efb13d571788f19ad289229e641a27b5710d92097a6"}, + {file = "duckduckgo_search-6.2.12.tar.gz", hash = "sha256:04f9f1459763668d268344c7a32d943173d0e060dad53a5c2df4b4d3ca9a74cf"}, ] [package.dependencies] click = ">=8.1.7" -primp = ">=0.6.1" +primp = ">=0.6.2" [package.extras] dev = ["mypy (>=1.11.1)", "pytest (>=8.3.1)", "pytest-asyncio (>=0.23.8)", "ruff (>=0.6.1)"] @@ -6356,19 +6356,19 @@ dill = ["dill (>=0.3.8)"] [[package]] name = "primp" -version = "0.6.1" +version = "0.6.2" description = "HTTP client that can impersonate web browsers, mimicking their headers and `TLS/JA3/JA4/HTTP2` fingerprints" optional = false python-versions = ">=3.8" files = [ - {file = "primp-0.6.1-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:60cfe95e0bdf154b0f9036d38acaddc9aef02d6723ed125839b01449672d3946"}, - {file = "primp-0.6.1-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:e1e92433ecf32639f9e800bc3a5d58b03792bdec99421b7fb06500e2fae63c85"}, - {file = "primp-0.6.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e02353f13f07fb5a6f91df9e2f4d8ec9f41312de95088744dce1c9729a3865d"}, - {file = "primp-0.6.1-cp38-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:c5a2ccfdf488b17be225a529a31e2b22724b2e22fba8e1ae168a222f857c2dc0"}, - {file = "primp-0.6.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:f335c2ace907800a23bbb7bc6e15acc7fff659b86a2d5858817f6ed79cea07cf"}, - {file = "primp-0.6.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:5dc15bd9d47ded7bc356fcb5d8321972dcbeba18e7d3b7250e12bb7365447b2b"}, - {file = "primp-0.6.1-cp38-abi3-win_amd64.whl", hash = "sha256:eebf0412ebba4089547b16b97b765d83f69f1433d811bb02b02cdcdbca20f672"}, - {file = "primp-0.6.1.tar.gz", hash = "sha256:64b3c12e3d463a887518811c46f3ec37cca02e6af1ddf1287e548342de436301"}, + {file = "primp-0.6.2-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:4a35d441462a55d9a9525bf170e2ffd2fcb3db6039b23e802859fa22c18cdd51"}, + {file = "primp-0.6.2-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:f67ccade95bdbca3cf9b96b93aa53f9617d85ddbf988da4e9c523aa785fd2d54"}, + {file = "primp-0.6.2-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8074b93befaf36567e4cf3d4a1a8cd6ab9cc6e4dd4ff710650678daa405aee71"}, + {file = "primp-0.6.2-cp38-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:7d3e2a3f8c6262e9b883651b79c4ff2b7677a76f47293a139f541c9ea333ce3b"}, + {file = "primp-0.6.2-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:a460ea389371c6d04839b4b50b5805d99da8ebe281a2e8b534d27377c6d44f0e"}, + {file = "primp-0.6.2-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:5b6b27e89d3c05c811aff0e4fde7a36d6957b15b3112f4ce28b6b99e8ca1e725"}, + {file = "primp-0.6.2-cp38-abi3-win_amd64.whl", hash = "sha256:1006a40a85f88a4c5222094813a1ebc01f85a63e9a33d2c443288c0720bed321"}, + {file = "primp-0.6.2.tar.gz", hash = "sha256:5a96a6b65195a8a989157e67d23bd171c49be238654e02bdf1b1fda36cbcc068"}, ] [package.extras] diff --git a/web/.husky/pre-commit b/web/.husky/pre-commit index 6df8b24b61..d9290e1853 100755 --- a/web/.husky/pre-commit +++ b/web/.husky/pre-commit @@ -51,5 +51,32 @@ if $web_modified; then echo "Running ESLint on web module" cd ./web || exit 1 npx lint-staged + + echo "Running unit tests check" + modified_files=$(git diff --cached --name-only -- utils | grep -v '\.spec\.ts$' || true) + + if [ -n "$modified_files" ]; then + for file in $modified_files; do + test_file="${file%.*}.spec.ts" + echo "Checking for test file: $test_file" + + # check if the test file exists + if [ -f "../$test_file" ]; then + echo "Detected changes in $file, running corresponding unit tests..." + npm run test "../$test_file" + + if [ $? -ne 0 ]; then + echo "Unit tests failed. Please fix the errors before committing." + exit 1 + fi + echo "Unit tests for $file passed." + else + echo "Warning: $file does not have a corresponding test file." + fi + + done + echo "All unit tests for modified web/utils files have passed." + fi + cd ../ fi diff --git a/web/README.md b/web/README.md index 867d822e27..a84ef21007 100644 --- a/web/README.md +++ b/web/README.md @@ -18,6 +18,10 @@ yarn install --frozen-lockfile Then, configure the environment variables. Create a file named `.env.local` in the current directory and copy the contents from `.env.example`. Modify the values of these environment variables according to your requirements: +```bash +cp .env.example .env.local +``` + ``` # For production release, change this to PRODUCTION NEXT_PUBLIC_DEPLOY_ENV=DEVELOPMENT @@ -78,7 +82,7 @@ If your IDE is VSCode, rename `web/.vscode/settings.example.json` to `web/.vscod We start to use [Jest](https://jestjs.io/) and [React Testing Library](https://testing-library.com/docs/react-testing-library/intro/) for Unit Testing. -You can create a test file with a suffix of `.spec` beside the file that to be tested. For example, if you want to test a file named `util.ts`. The test file name should be `util.spec.ts`. +You can create a test file with a suffix of `.spec` beside the file that to be tested. For example, if you want to test a file named `util.ts`. The test file name should be `util.spec.ts`. Run test: diff --git a/web/app/(commonLayout)/app/(appDetailLayout)/[appId]/layout.tsx b/web/app/(commonLayout)/app/(appDetailLayout)/[appId]/layout.tsx index e728749b85..96ee874d53 100644 --- a/web/app/(commonLayout)/app/(appDetailLayout)/[appId]/layout.tsx +++ b/web/app/(commonLayout)/app/(appDetailLayout)/[appId]/layout.tsx @@ -109,6 +109,11 @@ const AppDetailLayout: FC = (props) => { setAppDetail() fetchAppDetail({ url: '/apps', id: appId }).then((res) => { // redirection + const canIEditApp = isCurrentWorkspaceEditor + if (!canIEditApp && (pathname.endsWith('configuration') || pathname.endsWith('workflow') || pathname.endsWith('logs'))) { + router.replace(`/app/${appId}/overview`) + return + } if ((res.mode === 'workflow' || res.mode === 'advanced-chat') && (pathname).endsWith('configuration')) { router.replace(`/app/${appId}/workflow`) } @@ -118,7 +123,7 @@ const AppDetailLayout: FC = (props) => { else { setAppDetail({ ...res, enable_sso: false }) setNavigation(getNavigations(appId, isCurrentWorkspaceEditor, res.mode)) - if (systemFeatures.enable_web_sso_switch_component) { + if (systemFeatures.enable_web_sso_switch_component && canIEditApp) { fetchAppSSO({ appId }).then((ssoRes) => { setAppDetail({ ...res, enable_sso: ssoRes.enabled }) }) @@ -128,7 +133,7 @@ const AppDetailLayout: FC = (props) => { if (e.status === 404) router.replace('/apps') }) - }, [appId, isCurrentWorkspaceEditor, systemFeatures]) + }, [appId, isCurrentWorkspaceEditor, systemFeatures, getNavigations, pathname, router, setAppDetail]) useUnmount(() => { setAppDetail() diff --git a/web/app/components/app/overview/settings/index.tsx b/web/app/components/app/overview/settings/index.tsx index 14eaed4e2c..a8ab456f43 100644 --- a/web/app/components/app/overview/settings/index.tsx +++ b/web/app/components/app/overview/settings/index.tsx @@ -18,7 +18,7 @@ import type { AppIconType, AppSSO, Language } from '@/types/app' import { useToastContext } from '@/app/components/base/toast' import { languages } from '@/i18n/language' import Tooltip from '@/app/components/base/tooltip' -import AppContext from '@/context/app-context' +import AppContext, { useAppContext } from '@/context/app-context' import type { AppIconSelection } from '@/app/components/base/app-icon-picker' import AppIconPicker from '@/app/components/base/app-icon-picker' @@ -59,6 +59,7 @@ const SettingsModal: FC = ({ onSave, }) => { const systemFeatures = useContextSelector(AppContext, state => state.systemFeatures) + const { isCurrentWorkspaceEditor } = useAppContext() const { notify } = useToastContext() const [isShowMore, setIsShowMore] = useState(false) const { @@ -272,7 +273,7 @@ const SettingsModal: FC = ({ } asChild={false} > - setInputInfo({ ...inputInfo, enable_sso: v })}> + setInputInfo({ ...inputInfo, enable_sso: v })}>

{t(`${prefixSettings}.sso.description`)}

diff --git a/web/utils/format.spec.ts b/web/utils/format.spec.ts new file mode 100644 index 0000000000..f349efa4e4 --- /dev/null +++ b/web/utils/format.spec.ts @@ -0,0 +1,61 @@ +import { formatFileSize, formatNumber, formatTime } from './format' +describe('formatNumber', () => { + test('should correctly format integers', () => { + expect(formatNumber(1234567)).toBe('1,234,567') + }) + test('should correctly format decimals', () => { + expect(formatNumber(1234567.89)).toBe('1,234,567.89') + }) + test('should correctly handle string input', () => { + expect(formatNumber('1234567')).toBe('1,234,567') + }) + test('should correctly handle zero', () => { + expect(formatNumber(0)).toBe(0) + }) + test('should correctly handle negative numbers', () => { + expect(formatNumber(-1234567)).toBe('-1,234,567') + }) + test('should correctly handle empty input', () => { + expect(formatNumber('')).toBe('') + }) +}) +describe('formatFileSize', () => { + test('should return the input if it is falsy', () => { + expect(formatFileSize(0)).toBe(0) + }) + test('should format bytes correctly', () => { + expect(formatFileSize(500)).toBe('500.00B') + }) + test('should format kilobytes correctly', () => { + expect(formatFileSize(1500)).toBe('1.46KB') + }) + test('should format megabytes correctly', () => { + expect(formatFileSize(1500000)).toBe('1.43MB') + }) + test('should format gigabytes correctly', () => { + expect(formatFileSize(1500000000)).toBe('1.40GB') + }) + test('should format terabytes correctly', () => { + expect(formatFileSize(1500000000000)).toBe('1.36TB') + }) + test('should format petabytes correctly', () => { + expect(formatFileSize(1500000000000000)).toBe('1.33PB') + }) +}) +describe('formatTime', () => { + test('should return the input if it is falsy', () => { + expect(formatTime(0)).toBe(0) + }) + test('should format seconds correctly', () => { + expect(formatTime(30)).toBe('30.00 sec') + }) + test('should format minutes correctly', () => { + expect(formatTime(90)).toBe('1.50 min') + }) + test('should format hours correctly', () => { + expect(formatTime(3600)).toBe('1.00 h') + }) + test('should handle large numbers', () => { + expect(formatTime(7200)).toBe('2.00 h') + }) +})