mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-14 07:05:56 +08:00
Add support of tool-call for model provider "hunyuan" (#6656)
Co-authored-by: sun <sun@centen.cn>
This commit is contained in:
parent
585444c50c
commit
ca696fe94c
@ -14,6 +14,7 @@ from core.model_runtime.entities.message_entities import (
|
|||||||
PromptMessage,
|
PromptMessage,
|
||||||
PromptMessageTool,
|
PromptMessageTool,
|
||||||
SystemPromptMessage,
|
SystemPromptMessage,
|
||||||
|
ToolPromptMessage,
|
||||||
UserPromptMessage,
|
UserPromptMessage,
|
||||||
)
|
)
|
||||||
from core.model_runtime.errors.invoke import InvokeError
|
from core.model_runtime.errors.invoke import InvokeError
|
||||||
@ -44,6 +45,17 @@ class HunyuanLargeLanguageModel(LargeLanguageModel):
|
|||||||
"Stream": stream,
|
"Stream": stream,
|
||||||
**custom_parameters,
|
**custom_parameters,
|
||||||
}
|
}
|
||||||
|
# add Tools and ToolChoice
|
||||||
|
if (tools and len(tools) > 0):
|
||||||
|
params['ToolChoice'] = "auto"
|
||||||
|
params['Tools'] = [{
|
||||||
|
"Type": "function",
|
||||||
|
"Function": {
|
||||||
|
"Name": tool.name,
|
||||||
|
"Description": tool.description,
|
||||||
|
"Parameters": json.dumps(tool.parameters)
|
||||||
|
}
|
||||||
|
} for tool in tools]
|
||||||
|
|
||||||
request.from_json_string(json.dumps(params))
|
request.from_json_string(json.dumps(params))
|
||||||
response = client.ChatCompletions(request)
|
response = client.ChatCompletions(request)
|
||||||
@ -89,9 +101,43 @@ class HunyuanLargeLanguageModel(LargeLanguageModel):
|
|||||||
|
|
||||||
def _convert_prompt_messages_to_dicts(self, prompt_messages: list[PromptMessage]) -> list[dict]:
|
def _convert_prompt_messages_to_dicts(self, prompt_messages: list[PromptMessage]) -> list[dict]:
|
||||||
"""Convert a list of PromptMessage objects to a list of dictionaries with 'Role' and 'Content' keys."""
|
"""Convert a list of PromptMessage objects to a list of dictionaries with 'Role' and 'Content' keys."""
|
||||||
return [{"Role": message.role.value, "Content": message.content} for message in prompt_messages]
|
dict_list = []
|
||||||
|
for message in prompt_messages:
|
||||||
|
if isinstance(message, AssistantPromptMessage):
|
||||||
|
tool_calls = message.tool_calls
|
||||||
|
if (tool_calls and len(tool_calls) > 0):
|
||||||
|
dict_tool_calls = [
|
||||||
|
{
|
||||||
|
"Id": tool_call.id,
|
||||||
|
"Type": tool_call.type,
|
||||||
|
"Function": {
|
||||||
|
"Name": tool_call.function.name,
|
||||||
|
"Arguments": tool_call.function.arguments if (tool_call.function.arguments == "") else "{}"
|
||||||
|
}
|
||||||
|
} for tool_call in tool_calls]
|
||||||
|
|
||||||
|
dict_list.append({
|
||||||
|
"Role": message.role.value,
|
||||||
|
# fix set content = "" while tool_call request
|
||||||
|
# fix [hunyuan] None, [TencentCloudSDKException] code:InvalidParameter message:Messages Content and Contents not allowed empty at the same time.
|
||||||
|
"Content": " ", # message.content if (message.content is not None) else "",
|
||||||
|
"ToolCalls": dict_tool_calls
|
||||||
|
})
|
||||||
|
else:
|
||||||
|
dict_list.append({ "Role": message.role.value, "Content": message.content })
|
||||||
|
elif isinstance(message, ToolPromptMessage):
|
||||||
|
tool_execute_result = { "result": message.content }
|
||||||
|
content =json.dumps(tool_execute_result, ensure_ascii=False)
|
||||||
|
dict_list.append({ "Role": message.role.value, "Content": content, "ToolCallId": message.tool_call_id })
|
||||||
|
else:
|
||||||
|
dict_list.append({ "Role": message.role.value, "Content": message.content })
|
||||||
|
return dict_list
|
||||||
|
|
||||||
def _handle_stream_chat_response(self, model, credentials, prompt_messages, resp):
|
def _handle_stream_chat_response(self, model, credentials, prompt_messages, resp):
|
||||||
|
|
||||||
|
tool_call = None
|
||||||
|
tool_calls = []
|
||||||
|
|
||||||
for index, event in enumerate(resp):
|
for index, event in enumerate(resp):
|
||||||
logging.debug("_handle_stream_chat_response, event: %s", event)
|
logging.debug("_handle_stream_chat_response, event: %s", event)
|
||||||
|
|
||||||
@ -109,20 +155,54 @@ class HunyuanLargeLanguageModel(LargeLanguageModel):
|
|||||||
usage = data.get('Usage', {})
|
usage = data.get('Usage', {})
|
||||||
prompt_tokens = usage.get('PromptTokens', 0)
|
prompt_tokens = usage.get('PromptTokens', 0)
|
||||||
completion_tokens = usage.get('CompletionTokens', 0)
|
completion_tokens = usage.get('CompletionTokens', 0)
|
||||||
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
|
||||||
|
response_tool_calls = delta.get('ToolCalls')
|
||||||
|
if (response_tool_calls is not None):
|
||||||
|
new_tool_calls = self._extract_response_tool_calls(response_tool_calls)
|
||||||
|
if (len(new_tool_calls) > 0):
|
||||||
|
new_tool_call = new_tool_calls[0]
|
||||||
|
if (tool_call is None): tool_call = new_tool_call
|
||||||
|
elif (tool_call.id != new_tool_call.id):
|
||||||
|
tool_calls.append(tool_call)
|
||||||
|
tool_call = new_tool_call
|
||||||
|
else:
|
||||||
|
tool_call.function.name += new_tool_call.function.name
|
||||||
|
tool_call.function.arguments += new_tool_call.function.arguments
|
||||||
|
if (tool_call is not None and len(tool_call.function.name) > 0 and len(tool_call.function.arguments) > 0):
|
||||||
|
tool_calls.append(tool_call)
|
||||||
|
tool_call = None
|
||||||
|
|
||||||
assistant_prompt_message = AssistantPromptMessage(
|
assistant_prompt_message = AssistantPromptMessage(
|
||||||
content=message_content,
|
content=message_content,
|
||||||
tool_calls=[]
|
tool_calls=[]
|
||||||
)
|
)
|
||||||
|
# rewrite content = "" while tool_call to avoid show content on web page
|
||||||
|
if (len(tool_calls) > 0): assistant_prompt_message.content = ""
|
||||||
|
|
||||||
|
# add tool_calls to assistant_prompt_message
|
||||||
|
if (finish_reason == 'tool_calls'):
|
||||||
|
assistant_prompt_message.tool_calls = tool_calls
|
||||||
|
tool_call = None
|
||||||
|
tool_calls = []
|
||||||
|
|
||||||
delta_chunk = LLMResultChunkDelta(
|
if (len(finish_reason) > 0):
|
||||||
index=index,
|
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
||||||
role=delta.get('Role', 'assistant'),
|
|
||||||
message=assistant_prompt_message,
|
delta_chunk = LLMResultChunkDelta(
|
||||||
usage=usage,
|
index=index,
|
||||||
finish_reason=finish_reason,
|
role=delta.get('Role', 'assistant'),
|
||||||
)
|
message=assistant_prompt_message,
|
||||||
|
usage=usage,
|
||||||
|
finish_reason=finish_reason,
|
||||||
|
)
|
||||||
|
tool_call = None
|
||||||
|
tool_calls = []
|
||||||
|
|
||||||
|
else:
|
||||||
|
delta_chunk = LLMResultChunkDelta(
|
||||||
|
index=index,
|
||||||
|
message=assistant_prompt_message,
|
||||||
|
)
|
||||||
|
|
||||||
yield LLMResultChunk(
|
yield LLMResultChunk(
|
||||||
model=model,
|
model=model,
|
||||||
@ -177,12 +257,15 @@ class HunyuanLargeLanguageModel(LargeLanguageModel):
|
|||||||
"""
|
"""
|
||||||
human_prompt = "\n\nHuman:"
|
human_prompt = "\n\nHuman:"
|
||||||
ai_prompt = "\n\nAssistant:"
|
ai_prompt = "\n\nAssistant:"
|
||||||
|
tool_prompt = "\n\nTool:"
|
||||||
content = message.content
|
content = message.content
|
||||||
|
|
||||||
if isinstance(message, UserPromptMessage):
|
if isinstance(message, UserPromptMessage):
|
||||||
message_text = f"{human_prompt} {content}"
|
message_text = f"{human_prompt} {content}"
|
||||||
elif isinstance(message, AssistantPromptMessage):
|
elif isinstance(message, AssistantPromptMessage):
|
||||||
message_text = f"{ai_prompt} {content}"
|
message_text = f"{ai_prompt} {content}"
|
||||||
|
elif isinstance(message, ToolPromptMessage):
|
||||||
|
message_text = f"{tool_prompt} {content}"
|
||||||
elif isinstance(message, SystemPromptMessage):
|
elif isinstance(message, SystemPromptMessage):
|
||||||
message_text = content
|
message_text = content
|
||||||
else:
|
else:
|
||||||
@ -203,3 +286,30 @@ class HunyuanLargeLanguageModel(LargeLanguageModel):
|
|||||||
return {
|
return {
|
||||||
InvokeError: [TencentCloudSDKException],
|
InvokeError: [TencentCloudSDKException],
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def _extract_response_tool_calls(self,
|
||||||
|
response_tool_calls: list[dict]) \
|
||||||
|
-> list[AssistantPromptMessage.ToolCall]:
|
||||||
|
"""
|
||||||
|
Extract tool calls from response
|
||||||
|
|
||||||
|
:param response_tool_calls: response tool calls
|
||||||
|
:return: list of tool calls
|
||||||
|
"""
|
||||||
|
tool_calls = []
|
||||||
|
if response_tool_calls:
|
||||||
|
for response_tool_call in response_tool_calls:
|
||||||
|
response_function = response_tool_call.get('Function', {})
|
||||||
|
function = AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||||
|
name=response_function.get('Name', ''),
|
||||||
|
arguments=response_function.get('Arguments', '')
|
||||||
|
)
|
||||||
|
|
||||||
|
tool_call = AssistantPromptMessage.ToolCall(
|
||||||
|
id=response_tool_call.get('Id', 0),
|
||||||
|
type='function',
|
||||||
|
function=function
|
||||||
|
)
|
||||||
|
tool_calls.append(tool_call)
|
||||||
|
|
||||||
|
return tool_calls
|
Loading…
x
Reference in New Issue
Block a user