mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-18 01:25:53 +08:00
Refactor/react agent (#3355)
This commit is contained in:
parent
509c640a80
commit
cea107b165
@ -238,6 +238,34 @@ class BaseAgentRunner(AppRunner):
|
|||||||
|
|
||||||
return prompt_tool
|
return prompt_tool
|
||||||
|
|
||||||
|
def _init_prompt_tools(self) -> tuple[dict[str, Tool], list[PromptMessageTool]]:
|
||||||
|
"""
|
||||||
|
Init tools
|
||||||
|
"""
|
||||||
|
tool_instances = {}
|
||||||
|
prompt_messages_tools = []
|
||||||
|
|
||||||
|
for tool in self.app_config.agent.tools if self.app_config.agent else []:
|
||||||
|
try:
|
||||||
|
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
|
||||||
|
except Exception:
|
||||||
|
# api tool may be deleted
|
||||||
|
continue
|
||||||
|
# save tool entity
|
||||||
|
tool_instances[tool.tool_name] = tool_entity
|
||||||
|
# save prompt tool
|
||||||
|
prompt_messages_tools.append(prompt_tool)
|
||||||
|
|
||||||
|
# convert dataset tools into ModelRuntime Tool format
|
||||||
|
for dataset_tool in self.dataset_tools:
|
||||||
|
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
|
||||||
|
# save prompt tool
|
||||||
|
prompt_messages_tools.append(prompt_tool)
|
||||||
|
# save tool entity
|
||||||
|
tool_instances[dataset_tool.identity.name] = dataset_tool
|
||||||
|
|
||||||
|
return tool_instances, prompt_messages_tools
|
||||||
|
|
||||||
def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
|
def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
|
||||||
"""
|
"""
|
||||||
update prompt message tool
|
update prompt message tool
|
||||||
@ -325,7 +353,7 @@ class BaseAgentRunner(AppRunner):
|
|||||||
tool_name: str,
|
tool_name: str,
|
||||||
tool_input: Union[str, dict],
|
tool_input: Union[str, dict],
|
||||||
thought: str,
|
thought: str,
|
||||||
observation: Union[str, str],
|
observation: Union[str, dict],
|
||||||
tool_invoke_meta: Union[str, dict],
|
tool_invoke_meta: Union[str, dict],
|
||||||
answer: str,
|
answer: str,
|
||||||
messages_ids: list[str],
|
messages_ids: list[str],
|
||||||
|
@ -1,30 +1,34 @@
|
|||||||
import json
|
import json
|
||||||
import re
|
from abc import ABC, abstractmethod
|
||||||
from collections.abc import Generator
|
from collections.abc import Generator
|
||||||
from typing import Literal, Union
|
from typing import Union
|
||||||
|
|
||||||
from core.agent.base_agent_runner import BaseAgentRunner
|
from core.agent.base_agent_runner import BaseAgentRunner
|
||||||
from core.agent.entities import AgentPromptEntity, AgentScratchpadUnit
|
from core.agent.entities import AgentScratchpadUnit
|
||||||
|
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
|
||||||
from core.app.apps.base_app_queue_manager import PublishFrom
|
from core.app.apps.base_app_queue_manager import PublishFrom
|
||||||
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
|
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
|
||||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||||
from core.model_runtime.entities.message_entities import (
|
from core.model_runtime.entities.message_entities import (
|
||||||
AssistantPromptMessage,
|
AssistantPromptMessage,
|
||||||
PromptMessage,
|
PromptMessage,
|
||||||
PromptMessageTool,
|
|
||||||
SystemPromptMessage,
|
|
||||||
ToolPromptMessage,
|
ToolPromptMessage,
|
||||||
UserPromptMessage,
|
UserPromptMessage,
|
||||||
)
|
)
|
||||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
|
||||||
from core.tools.entities.tool_entities import ToolInvokeMeta
|
from core.tools.entities.tool_entities import ToolInvokeMeta
|
||||||
|
from core.tools.tool.tool import Tool
|
||||||
from core.tools.tool_engine import ToolEngine
|
from core.tools.tool_engine import ToolEngine
|
||||||
from models.model import Message
|
from models.model import Message
|
||||||
|
|
||||||
|
|
||||||
class CotAgentRunner(BaseAgentRunner):
|
class CotAgentRunner(BaseAgentRunner, ABC):
|
||||||
_is_first_iteration = True
|
_is_first_iteration = True
|
||||||
_ignore_observation_providers = ['wenxin']
|
_ignore_observation_providers = ['wenxin']
|
||||||
|
_historic_prompt_messages: list[PromptMessage] = None
|
||||||
|
_agent_scratchpad: list[AgentScratchpadUnit] = None
|
||||||
|
_instruction: str = None
|
||||||
|
_query: str = None
|
||||||
|
_prompt_messages_tools: list[PromptMessage] = None
|
||||||
|
|
||||||
def run(self, message: Message,
|
def run(self, message: Message,
|
||||||
query: str,
|
query: str,
|
||||||
@ -35,9 +39,7 @@ class CotAgentRunner(BaseAgentRunner):
|
|||||||
"""
|
"""
|
||||||
app_generate_entity = self.application_generate_entity
|
app_generate_entity = self.application_generate_entity
|
||||||
self._repack_app_generate_entity(app_generate_entity)
|
self._repack_app_generate_entity(app_generate_entity)
|
||||||
|
self._init_react_state(query)
|
||||||
agent_scratchpad: list[AgentScratchpadUnit] = []
|
|
||||||
self._init_agent_scratchpad(agent_scratchpad, self.history_prompt_messages)
|
|
||||||
|
|
||||||
# check model mode
|
# check model mode
|
||||||
if 'Observation' not in app_generate_entity.model_config.stop:
|
if 'Observation' not in app_generate_entity.model_config.stop:
|
||||||
@ -46,38 +48,19 @@ class CotAgentRunner(BaseAgentRunner):
|
|||||||
|
|
||||||
app_config = self.app_config
|
app_config = self.app_config
|
||||||
|
|
||||||
# override inputs
|
# init instruction
|
||||||
inputs = inputs or {}
|
inputs = inputs or {}
|
||||||
instruction = app_config.prompt_template.simple_prompt_template
|
instruction = app_config.prompt_template.simple_prompt_template
|
||||||
instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
|
self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
|
||||||
|
|
||||||
iteration_step = 1
|
iteration_step = 1
|
||||||
max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
|
max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
|
||||||
|
|
||||||
prompt_messages = self.history_prompt_messages
|
|
||||||
|
|
||||||
# convert tools into ModelRuntime Tool format
|
# convert tools into ModelRuntime Tool format
|
||||||
prompt_messages_tools: list[PromptMessageTool] = []
|
tool_instances, self._prompt_messages_tools = self._init_prompt_tools()
|
||||||
tool_instances = {}
|
|
||||||
for tool in app_config.agent.tools if app_config.agent else []:
|
|
||||||
try:
|
|
||||||
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
|
|
||||||
except Exception:
|
|
||||||
# api tool may be deleted
|
|
||||||
continue
|
|
||||||
# save tool entity
|
|
||||||
tool_instances[tool.tool_name] = tool_entity
|
|
||||||
# save prompt tool
|
|
||||||
prompt_messages_tools.append(prompt_tool)
|
|
||||||
|
|
||||||
# convert dataset tools into ModelRuntime Tool format
|
|
||||||
for dataset_tool in self.dataset_tools:
|
|
||||||
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
|
|
||||||
# save prompt tool
|
|
||||||
prompt_messages_tools.append(prompt_tool)
|
|
||||||
# save tool entity
|
|
||||||
tool_instances[dataset_tool.identity.name] = dataset_tool
|
|
||||||
|
|
||||||
|
prompt_messages = self._organize_prompt_messages()
|
||||||
|
|
||||||
function_call_state = True
|
function_call_state = True
|
||||||
llm_usage = {
|
llm_usage = {
|
||||||
'usage': None
|
'usage': None
|
||||||
@ -102,7 +85,7 @@ class CotAgentRunner(BaseAgentRunner):
|
|||||||
|
|
||||||
if iteration_step == max_iteration_steps:
|
if iteration_step == max_iteration_steps:
|
||||||
# the last iteration, remove all tools
|
# the last iteration, remove all tools
|
||||||
prompt_messages_tools = []
|
self._prompt_messages_tools = []
|
||||||
|
|
||||||
message_file_ids = []
|
message_file_ids = []
|
||||||
|
|
||||||
@ -119,18 +102,8 @@ class CotAgentRunner(BaseAgentRunner):
|
|||||||
agent_thought_id=agent_thought.id
|
agent_thought_id=agent_thought.id
|
||||||
), PublishFrom.APPLICATION_MANAGER)
|
), PublishFrom.APPLICATION_MANAGER)
|
||||||
|
|
||||||
# update prompt messages
|
|
||||||
prompt_messages = self._organize_cot_prompt_messages(
|
|
||||||
mode=app_generate_entity.model_config.mode,
|
|
||||||
prompt_messages=prompt_messages,
|
|
||||||
tools=prompt_messages_tools,
|
|
||||||
agent_scratchpad=agent_scratchpad,
|
|
||||||
agent_prompt_message=app_config.agent.prompt,
|
|
||||||
instruction=instruction,
|
|
||||||
input=query
|
|
||||||
)
|
|
||||||
|
|
||||||
# recalc llm max tokens
|
# recalc llm max tokens
|
||||||
|
prompt_messages = self._organize_prompt_messages()
|
||||||
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
||||||
# invoke model
|
# invoke model
|
||||||
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
|
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
|
||||||
@ -148,7 +121,7 @@ class CotAgentRunner(BaseAgentRunner):
|
|||||||
raise ValueError("failed to invoke llm")
|
raise ValueError("failed to invoke llm")
|
||||||
|
|
||||||
usage_dict = {}
|
usage_dict = {}
|
||||||
react_chunks = self._handle_stream_react(chunks, usage_dict)
|
react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks)
|
||||||
scratchpad = AgentScratchpadUnit(
|
scratchpad = AgentScratchpadUnit(
|
||||||
agent_response='',
|
agent_response='',
|
||||||
thought='',
|
thought='',
|
||||||
@ -164,30 +137,12 @@ class CotAgentRunner(BaseAgentRunner):
|
|||||||
), PublishFrom.APPLICATION_MANAGER)
|
), PublishFrom.APPLICATION_MANAGER)
|
||||||
|
|
||||||
for chunk in react_chunks:
|
for chunk in react_chunks:
|
||||||
if isinstance(chunk, dict):
|
if isinstance(chunk, AgentScratchpadUnit.Action):
|
||||||
scratchpad.agent_response += json.dumps(chunk)
|
action = chunk
|
||||||
try:
|
# detect action
|
||||||
if scratchpad.action:
|
scratchpad.agent_response += json.dumps(chunk.dict())
|
||||||
raise Exception("")
|
scratchpad.action_str = json.dumps(chunk.dict())
|
||||||
scratchpad.action_str = json.dumps(chunk)
|
scratchpad.action = action
|
||||||
scratchpad.action = AgentScratchpadUnit.Action(
|
|
||||||
action_name=chunk['action'],
|
|
||||||
action_input=chunk['action_input']
|
|
||||||
)
|
|
||||||
except:
|
|
||||||
scratchpad.thought += json.dumps(chunk)
|
|
||||||
yield LLMResultChunk(
|
|
||||||
model=self.model_config.model,
|
|
||||||
prompt_messages=prompt_messages,
|
|
||||||
system_fingerprint='',
|
|
||||||
delta=LLMResultChunkDelta(
|
|
||||||
index=0,
|
|
||||||
message=AssistantPromptMessage(
|
|
||||||
content=json.dumps(chunk, ensure_ascii=False) # if ensure_ascii=True, the text in webui maybe garbled text
|
|
||||||
),
|
|
||||||
usage=None
|
|
||||||
)
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
scratchpad.agent_response += chunk
|
scratchpad.agent_response += chunk
|
||||||
scratchpad.thought += chunk
|
scratchpad.thought += chunk
|
||||||
@ -205,27 +160,29 @@ class CotAgentRunner(BaseAgentRunner):
|
|||||||
)
|
)
|
||||||
|
|
||||||
scratchpad.thought = scratchpad.thought.strip() or 'I am thinking about how to help you'
|
scratchpad.thought = scratchpad.thought.strip() or 'I am thinking about how to help you'
|
||||||
agent_scratchpad.append(scratchpad)
|
self._agent_scratchpad.append(scratchpad)
|
||||||
|
|
||||||
# get llm usage
|
# get llm usage
|
||||||
if 'usage' in usage_dict:
|
if 'usage' in usage_dict:
|
||||||
increase_usage(llm_usage, usage_dict['usage'])
|
increase_usage(llm_usage, usage_dict['usage'])
|
||||||
else:
|
else:
|
||||||
usage_dict['usage'] = LLMUsage.empty_usage()
|
usage_dict['usage'] = LLMUsage.empty_usage()
|
||||||
|
|
||||||
self.save_agent_thought(agent_thought=agent_thought,
|
self.save_agent_thought(
|
||||||
tool_name=scratchpad.action.action_name if scratchpad.action else '',
|
agent_thought=agent_thought,
|
||||||
tool_input={
|
tool_name=scratchpad.action.action_name if scratchpad.action else '',
|
||||||
scratchpad.action.action_name: scratchpad.action.action_input
|
tool_input={
|
||||||
} if scratchpad.action else '',
|
scratchpad.action.action_name: scratchpad.action.action_input
|
||||||
tool_invoke_meta={},
|
} if scratchpad.action else {},
|
||||||
thought=scratchpad.thought,
|
tool_invoke_meta={},
|
||||||
observation='',
|
thought=scratchpad.thought,
|
||||||
answer=scratchpad.agent_response,
|
observation='',
|
||||||
messages_ids=[],
|
answer=scratchpad.agent_response,
|
||||||
llm_usage=usage_dict['usage'])
|
messages_ids=[],
|
||||||
|
llm_usage=usage_dict['usage']
|
||||||
|
)
|
||||||
|
|
||||||
if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
|
if not scratchpad.is_final():
|
||||||
self.queue_manager.publish(QueueAgentThoughtEvent(
|
self.queue_manager.publish(QueueAgentThoughtEvent(
|
||||||
agent_thought_id=agent_thought.id
|
agent_thought_id=agent_thought.id
|
||||||
), PublishFrom.APPLICATION_MANAGER)
|
), PublishFrom.APPLICATION_MANAGER)
|
||||||
@ -237,106 +194,43 @@ class CotAgentRunner(BaseAgentRunner):
|
|||||||
if scratchpad.action.action_name.lower() == "final answer":
|
if scratchpad.action.action_name.lower() == "final answer":
|
||||||
# action is final answer, return final answer directly
|
# action is final answer, return final answer directly
|
||||||
try:
|
try:
|
||||||
final_answer = scratchpad.action.action_input if \
|
if isinstance(scratchpad.action.action_input, dict):
|
||||||
isinstance(scratchpad.action.action_input, str) else \
|
final_answer = json.dumps(scratchpad.action.action_input)
|
||||||
json.dumps(scratchpad.action.action_input)
|
elif isinstance(scratchpad.action.action_input, str):
|
||||||
|
final_answer = scratchpad.action.action_input
|
||||||
|
else:
|
||||||
|
final_answer = f'{scratchpad.action.action_input}'
|
||||||
except json.JSONDecodeError:
|
except json.JSONDecodeError:
|
||||||
final_answer = f'{scratchpad.action.action_input}'
|
final_answer = f'{scratchpad.action.action_input}'
|
||||||
else:
|
else:
|
||||||
function_call_state = True
|
function_call_state = True
|
||||||
|
|
||||||
# action is tool call, invoke tool
|
# action is tool call, invoke tool
|
||||||
tool_call_name = scratchpad.action.action_name
|
tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
|
||||||
tool_call_args = scratchpad.action.action_input
|
action=scratchpad.action,
|
||||||
tool_instance = tool_instances.get(tool_call_name)
|
tool_instances=tool_instances,
|
||||||
if not tool_instance:
|
message_file_ids=message_file_ids
|
||||||
answer = f"there is not a tool named {tool_call_name}"
|
)
|
||||||
self.save_agent_thought(
|
scratchpad.observation = tool_invoke_response
|
||||||
agent_thought=agent_thought,
|
scratchpad.agent_response = tool_invoke_response
|
||||||
tool_name='',
|
|
||||||
tool_input='',
|
|
||||||
tool_invoke_meta=ToolInvokeMeta.error_instance(
|
|
||||||
f"there is not a tool named {tool_call_name}"
|
|
||||||
).to_dict(),
|
|
||||||
thought=None,
|
|
||||||
observation={
|
|
||||||
tool_call_name: answer
|
|
||||||
},
|
|
||||||
answer=answer,
|
|
||||||
messages_ids=[]
|
|
||||||
)
|
|
||||||
self.queue_manager.publish(QueueAgentThoughtEvent(
|
|
||||||
agent_thought_id=agent_thought.id
|
|
||||||
), PublishFrom.APPLICATION_MANAGER)
|
|
||||||
else:
|
|
||||||
if isinstance(tool_call_args, str):
|
|
||||||
try:
|
|
||||||
tool_call_args = json.loads(tool_call_args)
|
|
||||||
except json.JSONDecodeError:
|
|
||||||
pass
|
|
||||||
|
|
||||||
# invoke tool
|
self.save_agent_thought(
|
||||||
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
agent_thought=agent_thought,
|
||||||
tool=tool_instance,
|
tool_name=scratchpad.action.action_name,
|
||||||
tool_parameters=tool_call_args,
|
tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
|
||||||
user_id=self.user_id,
|
thought=scratchpad.thought,
|
||||||
tenant_id=self.tenant_id,
|
observation={scratchpad.action.action_name: tool_invoke_response},
|
||||||
message=self.message,
|
tool_invoke_meta=tool_invoke_meta.to_dict(),
|
||||||
invoke_from=self.application_generate_entity.invoke_from,
|
answer=scratchpad.agent_response,
|
||||||
agent_tool_callback=self.agent_callback
|
messages_ids=message_file_ids,
|
||||||
)
|
llm_usage=usage_dict['usage']
|
||||||
# publish files
|
)
|
||||||
for message_file, save_as in message_files:
|
|
||||||
if save_as:
|
|
||||||
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
|
|
||||||
|
|
||||||
# publish message file
|
self.queue_manager.publish(QueueAgentThoughtEvent(
|
||||||
self.queue_manager.publish(QueueMessageFileEvent(
|
agent_thought_id=agent_thought.id
|
||||||
message_file_id=message_file.id
|
), PublishFrom.APPLICATION_MANAGER)
|
||||||
), PublishFrom.APPLICATION_MANAGER)
|
|
||||||
# add message file ids
|
|
||||||
message_file_ids.append(message_file.id)
|
|
||||||
|
|
||||||
# publish files
|
|
||||||
for message_file, save_as in message_files:
|
|
||||||
if save_as:
|
|
||||||
self.variables_pool.set_file(tool_name=tool_call_name,
|
|
||||||
value=message_file.id,
|
|
||||||
name=save_as)
|
|
||||||
self.queue_manager.publish(QueueMessageFileEvent(
|
|
||||||
message_file_id=message_file.id
|
|
||||||
), PublishFrom.APPLICATION_MANAGER)
|
|
||||||
|
|
||||||
message_file_ids = [message_file.id for message_file, _ in message_files]
|
|
||||||
|
|
||||||
observation = tool_invoke_response
|
|
||||||
|
|
||||||
# save scratchpad
|
|
||||||
scratchpad.observation = observation
|
|
||||||
|
|
||||||
# save agent thought
|
|
||||||
self.save_agent_thought(
|
|
||||||
agent_thought=agent_thought,
|
|
||||||
tool_name=tool_call_name,
|
|
||||||
tool_input={
|
|
||||||
tool_call_name: tool_call_args
|
|
||||||
},
|
|
||||||
tool_invoke_meta={
|
|
||||||
tool_call_name: tool_invoke_meta.to_dict()
|
|
||||||
},
|
|
||||||
thought=None,
|
|
||||||
observation={
|
|
||||||
tool_call_name: observation
|
|
||||||
},
|
|
||||||
answer=scratchpad.agent_response,
|
|
||||||
messages_ids=message_file_ids,
|
|
||||||
)
|
|
||||||
self.queue_manager.publish(QueueAgentThoughtEvent(
|
|
||||||
agent_thought_id=agent_thought.id
|
|
||||||
), PublishFrom.APPLICATION_MANAGER)
|
|
||||||
|
|
||||||
# update prompt tool message
|
# update prompt tool message
|
||||||
for prompt_tool in prompt_messages_tools:
|
for prompt_tool in self._prompt_messages_tools:
|
||||||
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
||||||
|
|
||||||
iteration_step += 1
|
iteration_step += 1
|
||||||
@ -378,96 +272,63 @@ class CotAgentRunner(BaseAgentRunner):
|
|||||||
system_fingerprint=''
|
system_fingerprint=''
|
||||||
)), PublishFrom.APPLICATION_MANAGER)
|
)), PublishFrom.APPLICATION_MANAGER)
|
||||||
|
|
||||||
def _handle_stream_react(self, llm_response: Generator[LLMResultChunk, None, None], usage: dict) \
|
def _handle_invoke_action(self, action: AgentScratchpadUnit.Action,
|
||||||
-> Generator[Union[str, dict], None, None]:
|
tool_instances: dict[str, Tool],
|
||||||
def parse_json(json_str):
|
message_file_ids: list[str]) -> tuple[str, ToolInvokeMeta]:
|
||||||
|
"""
|
||||||
|
handle invoke action
|
||||||
|
:param action: action
|
||||||
|
:param tool_instances: tool instances
|
||||||
|
:return: observation, meta
|
||||||
|
"""
|
||||||
|
# action is tool call, invoke tool
|
||||||
|
tool_call_name = action.action_name
|
||||||
|
tool_call_args = action.action_input
|
||||||
|
tool_instance = tool_instances.get(tool_call_name)
|
||||||
|
|
||||||
|
if not tool_instance:
|
||||||
|
answer = f"there is not a tool named {tool_call_name}"
|
||||||
|
return answer, ToolInvokeMeta.error_instance(answer)
|
||||||
|
|
||||||
|
if isinstance(tool_call_args, str):
|
||||||
try:
|
try:
|
||||||
return json.loads(json_str.strip())
|
tool_call_args = json.loads(tool_call_args)
|
||||||
except:
|
except json.JSONDecodeError:
|
||||||
return json_str
|
pass
|
||||||
|
|
||||||
def extra_json_from_code_block(code_block) -> Generator[Union[dict, str], None, None]:
|
|
||||||
code_blocks = re.findall(r'```(.*?)```', code_block, re.DOTALL)
|
|
||||||
if not code_blocks:
|
|
||||||
return
|
|
||||||
for block in code_blocks:
|
|
||||||
json_text = re.sub(r'^[a-zA-Z]+\n', '', block.strip(), flags=re.MULTILINE)
|
|
||||||
yield parse_json(json_text)
|
|
||||||
|
|
||||||
code_block_cache = ''
|
|
||||||
code_block_delimiter_count = 0
|
|
||||||
in_code_block = False
|
|
||||||
json_cache = ''
|
|
||||||
json_quote_count = 0
|
|
||||||
in_json = False
|
|
||||||
got_json = False
|
|
||||||
|
|
||||||
for response in llm_response:
|
|
||||||
response = response.delta.message.content
|
|
||||||
if not isinstance(response, str):
|
|
||||||
continue
|
|
||||||
|
|
||||||
# stream
|
# invoke tool
|
||||||
index = 0
|
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
||||||
while index < len(response):
|
tool=tool_instance,
|
||||||
steps = 1
|
tool_parameters=tool_call_args,
|
||||||
delta = response[index:index+steps]
|
user_id=self.user_id,
|
||||||
if delta == '`':
|
tenant_id=self.tenant_id,
|
||||||
code_block_cache += delta
|
message=self.message,
|
||||||
code_block_delimiter_count += 1
|
invoke_from=self.application_generate_entity.invoke_from,
|
||||||
else:
|
agent_tool_callback=self.agent_callback
|
||||||
if not in_code_block:
|
)
|
||||||
if code_block_delimiter_count > 0:
|
|
||||||
yield code_block_cache
|
|
||||||
code_block_cache = ''
|
|
||||||
else:
|
|
||||||
code_block_cache += delta
|
|
||||||
code_block_delimiter_count = 0
|
|
||||||
|
|
||||||
if code_block_delimiter_count == 3:
|
# publish files
|
||||||
if in_code_block:
|
for message_file, save_as in message_files:
|
||||||
yield from extra_json_from_code_block(code_block_cache)
|
if save_as:
|
||||||
code_block_cache = ''
|
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
|
||||||
|
|
||||||
in_code_block = not in_code_block
|
|
||||||
code_block_delimiter_count = 0
|
|
||||||
|
|
||||||
if not in_code_block:
|
# publish message file
|
||||||
# handle single json
|
self.queue_manager.publish(QueueMessageFileEvent(
|
||||||
if delta == '{':
|
message_file_id=message_file.id
|
||||||
json_quote_count += 1
|
), PublishFrom.APPLICATION_MANAGER)
|
||||||
in_json = True
|
# add message file ids
|
||||||
json_cache += delta
|
message_file_ids.append(message_file.id)
|
||||||
elif delta == '}':
|
|
||||||
json_cache += delta
|
|
||||||
if json_quote_count > 0:
|
|
||||||
json_quote_count -= 1
|
|
||||||
if json_quote_count == 0:
|
|
||||||
in_json = False
|
|
||||||
got_json = True
|
|
||||||
index += steps
|
|
||||||
continue
|
|
||||||
else:
|
|
||||||
if in_json:
|
|
||||||
json_cache += delta
|
|
||||||
|
|
||||||
if got_json:
|
return tool_invoke_response, tool_invoke_meta
|
||||||
got_json = False
|
|
||||||
yield parse_json(json_cache)
|
|
||||||
json_cache = ''
|
|
||||||
json_quote_count = 0
|
|
||||||
in_json = False
|
|
||||||
|
|
||||||
if not in_code_block and not in_json:
|
|
||||||
yield delta.replace('`', '')
|
|
||||||
|
|
||||||
index += steps
|
def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
|
||||||
|
"""
|
||||||
if code_block_cache:
|
convert dict to action
|
||||||
yield code_block_cache
|
"""
|
||||||
|
return AgentScratchpadUnit.Action(
|
||||||
if json_cache:
|
action_name=action['action'],
|
||||||
yield parse_json(json_cache)
|
action_input=action['action_input']
|
||||||
|
)
|
||||||
|
|
||||||
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
|
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
|
||||||
"""
|
"""
|
||||||
@ -481,15 +342,46 @@ class CotAgentRunner(BaseAgentRunner):
|
|||||||
|
|
||||||
return instruction
|
return instruction
|
||||||
|
|
||||||
def _init_agent_scratchpad(self,
|
def _init_react_state(self, query) -> None:
|
||||||
agent_scratchpad: list[AgentScratchpadUnit],
|
|
||||||
messages: list[PromptMessage]
|
|
||||||
) -> list[AgentScratchpadUnit]:
|
|
||||||
"""
|
"""
|
||||||
init agent scratchpad
|
init agent scratchpad
|
||||||
"""
|
"""
|
||||||
|
self._query = query
|
||||||
|
self._agent_scratchpad = []
|
||||||
|
self._historic_prompt_messages = self._organize_historic_prompt_messages()
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
||||||
|
"""
|
||||||
|
organize prompt messages
|
||||||
|
"""
|
||||||
|
|
||||||
|
def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
|
||||||
|
"""
|
||||||
|
format assistant message
|
||||||
|
"""
|
||||||
|
message = ''
|
||||||
|
for scratchpad in agent_scratchpad:
|
||||||
|
if scratchpad.is_final():
|
||||||
|
message += f"Final Answer: {scratchpad.agent_response}"
|
||||||
|
else:
|
||||||
|
message += f"Thought: {scratchpad.thought}\n\n"
|
||||||
|
if scratchpad.action_str:
|
||||||
|
message += f"Action: {scratchpad.action_str}\n\n"
|
||||||
|
if scratchpad.observation:
|
||||||
|
message += f"Observation: {scratchpad.observation}\n\n"
|
||||||
|
|
||||||
|
return message
|
||||||
|
|
||||||
|
def _organize_historic_prompt_messages(self) -> list[PromptMessage]:
|
||||||
|
"""
|
||||||
|
organize historic prompt messages
|
||||||
|
"""
|
||||||
|
result: list[PromptMessage] = []
|
||||||
|
scratchpad: list[AgentScratchpadUnit] = []
|
||||||
current_scratchpad: AgentScratchpadUnit = None
|
current_scratchpad: AgentScratchpadUnit = None
|
||||||
for message in messages:
|
|
||||||
|
for message in self.history_prompt_messages:
|
||||||
if isinstance(message, AssistantPromptMessage):
|
if isinstance(message, AssistantPromptMessage):
|
||||||
current_scratchpad = AgentScratchpadUnit(
|
current_scratchpad = AgentScratchpadUnit(
|
||||||
agent_response=message.content,
|
agent_response=message.content,
|
||||||
@ -504,186 +396,29 @@ class CotAgentRunner(BaseAgentRunner):
|
|||||||
action_name=message.tool_calls[0].function.name,
|
action_name=message.tool_calls[0].function.name,
|
||||||
action_input=json.loads(message.tool_calls[0].function.arguments)
|
action_input=json.loads(message.tool_calls[0].function.arguments)
|
||||||
)
|
)
|
||||||
|
current_scratchpad.action_str = json.dumps(
|
||||||
|
current_scratchpad.action.to_dict()
|
||||||
|
)
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
agent_scratchpad.append(current_scratchpad)
|
scratchpad.append(current_scratchpad)
|
||||||
elif isinstance(message, ToolPromptMessage):
|
elif isinstance(message, ToolPromptMessage):
|
||||||
if current_scratchpad:
|
if current_scratchpad:
|
||||||
current_scratchpad.observation = message.content
|
current_scratchpad.observation = message.content
|
||||||
|
elif isinstance(message, UserPromptMessage):
|
||||||
|
result.append(message)
|
||||||
|
|
||||||
|
if scratchpad:
|
||||||
|
result.append(AssistantPromptMessage(
|
||||||
|
content=self._format_assistant_message(scratchpad)
|
||||||
|
))
|
||||||
|
|
||||||
|
scratchpad = []
|
||||||
|
|
||||||
|
if scratchpad:
|
||||||
|
result.append(AssistantPromptMessage(
|
||||||
|
content=self._format_assistant_message(scratchpad)
|
||||||
|
))
|
||||||
|
|
||||||
return agent_scratchpad
|
return result
|
||||||
|
|
||||||
def _check_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
|
||||||
agent_prompt_message: AgentPromptEntity,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
check chain of thought prompt messages, a standard prompt message is like:
|
|
||||||
Respond to the human as helpfully and accurately as possible.
|
|
||||||
|
|
||||||
{{instruction}}
|
|
||||||
|
|
||||||
You have access to the following tools:
|
|
||||||
|
|
||||||
{{tools}}
|
|
||||||
|
|
||||||
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
|
||||||
Valid action values: "Final Answer" or {{tool_names}}
|
|
||||||
|
|
||||||
Provide only ONE action per $JSON_BLOB, as shown:
|
|
||||||
|
|
||||||
```
|
|
||||||
{
|
|
||||||
"action": $TOOL_NAME,
|
|
||||||
"action_input": $ACTION_INPUT
|
|
||||||
}
|
|
||||||
```
|
|
||||||
"""
|
|
||||||
|
|
||||||
# parse agent prompt message
|
|
||||||
first_prompt = agent_prompt_message.first_prompt
|
|
||||||
next_iteration = agent_prompt_message.next_iteration
|
|
||||||
|
|
||||||
if not isinstance(first_prompt, str) or not isinstance(next_iteration, str):
|
|
||||||
raise ValueError("first_prompt or next_iteration is required in CoT agent mode")
|
|
||||||
|
|
||||||
# check instruction, tools, and tool_names slots
|
|
||||||
if not first_prompt.find("{{instruction}}") >= 0:
|
|
||||||
raise ValueError("{{instruction}} is required in first_prompt")
|
|
||||||
if not first_prompt.find("{{tools}}") >= 0:
|
|
||||||
raise ValueError("{{tools}} is required in first_prompt")
|
|
||||||
if not first_prompt.find("{{tool_names}}") >= 0:
|
|
||||||
raise ValueError("{{tool_names}} is required in first_prompt")
|
|
||||||
|
|
||||||
if mode == "completion":
|
|
||||||
if not first_prompt.find("{{query}}") >= 0:
|
|
||||||
raise ValueError("{{query}} is required in first_prompt")
|
|
||||||
if not first_prompt.find("{{agent_scratchpad}}") >= 0:
|
|
||||||
raise ValueError("{{agent_scratchpad}} is required in first_prompt")
|
|
||||||
|
|
||||||
if mode == "completion":
|
|
||||||
if not next_iteration.find("{{observation}}") >= 0:
|
|
||||||
raise ValueError("{{observation}} is required in next_iteration")
|
|
||||||
|
|
||||||
def _convert_scratchpad_list_to_str(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
|
|
||||||
"""
|
|
||||||
convert agent scratchpad list to str
|
|
||||||
"""
|
|
||||||
next_iteration = self.app_config.agent.prompt.next_iteration
|
|
||||||
|
|
||||||
result = ''
|
|
||||||
for scratchpad in agent_scratchpad:
|
|
||||||
result += (scratchpad.thought or '') + (scratchpad.action_str or '') + \
|
|
||||||
next_iteration.replace("{{observation}}", scratchpad.observation or 'It seems that no response is available')
|
|
||||||
|
|
||||||
return result
|
|
||||||
|
|
||||||
def _organize_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
|
||||||
prompt_messages: list[PromptMessage],
|
|
||||||
tools: list[PromptMessageTool],
|
|
||||||
agent_scratchpad: list[AgentScratchpadUnit],
|
|
||||||
agent_prompt_message: AgentPromptEntity,
|
|
||||||
instruction: str,
|
|
||||||
input: str,
|
|
||||||
) -> list[PromptMessage]:
|
|
||||||
"""
|
|
||||||
organize chain of thought prompt messages, a standard prompt message is like:
|
|
||||||
Respond to the human as helpfully and accurately as possible.
|
|
||||||
|
|
||||||
{{instruction}}
|
|
||||||
|
|
||||||
You have access to the following tools:
|
|
||||||
|
|
||||||
{{tools}}
|
|
||||||
|
|
||||||
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
|
||||||
Valid action values: "Final Answer" or {{tool_names}}
|
|
||||||
|
|
||||||
Provide only ONE action per $JSON_BLOB, as shown:
|
|
||||||
|
|
||||||
```
|
|
||||||
{{{{
|
|
||||||
"action": $TOOL_NAME,
|
|
||||||
"action_input": $ACTION_INPUT
|
|
||||||
}}}}
|
|
||||||
```
|
|
||||||
"""
|
|
||||||
|
|
||||||
self._check_cot_prompt_messages(mode, agent_prompt_message)
|
|
||||||
|
|
||||||
# parse agent prompt message
|
|
||||||
first_prompt = agent_prompt_message.first_prompt
|
|
||||||
|
|
||||||
# parse tools
|
|
||||||
tools_str = self._jsonify_tool_prompt_messages(tools)
|
|
||||||
|
|
||||||
# parse tools name
|
|
||||||
tool_names = '"' + '","'.join([tool.name for tool in tools]) + '"'
|
|
||||||
|
|
||||||
# get system message
|
|
||||||
system_message = first_prompt.replace("{{instruction}}", instruction) \
|
|
||||||
.replace("{{tools}}", tools_str) \
|
|
||||||
.replace("{{tool_names}}", tool_names)
|
|
||||||
|
|
||||||
# organize prompt messages
|
|
||||||
if mode == "chat":
|
|
||||||
# override system message
|
|
||||||
overridden = False
|
|
||||||
prompt_messages = prompt_messages.copy()
|
|
||||||
for prompt_message in prompt_messages:
|
|
||||||
if isinstance(prompt_message, SystemPromptMessage):
|
|
||||||
prompt_message.content = system_message
|
|
||||||
overridden = True
|
|
||||||
break
|
|
||||||
|
|
||||||
# convert tool prompt messages to user prompt messages
|
|
||||||
for idx, prompt_message in enumerate(prompt_messages):
|
|
||||||
if isinstance(prompt_message, ToolPromptMessage):
|
|
||||||
prompt_messages[idx] = UserPromptMessage(
|
|
||||||
content=prompt_message.content
|
|
||||||
)
|
|
||||||
|
|
||||||
if not overridden:
|
|
||||||
prompt_messages.insert(0, SystemPromptMessage(
|
|
||||||
content=system_message,
|
|
||||||
))
|
|
||||||
|
|
||||||
# add assistant message
|
|
||||||
if len(agent_scratchpad) > 0 and not self._is_first_iteration:
|
|
||||||
prompt_messages.append(AssistantPromptMessage(
|
|
||||||
content=(agent_scratchpad[-1].thought or '') + (agent_scratchpad[-1].action_str or ''),
|
|
||||||
))
|
|
||||||
|
|
||||||
# add user message
|
|
||||||
if len(agent_scratchpad) > 0 and not self._is_first_iteration:
|
|
||||||
prompt_messages.append(UserPromptMessage(
|
|
||||||
content=(agent_scratchpad[-1].observation or 'It seems that no response is available'),
|
|
||||||
))
|
|
||||||
|
|
||||||
self._is_first_iteration = False
|
|
||||||
|
|
||||||
return prompt_messages
|
|
||||||
elif mode == "completion":
|
|
||||||
# parse agent scratchpad
|
|
||||||
agent_scratchpad_str = self._convert_scratchpad_list_to_str(agent_scratchpad)
|
|
||||||
self._is_first_iteration = False
|
|
||||||
# parse prompt messages
|
|
||||||
return [UserPromptMessage(
|
|
||||||
content=first_prompt.replace("{{instruction}}", instruction)
|
|
||||||
.replace("{{tools}}", tools_str)
|
|
||||||
.replace("{{tool_names}}", tool_names)
|
|
||||||
.replace("{{query}}", input)
|
|
||||||
.replace("{{agent_scratchpad}}", agent_scratchpad_str),
|
|
||||||
)]
|
|
||||||
else:
|
|
||||||
raise ValueError(f"mode {mode} is not supported")
|
|
||||||
|
|
||||||
def _jsonify_tool_prompt_messages(self, tools: list[PromptMessageTool]) -> str:
|
|
||||||
"""
|
|
||||||
jsonify tool prompt messages
|
|
||||||
"""
|
|
||||||
tools = jsonable_encoder(tools)
|
|
||||||
try:
|
|
||||||
return json.dumps(tools, ensure_ascii=False)
|
|
||||||
except json.JSONDecodeError:
|
|
||||||
return json.dumps(tools)
|
|
71
api/core/agent/cot_chat_agent_runner.py
Normal file
71
api/core/agent/cot_chat_agent_runner.py
Normal file
@ -0,0 +1,71 @@
|
|||||||
|
import json
|
||||||
|
|
||||||
|
from core.agent.cot_agent_runner import CotAgentRunner
|
||||||
|
from core.model_runtime.entities.message_entities import (
|
||||||
|
AssistantPromptMessage,
|
||||||
|
PromptMessage,
|
||||||
|
SystemPromptMessage,
|
||||||
|
UserPromptMessage,
|
||||||
|
)
|
||||||
|
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||||
|
|
||||||
|
|
||||||
|
class CotChatAgentRunner(CotAgentRunner):
|
||||||
|
def _organize_system_prompt(self) -> SystemPromptMessage:
|
||||||
|
"""
|
||||||
|
Organize system prompt
|
||||||
|
"""
|
||||||
|
prompt_entity = self.app_config.agent.prompt
|
||||||
|
first_prompt = prompt_entity.first_prompt
|
||||||
|
|
||||||
|
system_prompt = first_prompt \
|
||||||
|
.replace("{{instruction}}", self._instruction) \
|
||||||
|
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools))) \
|
||||||
|
.replace("{{tool_names}}", ', '.join([tool.name for tool in self._prompt_messages_tools]))
|
||||||
|
|
||||||
|
return SystemPromptMessage(content=system_prompt)
|
||||||
|
|
||||||
|
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
||||||
|
"""
|
||||||
|
Organize
|
||||||
|
"""
|
||||||
|
# organize system prompt
|
||||||
|
system_message = self._organize_system_prompt()
|
||||||
|
|
||||||
|
# organize historic prompt messages
|
||||||
|
historic_messages = self._historic_prompt_messages
|
||||||
|
|
||||||
|
# organize current assistant messages
|
||||||
|
agent_scratchpad = self._agent_scratchpad
|
||||||
|
if not agent_scratchpad:
|
||||||
|
assistant_messages = []
|
||||||
|
else:
|
||||||
|
assistant_message = AssistantPromptMessage(content='')
|
||||||
|
for unit in agent_scratchpad:
|
||||||
|
if unit.is_final():
|
||||||
|
assistant_message.content += f"Final Answer: {unit.agent_response}"
|
||||||
|
else:
|
||||||
|
assistant_message.content += f"Thought: {unit.thought}\n\n"
|
||||||
|
if unit.action_str:
|
||||||
|
assistant_message.content += f"Action: {unit.action_str}\n\n"
|
||||||
|
if unit.observation:
|
||||||
|
assistant_message.content += f"Observation: {unit.observation}\n\n"
|
||||||
|
|
||||||
|
assistant_messages = [assistant_message]
|
||||||
|
|
||||||
|
# query messages
|
||||||
|
query_messages = UserPromptMessage(content=self._query)
|
||||||
|
|
||||||
|
if assistant_messages:
|
||||||
|
messages = [
|
||||||
|
system_message,
|
||||||
|
*historic_messages,
|
||||||
|
query_messages,
|
||||||
|
*assistant_messages,
|
||||||
|
UserPromptMessage(content='continue')
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
messages = [system_message, *historic_messages, query_messages]
|
||||||
|
|
||||||
|
# join all messages
|
||||||
|
return messages
|
69
api/core/agent/cot_completion_agent_runner.py
Normal file
69
api/core/agent/cot_completion_agent_runner.py
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
import json
|
||||||
|
|
||||||
|
from core.agent.cot_agent_runner import CotAgentRunner
|
||||||
|
from core.model_runtime.entities.message_entities import AssistantPromptMessage, PromptMessage, UserPromptMessage
|
||||||
|
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||||
|
|
||||||
|
|
||||||
|
class CotCompletionAgentRunner(CotAgentRunner):
|
||||||
|
def _organize_instruction_prompt(self) -> str:
|
||||||
|
"""
|
||||||
|
Organize instruction prompt
|
||||||
|
"""
|
||||||
|
prompt_entity = self.app_config.agent.prompt
|
||||||
|
first_prompt = prompt_entity.first_prompt
|
||||||
|
|
||||||
|
system_prompt = first_prompt.replace("{{instruction}}", self._instruction) \
|
||||||
|
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools))) \
|
||||||
|
.replace("{{tool_names}}", ', '.join([tool.name for tool in self._prompt_messages_tools]))
|
||||||
|
|
||||||
|
return system_prompt
|
||||||
|
|
||||||
|
def _organize_historic_prompt(self) -> str:
|
||||||
|
"""
|
||||||
|
Organize historic prompt
|
||||||
|
"""
|
||||||
|
historic_prompt_messages = self._historic_prompt_messages
|
||||||
|
historic_prompt = ""
|
||||||
|
|
||||||
|
for message in historic_prompt_messages:
|
||||||
|
if isinstance(message, UserPromptMessage):
|
||||||
|
historic_prompt += f"Question: {message.content}\n\n"
|
||||||
|
elif isinstance(message, AssistantPromptMessage):
|
||||||
|
historic_prompt += message.content + "\n\n"
|
||||||
|
|
||||||
|
return historic_prompt
|
||||||
|
|
||||||
|
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
||||||
|
"""
|
||||||
|
Organize prompt messages
|
||||||
|
"""
|
||||||
|
# organize system prompt
|
||||||
|
system_prompt = self._organize_instruction_prompt()
|
||||||
|
|
||||||
|
# organize historic prompt messages
|
||||||
|
historic_prompt = self._organize_historic_prompt()
|
||||||
|
|
||||||
|
# organize current assistant messages
|
||||||
|
agent_scratchpad = self._agent_scratchpad
|
||||||
|
assistant_prompt = ''
|
||||||
|
for unit in agent_scratchpad:
|
||||||
|
if unit.is_final():
|
||||||
|
assistant_prompt += f"Final Answer: {unit.agent_response}"
|
||||||
|
else:
|
||||||
|
assistant_prompt += f"Thought: {unit.thought}\n\n"
|
||||||
|
if unit.action_str:
|
||||||
|
assistant_prompt += f"Action: {unit.action_str}\n\n"
|
||||||
|
if unit.observation:
|
||||||
|
assistant_prompt += f"Observation: {unit.observation}\n\n"
|
||||||
|
|
||||||
|
# query messages
|
||||||
|
query_prompt = f"Question: {self._query}"
|
||||||
|
|
||||||
|
# join all messages
|
||||||
|
prompt = system_prompt \
|
||||||
|
.replace("{{historic_messages}}", historic_prompt) \
|
||||||
|
.replace("{{agent_scratchpad}}", assistant_prompt) \
|
||||||
|
.replace("{{query}}", query_prompt)
|
||||||
|
|
||||||
|
return [UserPromptMessage(content=prompt)]
|
@ -34,12 +34,29 @@ class AgentScratchpadUnit(BaseModel):
|
|||||||
action_name: str
|
action_name: str
|
||||||
action_input: Union[dict, str]
|
action_input: Union[dict, str]
|
||||||
|
|
||||||
|
def to_dict(self) -> dict:
|
||||||
|
"""
|
||||||
|
Convert to dictionary.
|
||||||
|
"""
|
||||||
|
return {
|
||||||
|
'action': self.action_name,
|
||||||
|
'action_input': self.action_input,
|
||||||
|
}
|
||||||
|
|
||||||
agent_response: Optional[str] = None
|
agent_response: Optional[str] = None
|
||||||
thought: Optional[str] = None
|
thought: Optional[str] = None
|
||||||
action_str: Optional[str] = None
|
action_str: Optional[str] = None
|
||||||
observation: Optional[str] = None
|
observation: Optional[str] = None
|
||||||
action: Optional[Action] = None
|
action: Optional[Action] = None
|
||||||
|
|
||||||
|
def is_final(self) -> bool:
|
||||||
|
"""
|
||||||
|
Check if the scratchpad unit is final.
|
||||||
|
"""
|
||||||
|
return self.action is None or (
|
||||||
|
'final' in self.action.action_name.lower() and
|
||||||
|
'answer' in self.action.action_name.lower()
|
||||||
|
)
|
||||||
|
|
||||||
class AgentEntity(BaseModel):
|
class AgentEntity(BaseModel):
|
||||||
"""
|
"""
|
||||||
|
@ -12,7 +12,6 @@ from core.model_runtime.entities.message_entities import (
|
|||||||
AssistantPromptMessage,
|
AssistantPromptMessage,
|
||||||
PromptMessage,
|
PromptMessage,
|
||||||
PromptMessageContentType,
|
PromptMessageContentType,
|
||||||
PromptMessageTool,
|
|
||||||
SystemPromptMessage,
|
SystemPromptMessage,
|
||||||
TextPromptMessageContent,
|
TextPromptMessageContent,
|
||||||
ToolPromptMessage,
|
ToolPromptMessage,
|
||||||
@ -25,8 +24,8 @@ from models.model import Message
|
|||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
class FunctionCallAgentRunner(BaseAgentRunner):
|
class FunctionCallAgentRunner(BaseAgentRunner):
|
||||||
def run(self, message: Message,
|
def run(self,
|
||||||
query: str,
|
message: Message, query: str, **kwargs: Any
|
||||||
) -> Generator[LLMResultChunk, None, None]:
|
) -> Generator[LLMResultChunk, None, None]:
|
||||||
"""
|
"""
|
||||||
Run FunctionCall agent application
|
Run FunctionCall agent application
|
||||||
@ -41,26 +40,7 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
|||||||
prompt_messages = self._organize_user_query(query, prompt_messages)
|
prompt_messages = self._organize_user_query(query, prompt_messages)
|
||||||
|
|
||||||
# convert tools into ModelRuntime Tool format
|
# convert tools into ModelRuntime Tool format
|
||||||
prompt_messages_tools: list[PromptMessageTool] = []
|
tool_instances, prompt_messages_tools = self._init_prompt_tools()
|
||||||
tool_instances = {}
|
|
||||||
for tool in app_config.agent.tools if app_config.agent else []:
|
|
||||||
try:
|
|
||||||
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
|
|
||||||
except Exception:
|
|
||||||
# api tool may be deleted
|
|
||||||
continue
|
|
||||||
# save tool entity
|
|
||||||
tool_instances[tool.tool_name] = tool_entity
|
|
||||||
# save prompt tool
|
|
||||||
prompt_messages_tools.append(prompt_tool)
|
|
||||||
|
|
||||||
# convert dataset tools into ModelRuntime Tool format
|
|
||||||
for dataset_tool in self.dataset_tools:
|
|
||||||
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
|
|
||||||
# save prompt tool
|
|
||||||
prompt_messages_tools.append(prompt_tool)
|
|
||||||
# save tool entity
|
|
||||||
tool_instances[dataset_tool.identity.name] = dataset_tool
|
|
||||||
|
|
||||||
iteration_step = 1
|
iteration_step = 1
|
||||||
max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
|
max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
|
||||||
|
183
api/core/agent/output_parser/cot_output_parser.py
Normal file
183
api/core/agent/output_parser/cot_output_parser.py
Normal file
@ -0,0 +1,183 @@
|
|||||||
|
import json
|
||||||
|
import re
|
||||||
|
from collections.abc import Generator
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
|
from core.agent.entities import AgentScratchpadUnit
|
||||||
|
from core.model_runtime.entities.llm_entities import LLMResultChunk
|
||||||
|
|
||||||
|
|
||||||
|
class CotAgentOutputParser:
|
||||||
|
@classmethod
|
||||||
|
def handle_react_stream_output(cls, llm_response: Generator[LLMResultChunk, None, None]) -> \
|
||||||
|
Generator[Union[str, AgentScratchpadUnit.Action], None, None]:
|
||||||
|
def parse_action(json_str):
|
||||||
|
try:
|
||||||
|
action = json.loads(json_str)
|
||||||
|
action_name = None
|
||||||
|
action_input = None
|
||||||
|
|
||||||
|
for key, value in action.items():
|
||||||
|
if 'input' in key.lower():
|
||||||
|
action_input = value
|
||||||
|
else:
|
||||||
|
action_name = value
|
||||||
|
|
||||||
|
if action_name is not None and action_input is not None:
|
||||||
|
return AgentScratchpadUnit.Action(
|
||||||
|
action_name=action_name,
|
||||||
|
action_input=action_input,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
return json_str or ''
|
||||||
|
except:
|
||||||
|
return json_str or ''
|
||||||
|
|
||||||
|
def extra_json_from_code_block(code_block) -> Generator[Union[dict, str], None, None]:
|
||||||
|
code_blocks = re.findall(r'```(.*?)```', code_block, re.DOTALL)
|
||||||
|
if not code_blocks:
|
||||||
|
return
|
||||||
|
for block in code_blocks:
|
||||||
|
json_text = re.sub(r'^[a-zA-Z]+\n', '', block.strip(), flags=re.MULTILINE)
|
||||||
|
yield parse_action(json_text)
|
||||||
|
|
||||||
|
code_block_cache = ''
|
||||||
|
code_block_delimiter_count = 0
|
||||||
|
in_code_block = False
|
||||||
|
json_cache = ''
|
||||||
|
json_quote_count = 0
|
||||||
|
in_json = False
|
||||||
|
got_json = False
|
||||||
|
|
||||||
|
action_cache = ''
|
||||||
|
action_str = 'action:'
|
||||||
|
action_idx = 0
|
||||||
|
|
||||||
|
thought_cache = ''
|
||||||
|
thought_str = 'thought:'
|
||||||
|
thought_idx = 0
|
||||||
|
|
||||||
|
for response in llm_response:
|
||||||
|
response = response.delta.message.content
|
||||||
|
if not isinstance(response, str):
|
||||||
|
continue
|
||||||
|
|
||||||
|
# stream
|
||||||
|
index = 0
|
||||||
|
while index < len(response):
|
||||||
|
steps = 1
|
||||||
|
delta = response[index:index+steps]
|
||||||
|
last_character = response[index-1] if index > 0 else ''
|
||||||
|
|
||||||
|
if delta == '`':
|
||||||
|
code_block_cache += delta
|
||||||
|
code_block_delimiter_count += 1
|
||||||
|
else:
|
||||||
|
if not in_code_block:
|
||||||
|
if code_block_delimiter_count > 0:
|
||||||
|
yield code_block_cache
|
||||||
|
code_block_cache = ''
|
||||||
|
else:
|
||||||
|
code_block_cache += delta
|
||||||
|
code_block_delimiter_count = 0
|
||||||
|
|
||||||
|
if not in_code_block and not in_json:
|
||||||
|
if delta.lower() == action_str[action_idx] and action_idx == 0:
|
||||||
|
if last_character not in ['\n', ' ', '']:
|
||||||
|
index += steps
|
||||||
|
yield delta
|
||||||
|
continue
|
||||||
|
|
||||||
|
action_cache += delta
|
||||||
|
action_idx += 1
|
||||||
|
if action_idx == len(action_str):
|
||||||
|
action_cache = ''
|
||||||
|
action_idx = 0
|
||||||
|
index += steps
|
||||||
|
continue
|
||||||
|
elif delta.lower() == action_str[action_idx] and action_idx > 0:
|
||||||
|
action_cache += delta
|
||||||
|
action_idx += 1
|
||||||
|
if action_idx == len(action_str):
|
||||||
|
action_cache = ''
|
||||||
|
action_idx = 0
|
||||||
|
index += steps
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
if action_cache:
|
||||||
|
yield action_cache
|
||||||
|
action_cache = ''
|
||||||
|
action_idx = 0
|
||||||
|
|
||||||
|
if delta.lower() == thought_str[thought_idx] and thought_idx == 0:
|
||||||
|
if last_character not in ['\n', ' ', '']:
|
||||||
|
index += steps
|
||||||
|
yield delta
|
||||||
|
continue
|
||||||
|
|
||||||
|
thought_cache += delta
|
||||||
|
thought_idx += 1
|
||||||
|
if thought_idx == len(thought_str):
|
||||||
|
thought_cache = ''
|
||||||
|
thought_idx = 0
|
||||||
|
index += steps
|
||||||
|
continue
|
||||||
|
elif delta.lower() == thought_str[thought_idx] and thought_idx > 0:
|
||||||
|
thought_cache += delta
|
||||||
|
thought_idx += 1
|
||||||
|
if thought_idx == len(thought_str):
|
||||||
|
thought_cache = ''
|
||||||
|
thought_idx = 0
|
||||||
|
index += steps
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
if thought_cache:
|
||||||
|
yield thought_cache
|
||||||
|
thought_cache = ''
|
||||||
|
thought_idx = 0
|
||||||
|
|
||||||
|
if code_block_delimiter_count == 3:
|
||||||
|
if in_code_block:
|
||||||
|
yield from extra_json_from_code_block(code_block_cache)
|
||||||
|
code_block_cache = ''
|
||||||
|
|
||||||
|
in_code_block = not in_code_block
|
||||||
|
code_block_delimiter_count = 0
|
||||||
|
|
||||||
|
if not in_code_block:
|
||||||
|
# handle single json
|
||||||
|
if delta == '{':
|
||||||
|
json_quote_count += 1
|
||||||
|
in_json = True
|
||||||
|
json_cache += delta
|
||||||
|
elif delta == '}':
|
||||||
|
json_cache += delta
|
||||||
|
if json_quote_count > 0:
|
||||||
|
json_quote_count -= 1
|
||||||
|
if json_quote_count == 0:
|
||||||
|
in_json = False
|
||||||
|
got_json = True
|
||||||
|
index += steps
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
if in_json:
|
||||||
|
json_cache += delta
|
||||||
|
|
||||||
|
if got_json:
|
||||||
|
got_json = False
|
||||||
|
yield parse_action(json_cache)
|
||||||
|
json_cache = ''
|
||||||
|
json_quote_count = 0
|
||||||
|
in_json = False
|
||||||
|
|
||||||
|
if not in_code_block and not in_json:
|
||||||
|
yield delta.replace('`', '')
|
||||||
|
|
||||||
|
index += steps
|
||||||
|
|
||||||
|
if code_block_cache:
|
||||||
|
yield code_block_cache
|
||||||
|
|
||||||
|
if json_cache:
|
||||||
|
yield parse_action(json_cache)
|
||||||
|
|
@ -1,7 +1,8 @@
|
|||||||
import logging
|
import logging
|
||||||
from typing import cast
|
from typing import cast
|
||||||
|
|
||||||
from core.agent.cot_agent_runner import CotAgentRunner
|
from core.agent.cot_chat_agent_runner import CotChatAgentRunner
|
||||||
|
from core.agent.cot_completion_agent_runner import CotCompletionAgentRunner
|
||||||
from core.agent.entities import AgentEntity
|
from core.agent.entities import AgentEntity
|
||||||
from core.agent.fc_agent_runner import FunctionCallAgentRunner
|
from core.agent.fc_agent_runner import FunctionCallAgentRunner
|
||||||
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
|
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
|
||||||
@ -11,8 +12,8 @@ from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity, Mo
|
|||||||
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
|
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
|
||||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||||
from core.model_manager import ModelInstance
|
from core.model_manager import ModelInstance
|
||||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
from core.model_runtime.entities.llm_entities import LLMMode, LLMUsage
|
||||||
from core.model_runtime.entities.model_entities import ModelFeature
|
from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey
|
||||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||||
from core.moderation.base import ModerationException
|
from core.moderation.base import ModerationException
|
||||||
from core.tools.entities.tool_entities import ToolRuntimeVariablePool
|
from core.tools.entities.tool_entities import ToolRuntimeVariablePool
|
||||||
@ -207,48 +208,40 @@ class AgentChatAppRunner(AppRunner):
|
|||||||
|
|
||||||
# start agent runner
|
# start agent runner
|
||||||
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
|
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
|
||||||
assistant_cot_runner = CotAgentRunner(
|
# check LLM mode
|
||||||
tenant_id=app_config.tenant_id,
|
if model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT.value:
|
||||||
application_generate_entity=application_generate_entity,
|
runner_cls = CotChatAgentRunner
|
||||||
conversation=conversation,
|
elif model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.COMPLETION.value:
|
||||||
app_config=app_config,
|
runner_cls = CotCompletionAgentRunner
|
||||||
model_config=application_generate_entity.model_config,
|
else:
|
||||||
config=agent_entity,
|
raise ValueError(f"Invalid LLM mode: {model_schema.model_properties.get(ModelPropertyKey.MODE)}")
|
||||||
queue_manager=queue_manager,
|
|
||||||
message=message,
|
|
||||||
user_id=application_generate_entity.user_id,
|
|
||||||
memory=memory,
|
|
||||||
prompt_messages=prompt_message,
|
|
||||||
variables_pool=tool_variables,
|
|
||||||
db_variables=tool_conversation_variables,
|
|
||||||
model_instance=model_instance
|
|
||||||
)
|
|
||||||
invoke_result = assistant_cot_runner.run(
|
|
||||||
message=message,
|
|
||||||
query=query,
|
|
||||||
inputs=inputs,
|
|
||||||
)
|
|
||||||
elif agent_entity.strategy == AgentEntity.Strategy.FUNCTION_CALLING:
|
elif agent_entity.strategy == AgentEntity.Strategy.FUNCTION_CALLING:
|
||||||
assistant_fc_runner = FunctionCallAgentRunner(
|
runner_cls = FunctionCallAgentRunner
|
||||||
tenant_id=app_config.tenant_id,
|
else:
|
||||||
application_generate_entity=application_generate_entity,
|
raise ValueError(f"Invalid agent strategy: {agent_entity.strategy}")
|
||||||
conversation=conversation,
|
|
||||||
app_config=app_config,
|
runner = runner_cls(
|
||||||
model_config=application_generate_entity.model_config,
|
tenant_id=app_config.tenant_id,
|
||||||
config=agent_entity,
|
application_generate_entity=application_generate_entity,
|
||||||
queue_manager=queue_manager,
|
conversation=conversation,
|
||||||
message=message,
|
app_config=app_config,
|
||||||
user_id=application_generate_entity.user_id,
|
model_config=application_generate_entity.model_config,
|
||||||
memory=memory,
|
config=agent_entity,
|
||||||
prompt_messages=prompt_message,
|
queue_manager=queue_manager,
|
||||||
variables_pool=tool_variables,
|
message=message,
|
||||||
db_variables=tool_conversation_variables,
|
user_id=application_generate_entity.user_id,
|
||||||
model_instance=model_instance
|
memory=memory,
|
||||||
)
|
prompt_messages=prompt_message,
|
||||||
invoke_result = assistant_fc_runner.run(
|
variables_pool=tool_variables,
|
||||||
message=message,
|
db_variables=tool_conversation_variables,
|
||||||
query=query,
|
model_instance=model_instance
|
||||||
)
|
)
|
||||||
|
|
||||||
|
invoke_result = runner.run(
|
||||||
|
message=message,
|
||||||
|
query=query,
|
||||||
|
inputs=inputs,
|
||||||
|
)
|
||||||
|
|
||||||
# handle invoke result
|
# handle invoke result
|
||||||
self._handle_invoke_result(
|
self._handle_invoke_result(
|
||||||
|
@ -38,8 +38,10 @@ Action:
|
|||||||
```
|
```
|
||||||
|
|
||||||
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
|
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
|
||||||
|
{{historic_messages}}
|
||||||
Question: {{query}}
|
Question: {{query}}
|
||||||
Thought: {{agent_scratchpad}}"""
|
{{agent_scratchpad}}
|
||||||
|
Thought:"""
|
||||||
|
|
||||||
ENGLISH_REACT_COMPLETION_AGENT_SCRATCHPAD_TEMPLATES = """Observation: {{observation}}
|
ENGLISH_REACT_COMPLETION_AGENT_SCRATCHPAD_TEMPLATES = """Observation: {{observation}}
|
||||||
Thought:"""
|
Thought:"""
|
||||||
|
Loading…
x
Reference in New Issue
Block a user