mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-05-10 02:29:16 +08:00
feat: Add ComfyUI tool for Stable Diffusion (#8160)
This commit is contained in:
parent
e896d1e9d7
commit
cf645c3ba1
BIN
api/core/tools/provider/builtin/comfyui/_assets/icon.png
Normal file
BIN
api/core/tools/provider/builtin/comfyui/_assets/icon.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 209 KiB |
17
api/core/tools/provider/builtin/comfyui/comfyui.py
Normal file
17
api/core/tools/provider/builtin/comfyui/comfyui.py
Normal file
@ -0,0 +1,17 @@
|
||||
from typing import Any
|
||||
|
||||
from core.tools.errors import ToolProviderCredentialValidationError
|
||||
from core.tools.provider.builtin.comfyui.tools.comfyui_stable_diffusion import ComfyuiStableDiffusionTool
|
||||
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
|
||||
|
||||
|
||||
class ComfyUIProvider(BuiltinToolProviderController):
|
||||
def _validate_credentials(self, credentials: dict[str, Any]) -> None:
|
||||
try:
|
||||
ComfyuiStableDiffusionTool().fork_tool_runtime(
|
||||
runtime={
|
||||
"credentials": credentials,
|
||||
}
|
||||
).validate_models()
|
||||
except Exception as e:
|
||||
raise ToolProviderCredentialValidationError(str(e))
|
42
api/core/tools/provider/builtin/comfyui/comfyui.yaml
Normal file
42
api/core/tools/provider/builtin/comfyui/comfyui.yaml
Normal file
@ -0,0 +1,42 @@
|
||||
identity:
|
||||
author: Qun
|
||||
name: comfyui
|
||||
label:
|
||||
en_US: ComfyUI
|
||||
zh_Hans: ComfyUI
|
||||
pt_BR: ComfyUI
|
||||
description:
|
||||
en_US: ComfyUI is a tool for generating images which can be deployed locally.
|
||||
zh_Hans: ComfyUI 是一个可以在本地部署的图片生成的工具。
|
||||
pt_BR: ComfyUI is a tool for generating images which can be deployed locally.
|
||||
icon: icon.png
|
||||
tags:
|
||||
- image
|
||||
credentials_for_provider:
|
||||
base_url:
|
||||
type: text-input
|
||||
required: true
|
||||
label:
|
||||
en_US: Base URL
|
||||
zh_Hans: ComfyUI服务器的Base URL
|
||||
pt_BR: Base URL
|
||||
placeholder:
|
||||
en_US: Please input your ComfyUI server's Base URL
|
||||
zh_Hans: 请输入你的 ComfyUI 服务器的 Base URL
|
||||
pt_BR: Please input your ComfyUI server's Base URL
|
||||
model:
|
||||
type: text-input
|
||||
required: true
|
||||
label:
|
||||
en_US: Model with suffix
|
||||
zh_Hans: 模型, 需要带后缀
|
||||
pt_BR: Model with suffix
|
||||
placeholder:
|
||||
en_US: Please input your model
|
||||
zh_Hans: 请输入你的模型名称
|
||||
pt_BR: Please input your model
|
||||
help:
|
||||
en_US: The checkpoint name of the ComfyUI server, e.g. xxx.safetensors
|
||||
zh_Hans: ComfyUI服务器的模型名称, 比如 xxx.safetensors
|
||||
pt_BR: The checkpoint name of the ComfyUI server, e.g. xxx.safetensors
|
||||
url: https://docs.dify.ai/tutorials/tool-configuration/comfyui
|
@ -0,0 +1,475 @@
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
import uuid
|
||||
from copy import deepcopy
|
||||
from enum import Enum
|
||||
from typing import Any, Union
|
||||
|
||||
import websocket
|
||||
from httpx import get, post
|
||||
from yarl import URL
|
||||
|
||||
from core.tools.entities.common_entities import I18nObject
|
||||
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolParameter, ToolParameterOption
|
||||
from core.tools.errors import ToolProviderCredentialValidationError
|
||||
from core.tools.tool.builtin_tool import BuiltinTool
|
||||
|
||||
SD_TXT2IMG_OPTIONS = {}
|
||||
LORA_NODE = {
|
||||
"inputs": {"lora_name": "", "strength_model": 1, "strength_clip": 1, "model": ["11", 0], "clip": ["11", 1]},
|
||||
"class_type": "LoraLoader",
|
||||
"_meta": {"title": "Load LoRA"},
|
||||
}
|
||||
FluxGuidanceNode = {
|
||||
"inputs": {"guidance": 3.5, "conditioning": ["6", 0]},
|
||||
"class_type": "FluxGuidance",
|
||||
"_meta": {"title": "FluxGuidance"},
|
||||
}
|
||||
|
||||
|
||||
class ModelType(Enum):
|
||||
SD15 = 1
|
||||
SDXL = 2
|
||||
SD3 = 3
|
||||
FLUX = 4
|
||||
|
||||
|
||||
class ComfyuiStableDiffusionTool(BuiltinTool):
|
||||
def _invoke(
|
||||
self, user_id: str, tool_parameters: dict[str, Any]
|
||||
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
|
||||
"""
|
||||
invoke tools
|
||||
"""
|
||||
# base url
|
||||
base_url = self.runtime.credentials.get("base_url", "")
|
||||
if not base_url:
|
||||
return self.create_text_message("Please input base_url")
|
||||
|
||||
if tool_parameters.get("model"):
|
||||
self.runtime.credentials["model"] = tool_parameters["model"]
|
||||
|
||||
model = self.runtime.credentials.get("model", None)
|
||||
if not model:
|
||||
return self.create_text_message("Please input model")
|
||||
|
||||
# prompt
|
||||
prompt = tool_parameters.get("prompt", "")
|
||||
if not prompt:
|
||||
return self.create_text_message("Please input prompt")
|
||||
|
||||
# get negative prompt
|
||||
negative_prompt = tool_parameters.get("negative_prompt", "")
|
||||
|
||||
# get size
|
||||
width = tool_parameters.get("width", 1024)
|
||||
height = tool_parameters.get("height", 1024)
|
||||
|
||||
# get steps
|
||||
steps = tool_parameters.get("steps", 1)
|
||||
|
||||
# get sampler_name
|
||||
sampler_name = tool_parameters.get("sampler_name", "euler")
|
||||
|
||||
# scheduler
|
||||
scheduler = tool_parameters.get("scheduler", "normal")
|
||||
|
||||
# get cfg
|
||||
cfg = tool_parameters.get("cfg", 7.0)
|
||||
|
||||
# get model type
|
||||
model_type = tool_parameters.get("model_type", ModelType.SD15.name)
|
||||
|
||||
# get lora
|
||||
# supports up to 3 loras
|
||||
lora_list = []
|
||||
lora_strength_list = []
|
||||
if tool_parameters.get("lora_1"):
|
||||
lora_list.append(tool_parameters["lora_1"])
|
||||
lora_strength_list.append(tool_parameters.get("lora_strength_1", 1))
|
||||
if tool_parameters.get("lora_2"):
|
||||
lora_list.append(tool_parameters["lora_2"])
|
||||
lora_strength_list.append(tool_parameters.get("lora_strength_2", 1))
|
||||
if tool_parameters.get("lora_3"):
|
||||
lora_list.append(tool_parameters["lora_3"])
|
||||
lora_strength_list.append(tool_parameters.get("lora_strength_3", 1))
|
||||
|
||||
return self.text2img(
|
||||
base_url=base_url,
|
||||
model=model,
|
||||
model_type=model_type,
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
width=width,
|
||||
height=height,
|
||||
steps=steps,
|
||||
sampler_name=sampler_name,
|
||||
scheduler=scheduler,
|
||||
cfg=cfg,
|
||||
lora_list=lora_list,
|
||||
lora_strength_list=lora_strength_list,
|
||||
)
|
||||
|
||||
def get_checkpoints(self) -> list[str]:
|
||||
"""
|
||||
get checkpoints
|
||||
"""
|
||||
try:
|
||||
base_url = self.runtime.credentials.get("base_url", None)
|
||||
if not base_url:
|
||||
return []
|
||||
api_url = str(URL(base_url) / "models" / "checkpoints")
|
||||
response = get(url=api_url, timeout=(2, 10))
|
||||
if response.status_code != 200:
|
||||
return []
|
||||
else:
|
||||
return response.json()
|
||||
except Exception as e:
|
||||
return []
|
||||
|
||||
def get_loras(self) -> list[str]:
|
||||
"""
|
||||
get loras
|
||||
"""
|
||||
try:
|
||||
base_url = self.runtime.credentials.get("base_url", None)
|
||||
if not base_url:
|
||||
return []
|
||||
api_url = str(URL(base_url) / "models" / "loras")
|
||||
response = get(url=api_url, timeout=(2, 10))
|
||||
if response.status_code != 200:
|
||||
return []
|
||||
else:
|
||||
return response.json()
|
||||
except Exception as e:
|
||||
return []
|
||||
|
||||
def get_sample_methods(self) -> tuple[list[str], list[str]]:
|
||||
"""
|
||||
get sample method
|
||||
"""
|
||||
try:
|
||||
base_url = self.runtime.credentials.get("base_url", None)
|
||||
if not base_url:
|
||||
return [], []
|
||||
api_url = str(URL(base_url) / "object_info" / "KSampler")
|
||||
response = get(url=api_url, timeout=(2, 10))
|
||||
if response.status_code != 200:
|
||||
return [], []
|
||||
else:
|
||||
data = response.json()["KSampler"]["input"]["required"]
|
||||
return data["sampler_name"][0], data["scheduler"][0]
|
||||
except Exception as e:
|
||||
return [], []
|
||||
|
||||
def validate_models(self) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
|
||||
"""
|
||||
validate models
|
||||
"""
|
||||
try:
|
||||
base_url = self.runtime.credentials.get("base_url", None)
|
||||
if not base_url:
|
||||
raise ToolProviderCredentialValidationError("Please input base_url")
|
||||
model = self.runtime.credentials.get("model", None)
|
||||
if not model:
|
||||
raise ToolProviderCredentialValidationError("Please input model")
|
||||
|
||||
api_url = str(URL(base_url) / "models" / "checkpoints")
|
||||
response = get(url=api_url, timeout=(2, 10))
|
||||
if response.status_code != 200:
|
||||
raise ToolProviderCredentialValidationError("Failed to get models")
|
||||
else:
|
||||
models = response.json()
|
||||
if len([d for d in models if d == model]) > 0:
|
||||
return self.create_text_message(json.dumps(models))
|
||||
else:
|
||||
raise ToolProviderCredentialValidationError(f"model {model} does not exist")
|
||||
except Exception as e:
|
||||
raise ToolProviderCredentialValidationError(f"Failed to get models, {e}")
|
||||
|
||||
def get_history(self, base_url, prompt_id):
|
||||
"""
|
||||
get history
|
||||
"""
|
||||
url = str(URL(base_url) / "history")
|
||||
respond = get(url, params={"prompt_id": prompt_id}, timeout=(2, 10))
|
||||
return respond.json()
|
||||
|
||||
def download_image(self, base_url, filename, subfolder, folder_type):
|
||||
"""
|
||||
download image
|
||||
"""
|
||||
url = str(URL(base_url) / "view")
|
||||
response = get(url, params={"filename": filename, "subfolder": subfolder, "type": folder_type}, timeout=(2, 10))
|
||||
return response.content
|
||||
|
||||
def queue_prompt_image(self, base_url, client_id, prompt):
|
||||
"""
|
||||
send prompt task and rotate
|
||||
"""
|
||||
# initiate task execution
|
||||
url = str(URL(base_url) / "prompt")
|
||||
respond = post(url, data=json.dumps({"client_id": client_id, "prompt": prompt}), timeout=(2, 10))
|
||||
prompt_id = respond.json()["prompt_id"]
|
||||
|
||||
ws = websocket.WebSocket()
|
||||
if "https" in base_url:
|
||||
ws_url = base_url.replace("https", "ws")
|
||||
else:
|
||||
ws_url = base_url.replace("http", "ws")
|
||||
ws.connect(str(URL(f"{ws_url}") / "ws") + f"?clientId={client_id}", timeout=120)
|
||||
|
||||
# websocket rotate execution status
|
||||
output_images = {}
|
||||
while True:
|
||||
out = ws.recv()
|
||||
if isinstance(out, str):
|
||||
message = json.loads(out)
|
||||
if message["type"] == "executing":
|
||||
data = message["data"]
|
||||
if data["node"] is None and data["prompt_id"] == prompt_id:
|
||||
break # Execution is done
|
||||
elif message["type"] == "status":
|
||||
data = message["data"]
|
||||
if data["status"]["exec_info"]["queue_remaining"] == 0 and data.get("sid"):
|
||||
break # Execution is done
|
||||
else:
|
||||
continue # previews are binary data
|
||||
|
||||
# download image when execution finished
|
||||
history = self.get_history(base_url, prompt_id)[prompt_id]
|
||||
for o in history["outputs"]:
|
||||
for node_id in history["outputs"]:
|
||||
node_output = history["outputs"][node_id]
|
||||
if "images" in node_output:
|
||||
images_output = []
|
||||
for image in node_output["images"]:
|
||||
image_data = self.download_image(base_url, image["filename"], image["subfolder"], image["type"])
|
||||
images_output.append(image_data)
|
||||
output_images[node_id] = images_output
|
||||
|
||||
ws.close()
|
||||
|
||||
return output_images
|
||||
|
||||
def text2img(
|
||||
self,
|
||||
base_url: str,
|
||||
model: str,
|
||||
model_type: str,
|
||||
prompt: str,
|
||||
negative_prompt: str,
|
||||
width: int,
|
||||
height: int,
|
||||
steps: int,
|
||||
sampler_name: str,
|
||||
scheduler: str,
|
||||
cfg: float,
|
||||
lora_list: list,
|
||||
lora_strength_list: list,
|
||||
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
|
||||
"""
|
||||
generate image
|
||||
"""
|
||||
if not SD_TXT2IMG_OPTIONS:
|
||||
current_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
with open(os.path.join(current_dir, "txt2img.json")) as file:
|
||||
SD_TXT2IMG_OPTIONS.update(json.load(file))
|
||||
|
||||
draw_options = deepcopy(SD_TXT2IMG_OPTIONS)
|
||||
draw_options["3"]["inputs"]["steps"] = steps
|
||||
draw_options["3"]["inputs"]["sampler_name"] = sampler_name
|
||||
draw_options["3"]["inputs"]["scheduler"] = scheduler
|
||||
draw_options["3"]["inputs"]["cfg"] = cfg
|
||||
# generate different image when using same prompt next time
|
||||
draw_options["3"]["inputs"]["seed"] = random.randint(0, 100000000)
|
||||
draw_options["4"]["inputs"]["ckpt_name"] = model
|
||||
draw_options["5"]["inputs"]["width"] = width
|
||||
draw_options["5"]["inputs"]["height"] = height
|
||||
draw_options["6"]["inputs"]["text"] = prompt
|
||||
draw_options["7"]["inputs"]["text"] = negative_prompt
|
||||
# if the model is SD3 or FLUX series, the Latent class should be corresponding to SD3 Latent
|
||||
if model_type in (ModelType.SD3.name, ModelType.FLUX.name):
|
||||
draw_options["5"]["class_type"] = "EmptySD3LatentImage"
|
||||
|
||||
if lora_list:
|
||||
# last Lora node link to KSampler node
|
||||
draw_options["3"]["inputs"]["model"][0] = "10"
|
||||
# last Lora node link to positive and negative Clip node
|
||||
draw_options["6"]["inputs"]["clip"][0] = "10"
|
||||
draw_options["7"]["inputs"]["clip"][0] = "10"
|
||||
# every Lora node link to next Lora node, and Checkpoints node link to first Lora node
|
||||
for i, (lora, strength) in enumerate(zip(lora_list, lora_strength_list), 10):
|
||||
if i - 10 == len(lora_list) - 1:
|
||||
next_node_id = "4"
|
||||
else:
|
||||
next_node_id = str(i + 1)
|
||||
lora_node = deepcopy(LORA_NODE)
|
||||
lora_node["inputs"]["lora_name"] = lora
|
||||
lora_node["inputs"]["strength_model"] = strength
|
||||
lora_node["inputs"]["strength_clip"] = strength
|
||||
lora_node["inputs"]["model"][0] = next_node_id
|
||||
lora_node["inputs"]["clip"][0] = next_node_id
|
||||
draw_options[str(i)] = lora_node
|
||||
|
||||
# FLUX need to add FluxGuidance Node
|
||||
if model_type == ModelType.FLUX.name:
|
||||
last_node_id = str(10 + len(lora_list))
|
||||
draw_options[last_node_id] = deepcopy(FluxGuidanceNode)
|
||||
draw_options[last_node_id]["inputs"]["conditioning"][0] = "6"
|
||||
draw_options["3"]["inputs"]["positive"][0] = last_node_id
|
||||
|
||||
try:
|
||||
client_id = str(uuid.uuid4())
|
||||
result = self.queue_prompt_image(base_url, client_id, prompt=draw_options)
|
||||
|
||||
# get first image
|
||||
image = b""
|
||||
for node in result:
|
||||
for img in result[node]:
|
||||
if img:
|
||||
image = img
|
||||
break
|
||||
|
||||
return self.create_blob_message(
|
||||
blob=image, meta={"mime_type": "image/png"}, save_as=self.VARIABLE_KEY.IMAGE.value
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
return self.create_text_message(f"Failed to generate image: {str(e)}")
|
||||
|
||||
def get_runtime_parameters(self) -> list[ToolParameter]:
|
||||
parameters = [
|
||||
ToolParameter(
|
||||
name="prompt",
|
||||
label=I18nObject(en_US="Prompt", zh_Hans="Prompt"),
|
||||
human_description=I18nObject(
|
||||
en_US="Image prompt, you can check the official documentation of Stable Diffusion",
|
||||
zh_Hans="图像提示词,您可以查看 Stable Diffusion 的官方文档",
|
||||
),
|
||||
type=ToolParameter.ToolParameterType.STRING,
|
||||
form=ToolParameter.ToolParameterForm.LLM,
|
||||
llm_description="Image prompt of Stable Diffusion, you should describe the image "
|
||||
"you want to generate as a list of words as possible as detailed, "
|
||||
"the prompt must be written in English.",
|
||||
required=True,
|
||||
),
|
||||
]
|
||||
if self.runtime.credentials:
|
||||
try:
|
||||
models = self.get_checkpoints()
|
||||
if len(models) != 0:
|
||||
parameters.append(
|
||||
ToolParameter(
|
||||
name="model",
|
||||
label=I18nObject(en_US="Model", zh_Hans="Model"),
|
||||
human_description=I18nObject(
|
||||
en_US="Model of Stable Diffusion or FLUX, "
|
||||
"you can check the official documentation of Stable Diffusion or FLUX",
|
||||
zh_Hans="Stable Diffusion 或者 FLUX 的模型,您可以查看 Stable Diffusion 的官方文档",
|
||||
),
|
||||
type=ToolParameter.ToolParameterType.SELECT,
|
||||
form=ToolParameter.ToolParameterForm.FORM,
|
||||
llm_description="Model of Stable Diffusion or FLUX, "
|
||||
"you can check the official documentation of Stable Diffusion or FLUX",
|
||||
required=True,
|
||||
default=models[0],
|
||||
options=[
|
||||
ToolParameterOption(value=i, label=I18nObject(en_US=i, zh_Hans=i)) for i in models
|
||||
],
|
||||
)
|
||||
)
|
||||
loras = self.get_loras()
|
||||
if len(loras) != 0:
|
||||
for n in range(1, 4):
|
||||
parameters.append(
|
||||
ToolParameter(
|
||||
name=f"lora_{n}",
|
||||
label=I18nObject(en_US=f"Lora {n}", zh_Hans=f"Lora {n}"),
|
||||
human_description=I18nObject(
|
||||
en_US="Lora of Stable Diffusion, "
|
||||
"you can check the official documentation of Stable Diffusion",
|
||||
zh_Hans="Stable Diffusion 的 Lora 模型,您可以查看 Stable Diffusion 的官方文档",
|
||||
),
|
||||
type=ToolParameter.ToolParameterType.SELECT,
|
||||
form=ToolParameter.ToolParameterForm.FORM,
|
||||
llm_description="Lora of Stable Diffusion, "
|
||||
"you can check the official documentation of "
|
||||
"Stable Diffusion",
|
||||
required=False,
|
||||
options=[
|
||||
ToolParameterOption(value=i, label=I18nObject(en_US=i, zh_Hans=i)) for i in loras
|
||||
],
|
||||
)
|
||||
)
|
||||
sample_methods, schedulers = self.get_sample_methods()
|
||||
if len(sample_methods) != 0:
|
||||
parameters.append(
|
||||
ToolParameter(
|
||||
name="sampler_name",
|
||||
label=I18nObject(en_US="Sampling method", zh_Hans="Sampling method"),
|
||||
human_description=I18nObject(
|
||||
en_US="Sampling method of Stable Diffusion, "
|
||||
"you can check the official documentation of Stable Diffusion",
|
||||
zh_Hans="Stable Diffusion 的Sampling method,您可以查看 Stable Diffusion 的官方文档",
|
||||
),
|
||||
type=ToolParameter.ToolParameterType.SELECT,
|
||||
form=ToolParameter.ToolParameterForm.FORM,
|
||||
llm_description="Sampling method of Stable Diffusion, "
|
||||
"you can check the official documentation of Stable Diffusion",
|
||||
required=True,
|
||||
default=sample_methods[0],
|
||||
options=[
|
||||
ToolParameterOption(value=i, label=I18nObject(en_US=i, zh_Hans=i))
|
||||
for i in sample_methods
|
||||
],
|
||||
)
|
||||
)
|
||||
if len(schedulers) != 0:
|
||||
parameters.append(
|
||||
ToolParameter(
|
||||
name="scheduler",
|
||||
label=I18nObject(en_US="Scheduler", zh_Hans="Scheduler"),
|
||||
human_description=I18nObject(
|
||||
en_US="Scheduler of Stable Diffusion, "
|
||||
"you can check the official documentation of Stable Diffusion",
|
||||
zh_Hans="Stable Diffusion 的Scheduler,您可以查看 Stable Diffusion 的官方文档",
|
||||
),
|
||||
type=ToolParameter.ToolParameterType.SELECT,
|
||||
form=ToolParameter.ToolParameterForm.FORM,
|
||||
llm_description="Scheduler of Stable Diffusion, "
|
||||
"you can check the official documentation of Stable Diffusion",
|
||||
required=True,
|
||||
default=schedulers[0],
|
||||
options=[
|
||||
ToolParameterOption(value=i, label=I18nObject(en_US=i, zh_Hans=i)) for i in schedulers
|
||||
],
|
||||
)
|
||||
)
|
||||
parameters.append(
|
||||
ToolParameter(
|
||||
name="model_type",
|
||||
label=I18nObject(en_US="Model Type", zh_Hans="Model Type"),
|
||||
human_description=I18nObject(
|
||||
en_US="Model Type of Stable Diffusion or Flux, "
|
||||
"you can check the official documentation of Stable Diffusion or Flux",
|
||||
zh_Hans="Stable Diffusion 或 FLUX 的模型类型,"
|
||||
"您可以查看 Stable Diffusion 或 Flux 的官方文档",
|
||||
),
|
||||
type=ToolParameter.ToolParameterType.SELECT,
|
||||
form=ToolParameter.ToolParameterForm.FORM,
|
||||
llm_description="Model Type of Stable Diffusion or Flux, "
|
||||
"you can check the official documentation of Stable Diffusion or Flux",
|
||||
required=True,
|
||||
default=ModelType.SD15.name,
|
||||
options=[
|
||||
ToolParameterOption(value=i, label=I18nObject(en_US=i, zh_Hans=i))
|
||||
for i in ModelType.__members__
|
||||
],
|
||||
)
|
||||
)
|
||||
except:
|
||||
pass
|
||||
|
||||
return parameters
|
@ -0,0 +1,212 @@
|
||||
identity:
|
||||
name: txt2img workflow
|
||||
author: Qun
|
||||
label:
|
||||
en_US: Txt2Img Workflow
|
||||
zh_Hans: Txt2Img Workflow
|
||||
pt_BR: Txt2Img Workflow
|
||||
description:
|
||||
human:
|
||||
en_US: a pre-defined comfyui workflow that can use one model and up to 3 loras to generate images. Support SD1.5, SDXL, SD3 and FLUX which contain text encoders/clip, but does not support models that requires a triple clip loader.
|
||||
zh_Hans: 一个预定义的 ComfyUI 工作流,可以使用一个模型和最多3个loras来生成图像。支持包含文本编码器/clip的SD1.5、SDXL、SD3和FLUX,但不支持需要clip加载器的模型。
|
||||
pt_BR: a pre-defined comfyui workflow that can use one model and up to 3 loras to generate images. Support SD1.5, SDXL, SD3 and FLUX which contain text encoders/clip, but does not support models that requires a triple clip loader.
|
||||
llm: draw the image you want based on your prompt.
|
||||
parameters:
|
||||
- name: prompt
|
||||
type: string
|
||||
required: true
|
||||
label:
|
||||
en_US: Prompt
|
||||
zh_Hans: 提示词
|
||||
pt_BR: Prompt
|
||||
human_description:
|
||||
en_US: Image prompt, you can check the official documentation of Stable Diffusion or FLUX
|
||||
zh_Hans: 图像提示词,您可以查看 Stable Diffusion 或者 FLUX 的官方文档
|
||||
pt_BR: Image prompt, you can check the official documentation of Stable Diffusion or FLUX
|
||||
llm_description: Image prompt of Stable Diffusion, you should describe the image you want to generate as a list of words as possible as detailed, the prompt must be written in English.
|
||||
form: llm
|
||||
- name: model
|
||||
type: string
|
||||
required: true
|
||||
label:
|
||||
en_US: Model Name
|
||||
zh_Hans: 模型名称
|
||||
pt_BR: Model Name
|
||||
human_description:
|
||||
en_US: Model Name
|
||||
zh_Hans: 模型名称
|
||||
pt_BR: Model Name
|
||||
form: form
|
||||
- name: model_type
|
||||
type: string
|
||||
required: true
|
||||
label:
|
||||
en_US: Model Type
|
||||
zh_Hans: 模型类型
|
||||
pt_BR: Model Type
|
||||
human_description:
|
||||
en_US: Model Type
|
||||
zh_Hans: 模型类型
|
||||
pt_BR: Model Type
|
||||
form: form
|
||||
- name: lora_1
|
||||
type: string
|
||||
required: false
|
||||
label:
|
||||
en_US: Lora 1
|
||||
zh_Hans: Lora 1
|
||||
pt_BR: Lora 1
|
||||
human_description:
|
||||
en_US: Lora 1
|
||||
zh_Hans: Lora 1
|
||||
pt_BR: Lora 1
|
||||
form: form
|
||||
- name: lora_strength_1
|
||||
type: number
|
||||
required: false
|
||||
label:
|
||||
en_US: Lora Strength 1
|
||||
zh_Hans: Lora Strength 1
|
||||
pt_BR: Lora Strength 1
|
||||
human_description:
|
||||
en_US: Lora Strength 1
|
||||
zh_Hans: Lora模型的权重
|
||||
pt_BR: Lora Strength 1
|
||||
form: form
|
||||
- name: steps
|
||||
type: number
|
||||
required: false
|
||||
label:
|
||||
en_US: Steps
|
||||
zh_Hans: Steps
|
||||
pt_BR: Steps
|
||||
human_description:
|
||||
en_US: Steps
|
||||
zh_Hans: Steps
|
||||
pt_BR: Steps
|
||||
form: form
|
||||
default: 20
|
||||
- name: width
|
||||
type: number
|
||||
required: false
|
||||
label:
|
||||
en_US: Width
|
||||
zh_Hans: Width
|
||||
pt_BR: Width
|
||||
human_description:
|
||||
en_US: Width
|
||||
zh_Hans: Width
|
||||
pt_BR: Width
|
||||
form: form
|
||||
default: 1024
|
||||
- name: height
|
||||
type: number
|
||||
required: false
|
||||
label:
|
||||
en_US: Height
|
||||
zh_Hans: Height
|
||||
pt_BR: Height
|
||||
human_description:
|
||||
en_US: Height
|
||||
zh_Hans: Height
|
||||
pt_BR: Height
|
||||
form: form
|
||||
default: 1024
|
||||
- name: negative_prompt
|
||||
type: string
|
||||
required: false
|
||||
label:
|
||||
en_US: Negative prompt
|
||||
zh_Hans: Negative prompt
|
||||
pt_BR: Negative prompt
|
||||
human_description:
|
||||
en_US: Negative prompt
|
||||
zh_Hans: Negative prompt
|
||||
pt_BR: Negative prompt
|
||||
form: form
|
||||
default: bad art, ugly, deformed, watermark, duplicated, discontinuous lines
|
||||
- name: cfg
|
||||
type: number
|
||||
required: false
|
||||
label:
|
||||
en_US: CFG Scale
|
||||
zh_Hans: CFG Scale
|
||||
pt_BR: CFG Scale
|
||||
human_description:
|
||||
en_US: CFG Scale
|
||||
zh_Hans: 提示词相关性(CFG Scale)
|
||||
pt_BR: CFG Scale
|
||||
form: form
|
||||
default: 7.0
|
||||
- name: sampler_name
|
||||
type: string
|
||||
required: false
|
||||
label:
|
||||
en_US: Sampling method
|
||||
zh_Hans: Sampling method
|
||||
pt_BR: Sampling method
|
||||
human_description:
|
||||
en_US: Sampling method
|
||||
zh_Hans: Sampling method
|
||||
pt_BR: Sampling method
|
||||
form: form
|
||||
- name: scheduler
|
||||
type: string
|
||||
required: false
|
||||
label:
|
||||
en_US: Scheduler
|
||||
zh_Hans: Scheduler
|
||||
pt_BR: Scheduler
|
||||
human_description:
|
||||
en_US: Scheduler
|
||||
zh_Hans: Scheduler
|
||||
pt_BR: Scheduler
|
||||
form: form
|
||||
- name: lora_2
|
||||
type: string
|
||||
required: false
|
||||
label:
|
||||
en_US: Lora 2
|
||||
zh_Hans: Lora 2
|
||||
pt_BR: Lora 2
|
||||
human_description:
|
||||
en_US: Lora 2
|
||||
zh_Hans: Lora 2
|
||||
pt_BR: Lora 2
|
||||
form: form
|
||||
- name: lora_strength_2
|
||||
type: number
|
||||
required: false
|
||||
label:
|
||||
en_US: Lora Strength 2
|
||||
zh_Hans: Lora Strength 2
|
||||
pt_BR: Lora Strength 2
|
||||
human_description:
|
||||
en_US: Lora Strength 2
|
||||
zh_Hans: Lora模型的权重
|
||||
pt_BR: Lora Strength 2
|
||||
form: form
|
||||
- name: lora_3
|
||||
type: string
|
||||
required: false
|
||||
label:
|
||||
en_US: Lora 3
|
||||
zh_Hans: Lora 3
|
||||
pt_BR: Lora 3
|
||||
human_description:
|
||||
en_US: Lora 3
|
||||
zh_Hans: Lora 3
|
||||
pt_BR: Lora 3
|
||||
form: form
|
||||
- name: lora_strength_3
|
||||
type: number
|
||||
required: false
|
||||
label:
|
||||
en_US: Lora Strength 3
|
||||
zh_Hans: Lora Strength 3
|
||||
pt_BR: Lora Strength 3
|
||||
human_description:
|
||||
en_US: Lora Strength 3
|
||||
zh_Hans: Lora模型的权重
|
||||
pt_BR: Lora Strength 3
|
||||
form: form
|
107
api/core/tools/provider/builtin/comfyui/tools/txt2img.json
Normal file
107
api/core/tools/provider/builtin/comfyui/tools/txt2img.json
Normal file
@ -0,0 +1,107 @@
|
||||
{
|
||||
"3": {
|
||||
"inputs": {
|
||||
"seed": 156680208700286,
|
||||
"steps": 20,
|
||||
"cfg": 8,
|
||||
"sampler_name": "euler",
|
||||
"scheduler": "normal",
|
||||
"denoise": 1,
|
||||
"model": [
|
||||
"4",
|
||||
0
|
||||
],
|
||||
"positive": [
|
||||
"6",
|
||||
0
|
||||
],
|
||||
"negative": [
|
||||
"7",
|
||||
0
|
||||
],
|
||||
"latent_image": [
|
||||
"5",
|
||||
0
|
||||
]
|
||||
},
|
||||
"class_type": "KSampler",
|
||||
"_meta": {
|
||||
"title": "KSampler"
|
||||
}
|
||||
},
|
||||
"4": {
|
||||
"inputs": {
|
||||
"ckpt_name": "3dAnimationDiffusion_v10.safetensors"
|
||||
},
|
||||
"class_type": "CheckpointLoaderSimple",
|
||||
"_meta": {
|
||||
"title": "Load Checkpoint"
|
||||
}
|
||||
},
|
||||
"5": {
|
||||
"inputs": {
|
||||
"width": 512,
|
||||
"height": 512,
|
||||
"batch_size": 1
|
||||
},
|
||||
"class_type": "EmptyLatentImage",
|
||||
"_meta": {
|
||||
"title": "Empty Latent Image"
|
||||
}
|
||||
},
|
||||
"6": {
|
||||
"inputs": {
|
||||
"text": "beautiful scenery nature glass bottle landscape, , purple galaxy bottle,",
|
||||
"clip": [
|
||||
"4",
|
||||
1
|
||||
]
|
||||
},
|
||||
"class_type": "CLIPTextEncode",
|
||||
"_meta": {
|
||||
"title": "CLIP Text Encode (Prompt)"
|
||||
}
|
||||
},
|
||||
"7": {
|
||||
"inputs": {
|
||||
"text": "text, watermark",
|
||||
"clip": [
|
||||
"4",
|
||||
1
|
||||
]
|
||||
},
|
||||
"class_type": "CLIPTextEncode",
|
||||
"_meta": {
|
||||
"title": "CLIP Text Encode (Prompt)"
|
||||
}
|
||||
},
|
||||
"8": {
|
||||
"inputs": {
|
||||
"samples": [
|
||||
"3",
|
||||
0
|
||||
],
|
||||
"vae": [
|
||||
"4",
|
||||
2
|
||||
]
|
||||
},
|
||||
"class_type": "VAEDecode",
|
||||
"_meta": {
|
||||
"title": "VAE Decode"
|
||||
}
|
||||
},
|
||||
"9": {
|
||||
"inputs": {
|
||||
"filename_prefix": "ComfyUI",
|
||||
"images": [
|
||||
"8",
|
||||
0
|
||||
]
|
||||
},
|
||||
"class_type": "SaveImage",
|
||||
"_meta": {
|
||||
"title": "Save Image"
|
||||
}
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user