feat: structured output (#17877)

This commit is contained in:
Novice 2025-04-18 16:33:53 +08:00 committed by GitHub
parent d2e3744ca3
commit da9269ca97
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 530 additions and 13 deletions

View File

@ -85,5 +85,35 @@ class RuleCodeGenerateApi(Resource):
return code_result
class RuleStructuredOutputGenerateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("instruction", type=str, required=True, nullable=False, location="json")
parser.add_argument("model_config", type=dict, required=True, nullable=False, location="json")
args = parser.parse_args()
account = current_user
try:
structured_output = LLMGenerator.generate_structured_output(
tenant_id=account.current_tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
return structured_output
api.add_resource(RuleGenerateApi, "/rule-generate")
api.add_resource(RuleCodeGenerateApi, "/rule-code-generate")
api.add_resource(RuleStructuredOutputGenerateApi, "/rule-structured-output-generate")

View File

@ -10,6 +10,7 @@ from core.llm_generator.prompts import (
GENERATOR_QA_PROMPT,
JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE,
PYTHON_CODE_GENERATOR_PROMPT_TEMPLATE,
SYSTEM_STRUCTURED_OUTPUT_GENERATE,
WORKFLOW_RULE_CONFIG_PROMPT_GENERATE_TEMPLATE,
)
from core.model_manager import ModelManager
@ -340,3 +341,37 @@ class LLMGenerator:
answer = cast(str, response.message.content)
return answer.strip()
@classmethod
def generate_structured_output(cls, tenant_id: str, instruction: str, model_config: dict):
model_manager = ModelManager()
model_instance = model_manager.get_model_instance(
tenant_id=tenant_id,
model_type=ModelType.LLM,
provider=model_config.get("provider", ""),
model=model_config.get("name", ""),
)
prompt_messages = [
SystemPromptMessage(content=SYSTEM_STRUCTURED_OUTPUT_GENERATE),
UserPromptMessage(content=instruction),
]
model_parameters = model_config.get("model_parameters", {})
try:
response = cast(
LLMResult,
model_instance.invoke_llm(
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
),
)
generated_json_schema = cast(str, response.message.content)
return {"output": generated_json_schema, "error": ""}
except InvokeError as e:
error = str(e)
return {"output": "", "error": f"Failed to generate JSON Schema. Error: {error}"}
except Exception as e:
logging.exception(f"Failed to invoke LLM model, model: {model_config.get('name')}")
return {"output": "", "error": f"An unexpected error occurred: {str(e)}"}

View File

@ -220,3 +220,110 @@ Here is the task description: {{INPUT_TEXT}}
You just need to generate the output
""" # noqa: E501
SYSTEM_STRUCTURED_OUTPUT_GENERATE = """
Your task is to convert simple user descriptions into properly formatted JSON Schema definitions. When a user describes data fields they need, generate a complete, valid JSON Schema that accurately represents those fields with appropriate types and requirements.
## Instructions:
1. Analyze the user's description of their data needs
2. Identify each property that should be included in the schema
3. Determine the appropriate data type for each property
4. Decide which properties should be required
5. Generate a complete JSON Schema with proper syntax
6. Include appropriate constraints when specified (min/max values, patterns, formats)
7. Provide ONLY the JSON Schema without any additional explanations, comments, or markdown formatting.
8. DO NOT use markdown code blocks (``` or ``` json). Return the raw JSON Schema directly.
## Examples:
### Example 1:
**User Input:** I need name and age
**JSON Schema Output:**
{
"type": "object",
"properties": {
"name": { "type": "string" },
"age": { "type": "number" }
},
"required": ["name", "age"]
}
### Example 2:
**User Input:** I want to store information about books including title, author, publication year and optional page count
**JSON Schema Output:**
{
"type": "object",
"properties": {
"title": { "type": "string" },
"author": { "type": "string" },
"publicationYear": { "type": "integer" },
"pageCount": { "type": "integer" }
},
"required": ["title", "author", "publicationYear"]
}
### Example 3:
**User Input:** Create a schema for user profiles with email, password, and age (must be at least 18)
**JSON Schema Output:**
{
"type": "object",
"properties": {
"email": {
"type": "string",
"format": "email"
},
"password": {
"type": "string",
"minLength": 8
},
"age": {
"type": "integer",
"minimum": 18
}
},
"required": ["email", "password", "age"]
}
### Example 4:
**User Input:** I need album schema, the ablum has songs, and each song has name, duration, and artist.
**JSON Schema Output:**
{
"type": "object",
"properties": {
"properties": {
"songs": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {
"type": "string"
},
"id": {
"type": "string"
},
"duration": {
"type": "string"
},
"aritst": {
"type": "string"
}
},
"required": [
"name",
"id",
"duration",
"aritst"
]
}
}
}
},
"required": [
"songs"
]
}
Now, generate a JSON Schema based on my description
""" # noqa: E501

View File

@ -2,7 +2,7 @@ from decimal import Decimal
from enum import Enum, StrEnum
from typing import Any, Optional
from pydantic import BaseModel, ConfigDict
from pydantic import BaseModel, ConfigDict, model_validator
from core.model_runtime.entities.common_entities import I18nObject
@ -85,6 +85,7 @@ class ModelFeature(Enum):
DOCUMENT = "document"
VIDEO = "video"
AUDIO = "audio"
STRUCTURED_OUTPUT = "structured-output"
class DefaultParameterName(StrEnum):
@ -197,6 +198,19 @@ class AIModelEntity(ProviderModel):
parameter_rules: list[ParameterRule] = []
pricing: Optional[PriceConfig] = None
@model_validator(mode="after")
def validate_model(self):
supported_schema_keys = ["json_schema"]
schema_key = next((rule.name for rule in self.parameter_rules if rule.name in supported_schema_keys), None)
if not schema_key:
return self
if self.features is None:
self.features = [ModelFeature.STRUCTURED_OUTPUT]
else:
if ModelFeature.STRUCTURED_OUTPUT not in self.features:
self.features.append(ModelFeature.STRUCTURED_OUTPUT)
return self
class ModelUsage(BaseModel):
pass

View File

@ -16,7 +16,7 @@ from core.variables.segments import StringSegment
from core.workflow.entities.node_entities import NodeRunResult
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.enums import SystemVariableKey
from core.workflow.nodes.agent.entities import AgentNodeData, ParamsAutoGenerated
from core.workflow.nodes.agent.entities import AgentNodeData, AgentOldVersionModelFeatures, ParamsAutoGenerated
from core.workflow.nodes.base.entities import BaseNodeData
from core.workflow.nodes.enums import NodeType
from core.workflow.nodes.event.event import RunCompletedEvent
@ -251,7 +251,12 @@ class AgentNode(ToolNode):
prompt_message.model_dump(mode="json") for prompt_message in prompt_messages
]
value["history_prompt_messages"] = history_prompt_messages
value["entity"] = model_schema.model_dump(mode="json") if model_schema else None
if model_schema:
# remove structured output feature to support old version agent plugin
model_schema = self._remove_unsupported_model_features_for_old_version(model_schema)
value["entity"] = model_schema.model_dump(mode="json")
else:
value["entity"] = None
result[parameter_name] = value
return result
@ -348,3 +353,10 @@ class AgentNode(ToolNode):
)
model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
return model_instance, model_schema
def _remove_unsupported_model_features_for_old_version(self, model_schema: AIModelEntity) -> AIModelEntity:
if model_schema.features:
for feature in model_schema.features:
if feature.value not in AgentOldVersionModelFeatures:
model_schema.features.remove(feature)
return model_schema

View File

@ -24,3 +24,18 @@ class AgentNodeData(BaseNodeData):
class ParamsAutoGenerated(Enum):
CLOSE = 0
OPEN = 1
class AgentOldVersionModelFeatures(Enum):
"""
Enum class for old SDK version llm feature.
"""
TOOL_CALL = "tool-call"
MULTI_TOOL_CALL = "multi-tool-call"
AGENT_THOUGHT = "agent-thought"
VISION = "vision"
STREAM_TOOL_CALL = "stream-tool-call"
DOCUMENT = "document"
VIDEO = "video"
AUDIO = "audio"

View File

@ -65,6 +65,8 @@ class LLMNodeData(BaseNodeData):
memory: Optional[MemoryConfig] = None
context: ContextConfig
vision: VisionConfig = Field(default_factory=VisionConfig)
structured_output: dict | None = None
structured_output_enabled: bool = False
@field_validator("prompt_config", mode="before")
@classmethod

View File

@ -4,6 +4,8 @@ from collections.abc import Generator, Mapping, Sequence
from datetime import UTC, datetime
from typing import TYPE_CHECKING, Any, Optional, cast
import json_repair
from configs import dify_config
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.entities.model_entities import ModelStatus
@ -27,7 +29,13 @@ from core.model_runtime.entities.message_entities import (
SystemPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey, ModelType
from core.model_runtime.entities.model_entities import (
AIModelEntity,
ModelFeature,
ModelPropertyKey,
ModelType,
ParameterRule,
)
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.utils.encoders import jsonable_encoder
from core.plugin.entities.plugin import ModelProviderID
@ -57,6 +65,12 @@ from core.workflow.nodes.event import (
RunRetrieverResourceEvent,
RunStreamChunkEvent,
)
from core.workflow.utils.structured_output.entities import (
ResponseFormat,
SpecialModelType,
SupportStructuredOutputStatus,
)
from core.workflow.utils.structured_output.prompt import STRUCTURED_OUTPUT_PROMPT
from core.workflow.utils.variable_template_parser import VariableTemplateParser
from extensions.ext_database import db
from models.model import Conversation
@ -92,6 +106,12 @@ class LLMNode(BaseNode[LLMNodeData]):
_node_type = NodeType.LLM
def _run(self) -> Generator[NodeEvent | InNodeEvent, None, None]:
def process_structured_output(text: str) -> Optional[dict[str, Any] | list[Any]]:
"""Process structured output if enabled"""
if not self.node_data.structured_output_enabled or not self.node_data.structured_output:
return None
return self._parse_structured_output(text)
node_inputs: Optional[dict[str, Any]] = None
process_data = None
result_text = ""
@ -130,7 +150,6 @@ class LLMNode(BaseNode[LLMNodeData]):
if isinstance(event, RunRetrieverResourceEvent):
context = event.context
yield event
if context:
node_inputs["#context#"] = context
@ -192,7 +211,9 @@ class LLMNode(BaseNode[LLMNodeData]):
self.deduct_llm_quota(tenant_id=self.tenant_id, model_instance=model_instance, usage=usage)
break
outputs = {"text": result_text, "usage": jsonable_encoder(usage), "finish_reason": finish_reason}
structured_output = process_structured_output(result_text)
if structured_output:
outputs["structured_output"] = structured_output
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.SUCCEEDED,
@ -513,7 +534,12 @@ class LLMNode(BaseNode[LLMNodeData]):
if not model_schema:
raise ModelNotExistError(f"Model {model_name} not exist.")
support_structured_output = self._check_model_structured_output_support()
if support_structured_output == SupportStructuredOutputStatus.SUPPORTED:
completion_params = self._handle_native_json_schema(completion_params, model_schema.parameter_rules)
elif support_structured_output == SupportStructuredOutputStatus.UNSUPPORTED:
# Set appropriate response format based on model capabilities
self._set_response_format(completion_params, model_schema.parameter_rules)
return model_instance, ModelConfigWithCredentialsEntity(
provider=provider_name,
model=model_name,
@ -724,10 +750,29 @@ class LLMNode(BaseNode[LLMNodeData]):
"No prompt found in the LLM configuration. "
"Please ensure a prompt is properly configured before proceeding."
)
support_structured_output = self._check_model_structured_output_support()
if support_structured_output == SupportStructuredOutputStatus.UNSUPPORTED:
filtered_prompt_messages = self._handle_prompt_based_schema(
prompt_messages=filtered_prompt_messages,
)
stop = model_config.stop
return filtered_prompt_messages, stop
def _parse_structured_output(self, result_text: str) -> dict[str, Any] | list[Any]:
structured_output: dict[str, Any] | list[Any] = {}
try:
parsed = json.loads(result_text)
if not isinstance(parsed, (dict | list)):
raise LLMNodeError(f"Failed to parse structured output: {result_text}")
structured_output = parsed
except json.JSONDecodeError as e:
# if the result_text is not a valid json, try to repair it
parsed = json_repair.loads(result_text)
if not isinstance(parsed, (dict | list)):
raise LLMNodeError(f"Failed to parse structured output: {result_text}")
structured_output = parsed
return structured_output
@classmethod
def deduct_llm_quota(cls, tenant_id: str, model_instance: ModelInstance, usage: LLMUsage) -> None:
provider_model_bundle = model_instance.provider_model_bundle
@ -926,6 +971,166 @@ class LLMNode(BaseNode[LLMNodeData]):
return prompt_messages
def _handle_native_json_schema(self, model_parameters: dict, rules: list[ParameterRule]) -> dict:
"""
Handle structured output for models with native JSON schema support.
:param model_parameters: Model parameters to update
:param rules: Model parameter rules
:return: Updated model parameters with JSON schema configuration
"""
# Process schema according to model requirements
schema = self._fetch_structured_output_schema()
schema_json = self._prepare_schema_for_model(schema)
# Set JSON schema in parameters
model_parameters["json_schema"] = json.dumps(schema_json, ensure_ascii=False)
# Set appropriate response format if required by the model
for rule in rules:
if rule.name == "response_format" and ResponseFormat.JSON_SCHEMA.value in rule.options:
model_parameters["response_format"] = ResponseFormat.JSON_SCHEMA.value
return model_parameters
def _handle_prompt_based_schema(self, prompt_messages: Sequence[PromptMessage]) -> list[PromptMessage]:
"""
Handle structured output for models without native JSON schema support.
This function modifies the prompt messages to include schema-based output requirements.
Args:
prompt_messages: Original sequence of prompt messages
Returns:
list[PromptMessage]: Updated prompt messages with structured output requirements
"""
# Convert schema to string format
schema_str = json.dumps(self._fetch_structured_output_schema(), ensure_ascii=False)
# Find existing system prompt with schema placeholder
system_prompt = next(
(prompt for prompt in prompt_messages if isinstance(prompt, SystemPromptMessage)),
None,
)
structured_output_prompt = STRUCTURED_OUTPUT_PROMPT.replace("{{schema}}", schema_str)
# Prepare system prompt content
system_prompt_content = (
structured_output_prompt + "\n\n" + system_prompt.content
if system_prompt and isinstance(system_prompt.content, str)
else structured_output_prompt
)
system_prompt = SystemPromptMessage(content=system_prompt_content)
# Extract content from the last user message
filtered_prompts = [prompt for prompt in prompt_messages if not isinstance(prompt, SystemPromptMessage)]
updated_prompt = [system_prompt] + filtered_prompts
return updated_prompt
def _set_response_format(self, model_parameters: dict, rules: list) -> None:
"""
Set the appropriate response format parameter based on model rules.
:param model_parameters: Model parameters to update
:param rules: Model parameter rules
"""
for rule in rules:
if rule.name == "response_format":
if ResponseFormat.JSON.value in rule.options:
model_parameters["response_format"] = ResponseFormat.JSON.value
elif ResponseFormat.JSON_OBJECT.value in rule.options:
model_parameters["response_format"] = ResponseFormat.JSON_OBJECT.value
def _prepare_schema_for_model(self, schema: dict) -> dict:
"""
Prepare JSON schema based on model requirements.
Different models have different requirements for JSON schema formatting.
This function handles these differences.
:param schema: The original JSON schema
:return: Processed schema compatible with the current model
"""
# Deep copy to avoid modifying the original schema
processed_schema = schema.copy()
# Convert boolean types to string types (common requirement)
convert_boolean_to_string(processed_schema)
# Apply model-specific transformations
if SpecialModelType.GEMINI in self.node_data.model.name:
remove_additional_properties(processed_schema)
return processed_schema
elif SpecialModelType.OLLAMA in self.node_data.model.provider:
return processed_schema
else:
# Default format with name field
return {"schema": processed_schema, "name": "llm_response"}
def _fetch_model_schema(self, provider: str) -> AIModelEntity | None:
"""
Fetch model schema
"""
model_name = self.node_data.model.name
model_manager = ModelManager()
model_instance = model_manager.get_model_instance(
tenant_id=self.tenant_id, model_type=ModelType.LLM, provider=provider, model=model_name
)
model_type_instance = model_instance.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
model_credentials = model_instance.credentials
model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
return model_schema
def _fetch_structured_output_schema(self) -> dict[str, Any]:
"""
Fetch the structured output schema from the node data.
Returns:
dict[str, Any]: The structured output schema
"""
if not self.node_data.structured_output:
raise LLMNodeError("Please provide a valid structured output schema")
structured_output_schema = json.dumps(self.node_data.structured_output.get("schema", {}), ensure_ascii=False)
if not structured_output_schema:
raise LLMNodeError("Please provide a valid structured output schema")
try:
schema = json.loads(structured_output_schema)
if not isinstance(schema, dict):
raise LLMNodeError("structured_output_schema must be a JSON object")
return schema
except json.JSONDecodeError:
raise LLMNodeError("structured_output_schema is not valid JSON format")
def _check_model_structured_output_support(self) -> SupportStructuredOutputStatus:
"""
Check if the current model supports structured output.
Returns:
SupportStructuredOutput: The support status of structured output
"""
# Early return if structured output is disabled
if (
not isinstance(self.node_data, LLMNodeData)
or not self.node_data.structured_output_enabled
or not self.node_data.structured_output
):
return SupportStructuredOutputStatus.DISABLED
# Get model schema and check if it exists
model_schema = self._fetch_model_schema(self.node_data.model.provider)
if not model_schema:
return SupportStructuredOutputStatus.DISABLED
# Check if model supports structured output feature
return (
SupportStructuredOutputStatus.SUPPORTED
if bool(model_schema.features and ModelFeature.STRUCTURED_OUTPUT in model_schema.features)
else SupportStructuredOutputStatus.UNSUPPORTED
)
def _combine_message_content_with_role(*, contents: Sequence[PromptMessageContent], role: PromptMessageRole):
match role:
@ -1064,3 +1269,49 @@ def _handle_completion_template(
)
prompt_messages.append(prompt_message)
return prompt_messages
def remove_additional_properties(schema: dict) -> None:
"""
Remove additionalProperties fields from JSON schema.
Used for models like Gemini that don't support this property.
:param schema: JSON schema to modify in-place
"""
if not isinstance(schema, dict):
return
# Remove additionalProperties at current level
schema.pop("additionalProperties", None)
# Process nested structures recursively
for value in schema.values():
if isinstance(value, dict):
remove_additional_properties(value)
elif isinstance(value, list):
for item in value:
if isinstance(item, dict):
remove_additional_properties(item)
def convert_boolean_to_string(schema: dict) -> None:
"""
Convert boolean type specifications to string in JSON schema.
:param schema: JSON schema to modify in-place
"""
if not isinstance(schema, dict):
return
# Check for boolean type at current level
if schema.get("type") == "boolean":
schema["type"] = "string"
# Process nested dictionaries and lists recursively
for value in schema.values():
if isinstance(value, dict):
convert_boolean_to_string(value)
elif isinstance(value, list):
for item in value:
if isinstance(item, dict):
convert_boolean_to_string(item)

View File

@ -0,0 +1,24 @@
from enum import StrEnum
class ResponseFormat(StrEnum):
"""Constants for model response formats"""
JSON_SCHEMA = "json_schema" # model's structured output mode. some model like gemini, gpt-4o, support this mode.
JSON = "JSON" # model's json mode. some model like claude support this mode.
JSON_OBJECT = "json_object" # json mode's another alias. some model like deepseek-chat, qwen use this alias.
class SpecialModelType(StrEnum):
"""Constants for identifying model types"""
GEMINI = "gemini"
OLLAMA = "ollama"
class SupportStructuredOutputStatus(StrEnum):
"""Constants for structured output support status"""
SUPPORTED = "supported"
UNSUPPORTED = "unsupported"
DISABLED = "disabled"

View File

@ -0,0 +1,17 @@
STRUCTURED_OUTPUT_PROMPT = """Youre a helpful AI assistant. You could answer questions and output in JSON format.
constraints:
- You must output in JSON format.
- Do not output boolean value, use string type instead.
- Do not output integer or float value, use number type instead.
eg:
Here is the JSON schema:
{"additionalProperties": false, "properties": {"age": {"type": "number"}, "name": {"type": "string"}}, "required": ["name", "age"], "type": "object"}
Here is the user's question:
My name is John Doe and I am 30 years old.
output:
{"name": "John Doe", "age": 30}
Here is the JSON schema:
{{schema}}
""" # noqa: E501

View File

@ -30,6 +30,7 @@ dependencies = [
"gunicorn~=23.0.0",
"httpx[socks]~=0.27.0",
"jieba==0.42.1",
"json-repair>=0.41.1",
"langfuse~=2.51.3",
"langsmith~=0.1.77",
"mailchimp-transactional~=1.0.50",
@ -163,10 +164,7 @@ storage = [
############################################################
# [ Tools ] dependency group
############################################################
tools = [
"cloudscraper~=1.2.71",
"nltk~=3.9.1",
]
tools = ["cloudscraper~=1.2.71", "nltk~=3.9.1"]
############################################################
# [ VDB ] dependency group

14
api/uv.lock generated
View File

@ -1,5 +1,4 @@
version = 1
revision = 1
requires-python = ">=3.11, <3.13"
resolution-markers = [
"python_full_version >= '3.12.4' and platform_python_implementation != 'PyPy'",
@ -1178,6 +1177,7 @@ dependencies = [
{ name = "gunicorn" },
{ name = "httpx", extra = ["socks"] },
{ name = "jieba" },
{ name = "json-repair" },
{ name = "langfuse" },
{ name = "langsmith" },
{ name = "mailchimp-transactional" },
@ -1346,6 +1346,7 @@ requires-dist = [
{ name = "gunicorn", specifier = "~=23.0.0" },
{ name = "httpx", extras = ["socks"], specifier = "~=0.27.0" },
{ name = "jieba", specifier = "==0.42.1" },
{ name = "json-repair", specifier = ">=0.41.1" },
{ name = "langfuse", specifier = "~=2.51.3" },
{ name = "langsmith", specifier = "~=0.1.77" },
{ name = "mailchimp-transactional", specifier = "~=1.0.50" },
@ -2524,6 +2525,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/91/29/df4b9b42f2be0b623cbd5e2140cafcaa2bef0759a00b7b70104dcfe2fb51/joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6", size = 301817 },
]
[[package]]
name = "json-repair"
version = "0.41.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/6d/6a/6c7a75a10da6dc807b582f2449034da1ed74415e8899746bdfff97109012/json_repair-0.41.1.tar.gz", hash = "sha256:bba404b0888c84a6b86ecc02ec43b71b673cfee463baf6da94e079c55b136565", size = 31208 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/10/5c/abd7495c934d9af5c263c2245ae30cfaa716c3c0cf027b2b8fa686ee7bd4/json_repair-0.41.1-py3-none-any.whl", hash = "sha256:0e181fd43a696887881fe19fed23422a54b3e4c558b6ff27a86a8c3ddde9ae79", size = 21578 },
]
[[package]]
name = "jsonpath-python"
version = "1.0.6"
@ -4074,6 +4084,8 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/af/cd/ed6e429fb0792ce368f66e83246264dd3a7a045b0b1e63043ed22a063ce5/pycryptodome-3.19.1-cp35-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:7c9e222d0976f68d0cf6409cfea896676ddc1d98485d601e9508f90f60e2b0a2", size = 2144914 },
{ url = "https://files.pythonhosted.org/packages/f6/23/b064bd4cfbf2cc5f25afcde0e7c880df5b20798172793137ba4b62d82e72/pycryptodome-3.19.1-cp35-abi3-win32.whl", hash = "sha256:4805e053571140cb37cf153b5c72cd324bb1e3e837cbe590a19f69b6cf85fd03", size = 1713105 },
{ url = "https://files.pythonhosted.org/packages/7d/e0/ded1968a5257ab34216a0f8db7433897a2337d59e6d03be113713b346ea2/pycryptodome-3.19.1-cp35-abi3-win_amd64.whl", hash = "sha256:a470237ee71a1efd63f9becebc0ad84b88ec28e6784a2047684b693f458f41b7", size = 1749222 },
{ url = "https://files.pythonhosted.org/packages/1d/e3/0c9679cd66cf5604b1f070bdf4525a0c01a15187be287d8348b2eafb718e/pycryptodome-3.19.1-pp27-pypy_73-manylinux2010_x86_64.whl", hash = "sha256:ed932eb6c2b1c4391e166e1a562c9d2f020bfff44a0e1b108f67af38b390ea89", size = 1629005 },
{ url = "https://files.pythonhosted.org/packages/13/75/0d63bf0daafd0580b17202d8a9dd57f28c8487f26146b3e2799b0c5a059c/pycryptodome-3.19.1-pp27-pypy_73-win32.whl", hash = "sha256:81e9d23c0316fc1b45d984a44881b220062336bbdc340aa9218e8d0656587934", size = 1697997 },
]
[[package]]