mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-16 12:05:58 +08:00
fix: tongyi json output (#5396)
This commit is contained in:
parent
3bbd75f1f2
commit
e8ad0339a3
@ -18,7 +18,7 @@ from dashscope.common.error import (
|
||||
)
|
||||
|
||||
from core.model_runtime.callbacks.base_callback import Callback
|
||||
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
ImagePromptMessageContent,
|
||||
@ -82,6 +82,7 @@ if you are not sure about the structure.
|
||||
<instructions>
|
||||
{{instructions}}
|
||||
</instructions>
|
||||
You should also complete the text started with ``` but not tell ``` directly.
|
||||
"""
|
||||
|
||||
code_block = model_parameters.get("response_format", "")
|
||||
@ -113,21 +114,17 @@ if you are not sure about the structure.
|
||||
# insert the system message
|
||||
prompt_messages.insert(0, SystemPromptMessage(
|
||||
content=block_prompts
|
||||
.replace("{{instructions}}", f"Please output a valid {code_block} object.")
|
||||
.replace("{{instructions}}", f"Please output a valid {code_block} with markdown codeblocks.")
|
||||
))
|
||||
|
||||
mode = self.get_model_mode(model, credentials)
|
||||
if mode == LLMMode.CHAT:
|
||||
if len(prompt_messages) > 0 and isinstance(prompt_messages[-1], UserPromptMessage):
|
||||
# add ```JSON\n to the last message
|
||||
prompt_messages[-1].content += f"\n```{code_block}\n"
|
||||
else:
|
||||
# append a user message
|
||||
prompt_messages.append(UserPromptMessage(
|
||||
content=f"```{code_block}\n"
|
||||
))
|
||||
if len(prompt_messages) > 0 and isinstance(prompt_messages[-1], UserPromptMessage):
|
||||
# add ```JSON\n to the last message
|
||||
prompt_messages[-1].content += f"\n```{code_block}\n"
|
||||
else:
|
||||
prompt_messages.append(AssistantPromptMessage(content=f"```{code_block}\n"))
|
||||
# append a user message
|
||||
prompt_messages.append(UserPromptMessage(
|
||||
content=f"```{code_block}\n"
|
||||
))
|
||||
|
||||
response = self._invoke(
|
||||
model=model,
|
||||
@ -243,11 +240,8 @@ if you are not sure about the structure.
|
||||
|
||||
response = MultiModalConversation.call(**params, stream=stream)
|
||||
else:
|
||||
if mode == LLMMode.CHAT:
|
||||
params['messages'] = self._convert_prompt_messages_to_tongyi_messages(prompt_messages)
|
||||
else:
|
||||
params['prompt'] = prompt_messages[0].content.rstrip()
|
||||
|
||||
# nothing different between chat model and completion model in tongyi
|
||||
params['messages'] = self._convert_prompt_messages_to_tongyi_messages(prompt_messages)
|
||||
response = Generation.call(**params,
|
||||
result_format='message',
|
||||
stream=stream)
|
||||
|
@ -0,0 +1,84 @@
|
||||
import json
|
||||
import os
|
||||
from collections.abc import Generator
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import AssistantPromptMessage, UserPromptMessage
|
||||
from core.model_runtime.model_providers.tongyi.llm.llm import TongyiLargeLanguageModel
|
||||
|
||||
|
||||
def test_invoke_model_with_json_response():
|
||||
"""
|
||||
Test the invocation of a model with JSON response.
|
||||
"""
|
||||
model_list = [
|
||||
"qwen-max-0403",
|
||||
"qwen-max-1201",
|
||||
"qwen-max-longcontext",
|
||||
"qwen-max",
|
||||
"qwen-plus-chat",
|
||||
"qwen-plus",
|
||||
"qwen-turbo-chat",
|
||||
"qwen-turbo",
|
||||
]
|
||||
for model_name in model_list:
|
||||
print("testing model: ", model_name)
|
||||
invoke_model_with_json_response(model_name)
|
||||
|
||||
|
||||
def invoke_model_with_json_response(model_name="qwen-max-0403"):
|
||||
"""
|
||||
Method to invoke the model with JSON response format.
|
||||
Args:
|
||||
model_name (str): The name of the model to invoke. Defaults to "qwen-max-0403".
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
model = TongyiLargeLanguageModel()
|
||||
|
||||
response = model.invoke(
|
||||
model=model_name,
|
||||
credentials={
|
||||
'dashscope_api_key': os.environ.get('TONGYI_DASHSCOPE_API_KEY')
|
||||
},
|
||||
prompt_messages=[
|
||||
UserPromptMessage(
|
||||
content='output json data with format `{"data": "test", "code": 200, "msg": "success"}'
|
||||
)
|
||||
],
|
||||
model_parameters={
|
||||
'temperature': 0.5,
|
||||
'max_tokens': 50,
|
||||
'response_format': 'JSON',
|
||||
},
|
||||
stream=True,
|
||||
user="abc-123"
|
||||
)
|
||||
print("=====================================")
|
||||
print(response)
|
||||
assert isinstance(response, Generator)
|
||||
output = ""
|
||||
for chunk in response:
|
||||
assert isinstance(chunk, LLMResultChunk)
|
||||
assert isinstance(chunk.delta, LLMResultChunkDelta)
|
||||
assert isinstance(chunk.delta.message, AssistantPromptMessage)
|
||||
output += chunk.delta.message.content
|
||||
assert is_json(output)
|
||||
|
||||
|
||||
def is_json(s):
|
||||
"""
|
||||
Check if a string is a valid JSON.
|
||||
|
||||
Args:
|
||||
s (str): The string to check.
|
||||
|
||||
Returns:
|
||||
bool: True if the string is a valid JSON, False otherwise.
|
||||
"""
|
||||
try:
|
||||
json.loads(s)
|
||||
except ValueError:
|
||||
return False
|
||||
return True
|
Loading…
x
Reference in New Issue
Block a user