feat: support huawei cloud vector database (#16141)

This commit is contained in:
lauding 2025-04-22 13:03:35 +08:00 committed by GitHub
parent 18e4f42c3c
commit eb1ce3dd6b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 374 additions and 0 deletions

View File

@ -22,6 +22,7 @@ from .vdb.baidu_vector_config import BaiduVectorDBConfig
from .vdb.chroma_config import ChromaConfig
from .vdb.couchbase_config import CouchbaseConfig
from .vdb.elasticsearch_config import ElasticsearchConfig
from .vdb.huawei_cloud_config import HuaweiCloudConfig
from .vdb.lindorm_config import LindormConfig
from .vdb.milvus_config import MilvusConfig
from .vdb.myscale_config import MyScaleConfig
@ -263,6 +264,7 @@ class MiddlewareConfig(
VectorStoreConfig,
AnalyticdbConfig,
ChromaConfig,
HuaweiCloudConfig,
MilvusConfig,
MyScaleConfig,
OpenSearchConfig,

View File

@ -0,0 +1,25 @@
from typing import Optional
from pydantic import Field
from pydantic_settings import BaseSettings
class HuaweiCloudConfig(BaseSettings):
"""
Configuration settings for Huawei cloud search service
"""
HUAWEI_CLOUD_HOSTS: Optional[str] = Field(
description="Hostname or IP address of the Huawei cloud search service instance",
default=None,
)
HUAWEI_CLOUD_USER: Optional[str] = Field(
description="Username for authenticating with Huawei cloud search service",
default=None,
)
HUAWEI_CLOUD_PASSWORD: Optional[str] = Field(
description="Password for authenticating with Huawei cloud search service",
default=None,
)

View File

@ -664,6 +664,7 @@ class DatasetRetrievalSettingApi(Resource):
| VectorType.OPENGAUSS
| VectorType.OCEANBASE
| VectorType.TABLESTORE
| VectorType.HUAWEI_CLOUD
| VectorType.TENCENT
):
return {
@ -710,6 +711,7 @@ class DatasetRetrievalSettingMockApi(Resource):
| VectorType.OCEANBASE
| VectorType.TABLESTORE
| VectorType.TENCENT
| VectorType.HUAWEI_CLOUD
):
return {
"retrieval_method": [

View File

@ -0,0 +1,215 @@
import json
import logging
import ssl
from typing import Any, Optional
from elasticsearch import Elasticsearch
from pydantic import BaseModel, model_validator
from configs import dify_config
from core.rag.datasource.vdb.field import Field
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.embedding.embedding_base import Embeddings
from core.rag.models.document import Document
from extensions.ext_redis import redis_client
from models.dataset import Dataset
logger = logging.getLogger(__name__)
def create_ssl_context() -> ssl.SSLContext:
ssl_context = ssl.create_default_context()
ssl_context.check_hostname = False
ssl_context.verify_mode = ssl.CERT_NONE
return ssl_context
class HuaweiCloudVectorConfig(BaseModel):
hosts: str
username: str | None
password: str | None
@model_validator(mode="before")
@classmethod
def validate_config(cls, values: dict) -> dict:
if not values["hosts"]:
raise ValueError("config HOSTS is required")
return values
def to_elasticsearch_params(self) -> dict[str, Any]:
params = {
"hosts": self.hosts.split(","),
"verify_certs": False,
"ssl_show_warn": False,
"request_timeout": 30000,
"retry_on_timeout": True,
"max_retries": 10,
}
if self.username and self.password:
params["basic_auth"] = (self.username, self.password)
return params
class HuaweiCloudVector(BaseVector):
def __init__(self, index_name: str, config: HuaweiCloudVectorConfig):
super().__init__(index_name.lower())
self._client = Elasticsearch(**config.to_elasticsearch_params())
def get_type(self) -> str:
return VectorType.HUAWEI_CLOUD
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
uuids = self._get_uuids(documents)
for i in range(len(documents)):
self._client.index(
index=self._collection_name,
id=uuids[i],
document={
Field.CONTENT_KEY.value: documents[i].page_content,
Field.VECTOR.value: embeddings[i] or None,
Field.METADATA_KEY.value: documents[i].metadata or {},
},
)
self._client.indices.refresh(index=self._collection_name)
return uuids
def text_exists(self, id: str) -> bool:
return bool(self._client.exists(index=self._collection_name, id=id))
def delete_by_ids(self, ids: list[str]) -> None:
if not ids:
return
for id in ids:
self._client.delete(index=self._collection_name, id=id)
def delete_by_metadata_field(self, key: str, value: str) -> None:
query_str = {"query": {"match": {f"metadata.{key}": f"{value}"}}}
results = self._client.search(index=self._collection_name, body=query_str)
ids = [hit["_id"] for hit in results["hits"]["hits"]]
if ids:
self.delete_by_ids(ids)
def delete(self) -> None:
self._client.indices.delete(index=self._collection_name)
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 4)
query = {
"size": top_k,
"query": {
"vector": {
Field.VECTOR.value: {
"vector": query_vector,
"topk": top_k,
}
}
},
}
results = self._client.search(index=self._collection_name, body=query)
docs_and_scores = []
for hit in results["hits"]["hits"]:
docs_and_scores.append(
(
Document(
page_content=hit["_source"][Field.CONTENT_KEY.value],
vector=hit["_source"][Field.VECTOR.value],
metadata=hit["_source"][Field.METADATA_KEY.value],
),
hit["_score"],
)
)
docs = []
for doc, score in docs_and_scores:
score_threshold = float(kwargs.get("score_threshold") or 0.0)
if score > score_threshold:
if doc.metadata is not None:
doc.metadata["score"] = score
docs.append(doc)
return docs
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
query_str = {"match": {Field.CONTENT_KEY.value: query}}
results = self._client.search(index=self._collection_name, query=query_str, size=kwargs.get("top_k", 4))
docs = []
for hit in results["hits"]["hits"]:
docs.append(
Document(
page_content=hit["_source"][Field.CONTENT_KEY.value],
vector=hit["_source"][Field.VECTOR.value],
metadata=hit["_source"][Field.METADATA_KEY.value],
)
)
return docs
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
metadatas = [d.metadata if d.metadata is not None else {} for d in texts]
self.create_collection(embeddings, metadatas)
self.add_texts(texts, embeddings, **kwargs)
def create_collection(
self,
embeddings: list[list[float]],
metadatas: Optional[list[dict[Any, Any]]] = None,
index_params: Optional[dict] = None,
):
lock_name = f"vector_indexing_lock_{self._collection_name}"
with redis_client.lock(lock_name, timeout=20):
collection_exist_cache_key = f"vector_indexing_{self._collection_name}"
if redis_client.get(collection_exist_cache_key):
logger.info(f"Collection {self._collection_name} already exists.")
return
if not self._client.indices.exists(index=self._collection_name):
dim = len(embeddings[0])
mappings = {
"properties": {
Field.CONTENT_KEY.value: {"type": "text"},
Field.VECTOR.value: { # Make sure the dimension is correct here
"type": "vector",
"dimension": dim,
"indexing": True,
"algorithm": "GRAPH",
"metric": "cosine",
"neighbors": 32,
"efc": 128,
},
Field.METADATA_KEY.value: {
"type": "object",
"properties": {
"doc_id": {"type": "keyword"} # Map doc_id to keyword type
},
},
}
}
settings = {"index.vector": True}
self._client.indices.create(index=self._collection_name, mappings=mappings, settings=settings)
redis_client.set(collection_exist_cache_key, 1, ex=3600)
class HuaweiCloudVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> HuaweiCloudVector:
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict["vector_store"]["class_prefix"]
collection_name = class_prefix.lower()
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
dataset.index_struct = json.dumps(self.gen_index_struct_dict(VectorType.HUAWEI_CLOUD, collection_name))
return HuaweiCloudVector(
index_name=collection_name,
config=HuaweiCloudVectorConfig(
hosts=dify_config.HUAWEI_CLOUD_HOSTS or "http://localhost:9200",
username=dify_config.HUAWEI_CLOUD_USER,
password=dify_config.HUAWEI_CLOUD_PASSWORD,
),
)

View File

@ -156,6 +156,10 @@ class Vector:
from core.rag.datasource.vdb.tablestore.tablestore_vector import TableStoreVectorFactory
return TableStoreVectorFactory
case VectorType.HUAWEI_CLOUD:
from core.rag.datasource.vdb.huawei.huawei_cloud_vector import HuaweiCloudVectorFactory
return HuaweiCloudVectorFactory
case _:
raise ValueError(f"Vector store {vector_type} is not supported.")

View File

@ -26,3 +26,4 @@ class VectorType(StrEnum):
OCEANBASE = "oceanbase"
OPENGAUSS = "opengauss"
TABLESTORE = "tablestore"
HUAWEI_CLOUD = "huawei_cloud"

View File

@ -0,0 +1,88 @@
import os
import pytest
from _pytest.monkeypatch import MonkeyPatch
from api.core.rag.datasource.vdb.field import Field
from elasticsearch import Elasticsearch
class MockIndicesClient:
def __init__(self):
pass
def create(self, index, mappings, settings):
return {"acknowledge": True}
def refresh(self, index):
return {"acknowledge": True}
def delete(self, index):
return {"acknowledge": True}
def exists(self, index):
return True
class MockClient:
def __init__(self, **kwargs):
self.indices = MockIndicesClient()
def index(self, **kwargs):
return {"acknowledge": True}
def exists(self, **kwargs):
return True
def delete(self, **kwargs):
return {"acknowledge": True}
def search(self, **kwargs):
return {
"took": 1,
"hits": {
"hits": [
{
"_source": {
Field.CONTENT_KEY.value: "abcdef",
Field.VECTOR.value: [1, 2],
Field.METADATA_KEY.value: {},
},
"_score": 1.0,
},
{
"_source": {
Field.CONTENT_KEY.value: "123456",
Field.VECTOR.value: [2, 2],
Field.METADATA_KEY.value: {},
},
"_score": 0.9,
},
{
"_source": {
Field.CONTENT_KEY.value: "a1b2c3",
Field.VECTOR.value: [3, 2],
Field.METADATA_KEY.value: {},
},
"_score": 0.8,
},
]
},
}
MOCK = os.getenv("MOCK_SWITCH", "false").lower() == "true"
@pytest.fixture
def setup_client_mock(request, monkeypatch: MonkeyPatch):
if MOCK:
monkeypatch.setattr(Elasticsearch, "__init__", MockClient.__init__)
monkeypatch.setattr(Elasticsearch, "index", MockClient.index)
monkeypatch.setattr(Elasticsearch, "exists", MockClient.exists)
monkeypatch.setattr(Elasticsearch, "delete", MockClient.delete)
monkeypatch.setattr(Elasticsearch, "search", MockClient.search)
yield
if MOCK:
monkeypatch.undo()

View File

@ -0,0 +1,28 @@
from core.rag.datasource.vdb.huawei.huawei_cloud_vector import HuaweiCloudVector, HuaweiCloudVectorConfig
from tests.integration_tests.vdb.__mock.huaweicloudvectordb import setup_client_mock
from tests.integration_tests.vdb.test_vector_store import AbstractVectorTest, get_example_text, setup_mock_redis
class HuaweiCloudVectorTest(AbstractVectorTest):
def __init__(self):
super().__init__()
self.vector = HuaweiCloudVector(
"dify",
HuaweiCloudVectorConfig(
hosts="https://127.0.0.1:9200",
username="dify",
password="dify",
),
)
def search_by_vector(self):
hits_by_vector = self.vector.search_by_vector(query_vector=self.example_embedding)
assert len(hits_by_vector) == 3
def search_by_full_text(self):
hits_by_full_text = self.vector.search_by_full_text(query=get_example_text())
assert len(hits_by_full_text) == 3
def test_huawei_cloud_vector(setup_mock_redis, setup_client_mock):
HuaweiCloudVectorTest().run_all_tests()

View File

@ -15,3 +15,4 @@ pytest api/tests/integration_tests/vdb/chroma \
api/tests/integration_tests/vdb/couchbase \
api/tests/integration_tests/vdb/oceanbase \
api/tests/integration_tests/vdb/tidb_vector \
api/tests/integration_tests/vdb/huawei \

View File

@ -574,6 +574,11 @@ OPENGAUSS_MIN_CONNECTION=1
OPENGAUSS_MAX_CONNECTION=5
OPENGAUSS_ENABLE_PQ=false
# huawei cloud search service vector configurations, only available when VECTOR_STORE is `huawei_cloud`
HUAWEI_CLOUD_HOSTS=https://127.0.0.1:9200
HUAWEI_CLOUD_USER=admin
HUAWEI_CLOUD_PASSWORD=admin
# Upstash Vector configuration, only available when VECTOR_STORE is `upstash`
UPSTASH_VECTOR_URL=https://xxx-vector.upstash.io
UPSTASH_VECTOR_TOKEN=dify

View File

@ -266,6 +266,9 @@ x-shared-env: &shared-api-worker-env
OPENGAUSS_MIN_CONNECTION: ${OPENGAUSS_MIN_CONNECTION:-1}
OPENGAUSS_MAX_CONNECTION: ${OPENGAUSS_MAX_CONNECTION:-5}
OPENGAUSS_ENABLE_PQ: ${OPENGAUSS_ENABLE_PQ:-false}
HUAWEI_CLOUD_HOSTS: ${HUAWEI_CLOUD_HOSTS:-https://127.0.0.1:9200}
HUAWEI_CLOUD_USER: ${HUAWEI_CLOUD_USER:-admin}
HUAWEI_CLOUD_PASSWORD: ${HUAWEI_CLOUD_PASSWORD:-admin}
UPSTASH_VECTOR_URL: ${UPSTASH_VECTOR_URL:-https://xxx-vector.upstash.io}
UPSTASH_VECTOR_TOKEN: ${UPSTASH_VECTOR_TOKEN:-dify}
TABLESTORE_ENDPOINT: ${TABLESTORE_ENDPOINT:-https://instance-name.cn-hangzhou.ots.aliyuncs.com}