mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-20 19:29:13 +08:00
fix annotation query exception (#1771)
Co-authored-by: jyong <jyong@dify.ai>
This commit is contained in:
parent
5bb841935e
commit
ebc2cdad2e
@ -341,66 +341,70 @@ class Completion:
|
||||
app = conversation_message_task.app
|
||||
annotation_reply = app_model_config.annotation_reply_dict
|
||||
if annotation_reply['enabled']:
|
||||
score_threshold = annotation_reply.get('score_threshold', 1)
|
||||
embedding_provider_name = annotation_reply['embedding_model']['embedding_provider_name']
|
||||
embedding_model_name = annotation_reply['embedding_model']['embedding_model_name']
|
||||
# get embedding model
|
||||
embedding_model = ModelFactory.get_embedding_model(
|
||||
tenant_id=app.tenant_id,
|
||||
model_provider_name=embedding_provider_name,
|
||||
model_name=embedding_model_name
|
||||
)
|
||||
embeddings = CacheEmbedding(embedding_model)
|
||||
try:
|
||||
score_threshold = annotation_reply.get('score_threshold', 1)
|
||||
embedding_provider_name = annotation_reply['embedding_model']['embedding_provider_name']
|
||||
embedding_model_name = annotation_reply['embedding_model']['embedding_model_name']
|
||||
# get embedding model
|
||||
embedding_model = ModelFactory.get_embedding_model(
|
||||
tenant_id=app.tenant_id,
|
||||
model_provider_name=embedding_provider_name,
|
||||
model_name=embedding_model_name
|
||||
)
|
||||
embeddings = CacheEmbedding(embedding_model)
|
||||
|
||||
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
|
||||
embedding_provider_name,
|
||||
embedding_model_name,
|
||||
'annotation'
|
||||
)
|
||||
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
|
||||
embedding_provider_name,
|
||||
embedding_model_name,
|
||||
'annotation'
|
||||
)
|
||||
|
||||
dataset = Dataset(
|
||||
id=app.id,
|
||||
tenant_id=app.tenant_id,
|
||||
indexing_technique='high_quality',
|
||||
embedding_model_provider=embedding_provider_name,
|
||||
embedding_model=embedding_model_name,
|
||||
collection_binding_id=dataset_collection_binding.id
|
||||
)
|
||||
dataset = Dataset(
|
||||
id=app.id,
|
||||
tenant_id=app.tenant_id,
|
||||
indexing_technique='high_quality',
|
||||
embedding_model_provider=embedding_provider_name,
|
||||
embedding_model=embedding_model_name,
|
||||
collection_binding_id=dataset_collection_binding.id
|
||||
)
|
||||
|
||||
vector_index = VectorIndex(
|
||||
dataset=dataset,
|
||||
config=current_app.config,
|
||||
embeddings=embeddings
|
||||
)
|
||||
vector_index = VectorIndex(
|
||||
dataset=dataset,
|
||||
config=current_app.config,
|
||||
embeddings=embeddings
|
||||
)
|
||||
|
||||
documents = vector_index.search(
|
||||
conversation_message_task.query,
|
||||
search_type='similarity_score_threshold',
|
||||
search_kwargs={
|
||||
'k': 1,
|
||||
'score_threshold': score_threshold,
|
||||
'filter': {
|
||||
'group_id': [dataset.id]
|
||||
documents = vector_index.search(
|
||||
conversation_message_task.query,
|
||||
search_type='similarity_score_threshold',
|
||||
search_kwargs={
|
||||
'k': 1,
|
||||
'score_threshold': score_threshold,
|
||||
'filter': {
|
||||
'group_id': [dataset.id]
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
if documents:
|
||||
annotation_id = documents[0].metadata['annotation_id']
|
||||
score = documents[0].metadata['score']
|
||||
annotation = AppAnnotationService.get_annotation_by_id(annotation_id)
|
||||
if annotation:
|
||||
conversation_message_task.annotation_end(annotation.content, annotation.id, annotation.account.name)
|
||||
# insert annotation history
|
||||
AppAnnotationService.add_annotation_history(annotation.id,
|
||||
app.id,
|
||||
annotation.question,
|
||||
annotation.content,
|
||||
conversation_message_task.query,
|
||||
conversation_message_task.user.id,
|
||||
conversation_message_task.message.id,
|
||||
from_source,
|
||||
score)
|
||||
return True
|
||||
)
|
||||
if documents:
|
||||
annotation_id = documents[0].metadata['annotation_id']
|
||||
score = documents[0].metadata['score']
|
||||
annotation = AppAnnotationService.get_annotation_by_id(annotation_id)
|
||||
if annotation:
|
||||
conversation_message_task.annotation_end(annotation.content, annotation.id, annotation.account.name)
|
||||
# insert annotation history
|
||||
AppAnnotationService.add_annotation_history(annotation.id,
|
||||
app.id,
|
||||
annotation.question,
|
||||
annotation.content,
|
||||
conversation_message_task.query,
|
||||
conversation_message_task.user.id,
|
||||
conversation_message_task.message.id,
|
||||
from_source,
|
||||
score)
|
||||
return True
|
||||
except Exception as e:
|
||||
logging.warning(f'Query annotation failed, exception: {str(e)}.')
|
||||
return False
|
||||
return False
|
||||
|
||||
@classmethod
|
||||
|
Loading…
x
Reference in New Issue
Block a user