mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-14 12:45:59 +08:00
Feat/stream react (#2498)
This commit is contained in:
parent
adf2651d1f
commit
edb86f5f5a
@ -133,61 +133,95 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
|||||||
# recale llm max tokens
|
# recale llm max tokens
|
||||||
self.recale_llm_max_tokens(self.model_config, prompt_messages)
|
self.recale_llm_max_tokens(self.model_config, prompt_messages)
|
||||||
# invoke model
|
# invoke model
|
||||||
llm_result: LLMResult = model_instance.invoke_llm(
|
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
|
||||||
prompt_messages=prompt_messages,
|
prompt_messages=prompt_messages,
|
||||||
model_parameters=app_orchestration_config.model_config.parameters,
|
model_parameters=app_orchestration_config.model_config.parameters,
|
||||||
tools=[],
|
tools=[],
|
||||||
stop=app_orchestration_config.model_config.stop,
|
stop=app_orchestration_config.model_config.stop,
|
||||||
stream=False,
|
stream=True,
|
||||||
user=self.user_id,
|
user=self.user_id,
|
||||||
callbacks=[],
|
callbacks=[],
|
||||||
)
|
)
|
||||||
|
|
||||||
# check llm result
|
# check llm result
|
||||||
if not llm_result:
|
if not chunks:
|
||||||
raise ValueError("failed to invoke llm")
|
raise ValueError("failed to invoke llm")
|
||||||
|
|
||||||
# get scratchpad
|
usage_dict = {}
|
||||||
scratchpad = self._extract_response_scratchpad(llm_result.message.content)
|
react_chunks = self._handle_stream_react(chunks, usage_dict)
|
||||||
agent_scratchpad.append(scratchpad)
|
scratchpad = AgentScratchpadUnit(
|
||||||
|
agent_response='',
|
||||||
# get llm usage
|
thought='',
|
||||||
if llm_result.usage:
|
action_str='',
|
||||||
increase_usage(llm_usage, llm_result.usage)
|
observation='',
|
||||||
|
action=None
|
||||||
|
)
|
||||||
|
|
||||||
# publish agent thought if it's first iteration
|
# publish agent thought if it's first iteration
|
||||||
if iteration_step == 1:
|
if iteration_step == 1:
|
||||||
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
||||||
|
|
||||||
|
for chunk in react_chunks:
|
||||||
|
if isinstance(chunk, dict):
|
||||||
|
scratchpad.agent_response += json.dumps(chunk)
|
||||||
|
try:
|
||||||
|
if scratchpad.action:
|
||||||
|
raise Exception("")
|
||||||
|
scratchpad.action_str = json.dumps(chunk)
|
||||||
|
scratchpad.action = AgentScratchpadUnit.Action(
|
||||||
|
action_name=chunk['action'],
|
||||||
|
action_input=chunk['action_input']
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
scratchpad.thought += json.dumps(chunk)
|
||||||
|
yield LLMResultChunk(
|
||||||
|
model=self.model_config.model,
|
||||||
|
prompt_messages=prompt_messages,
|
||||||
|
system_fingerprint='',
|
||||||
|
delta=LLMResultChunkDelta(
|
||||||
|
index=0,
|
||||||
|
message=AssistantPromptMessage(
|
||||||
|
content=json.dumps(chunk)
|
||||||
|
),
|
||||||
|
usage=None
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
scratchpad.agent_response += chunk
|
||||||
|
scratchpad.thought += chunk
|
||||||
|
yield LLMResultChunk(
|
||||||
|
model=self.model_config.model,
|
||||||
|
prompt_messages=prompt_messages,
|
||||||
|
system_fingerprint='',
|
||||||
|
delta=LLMResultChunkDelta(
|
||||||
|
index=0,
|
||||||
|
message=AssistantPromptMessage(
|
||||||
|
content=chunk
|
||||||
|
),
|
||||||
|
usage=None
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
agent_scratchpad.append(scratchpad)
|
||||||
|
|
||||||
|
# get llm usage
|
||||||
|
if 'usage' in usage_dict:
|
||||||
|
increase_usage(llm_usage, usage_dict['usage'])
|
||||||
|
else:
|
||||||
|
usage_dict['usage'] = LLMUsage.empty_usage()
|
||||||
|
|
||||||
self.save_agent_thought(agent_thought=agent_thought,
|
self.save_agent_thought(agent_thought=agent_thought,
|
||||||
tool_name=scratchpad.action.action_name if scratchpad.action else '',
|
tool_name=scratchpad.action.action_name if scratchpad.action else '',
|
||||||
tool_input=scratchpad.action.action_input if scratchpad.action else '',
|
tool_input=scratchpad.action.action_input if scratchpad.action else '',
|
||||||
thought=scratchpad.thought,
|
thought=scratchpad.thought,
|
||||||
observation='',
|
observation='',
|
||||||
answer=llm_result.message.content,
|
answer=scratchpad.agent_response,
|
||||||
messages_ids=[],
|
messages_ids=[],
|
||||||
llm_usage=llm_result.usage)
|
llm_usage=usage_dict['usage'])
|
||||||
|
|
||||||
if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
|
if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
|
||||||
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
||||||
|
|
||||||
# publish agent thought if it's not empty and there is a action
|
|
||||||
if scratchpad.thought and scratchpad.action:
|
|
||||||
# check if final answer
|
|
||||||
if not scratchpad.action.action_name.lower() == "final answer":
|
|
||||||
yield LLMResultChunk(
|
|
||||||
model=model_instance.model,
|
|
||||||
prompt_messages=prompt_messages,
|
|
||||||
delta=LLMResultChunkDelta(
|
|
||||||
index=0,
|
|
||||||
message=AssistantPromptMessage(
|
|
||||||
content=scratchpad.thought
|
|
||||||
),
|
|
||||||
usage=llm_result.usage,
|
|
||||||
),
|
|
||||||
system_fingerprint=''
|
|
||||||
)
|
|
||||||
|
|
||||||
if not scratchpad.action:
|
if not scratchpad.action:
|
||||||
# failed to extract action, return final answer directly
|
# failed to extract action, return final answer directly
|
||||||
final_answer = scratchpad.agent_response or ''
|
final_answer = scratchpad.agent_response or ''
|
||||||
@ -262,7 +296,6 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
|||||||
|
|
||||||
# save scratchpad
|
# save scratchpad
|
||||||
scratchpad.observation = observation
|
scratchpad.observation = observation
|
||||||
scratchpad.agent_response = llm_result.message.content
|
|
||||||
|
|
||||||
# save agent thought
|
# save agent thought
|
||||||
self.save_agent_thought(
|
self.save_agent_thought(
|
||||||
@ -271,7 +304,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
|||||||
tool_input=tool_call_args,
|
tool_input=tool_call_args,
|
||||||
thought=None,
|
thought=None,
|
||||||
observation=observation,
|
observation=observation,
|
||||||
answer=llm_result.message.content,
|
answer=scratchpad.agent_response,
|
||||||
messages_ids=message_file_ids,
|
messages_ids=message_file_ids,
|
||||||
)
|
)
|
||||||
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
||||||
@ -318,6 +351,97 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
|||||||
system_fingerprint=''
|
system_fingerprint=''
|
||||||
), PublishFrom.APPLICATION_MANAGER)
|
), PublishFrom.APPLICATION_MANAGER)
|
||||||
|
|
||||||
|
def _handle_stream_react(self, llm_response: Generator[LLMResultChunk, None, None], usage: dict) \
|
||||||
|
-> Generator[Union[str, dict], None, None]:
|
||||||
|
def parse_json(json_str):
|
||||||
|
try:
|
||||||
|
return json.loads(json_str.strip())
|
||||||
|
except:
|
||||||
|
return json_str
|
||||||
|
|
||||||
|
def extra_json_from_code_block(code_block) -> Generator[Union[dict, str], None, None]:
|
||||||
|
code_blocks = re.findall(r'```(.*?)```', code_block, re.DOTALL)
|
||||||
|
if not code_blocks:
|
||||||
|
return
|
||||||
|
for block in code_blocks:
|
||||||
|
json_text = re.sub(r'^[a-zA-Z]+\n', '', block.strip(), flags=re.MULTILINE)
|
||||||
|
yield parse_json(json_text)
|
||||||
|
|
||||||
|
code_block_cache = ''
|
||||||
|
code_block_delimiter_count = 0
|
||||||
|
in_code_block = False
|
||||||
|
json_cache = ''
|
||||||
|
json_quote_count = 0
|
||||||
|
in_json = False
|
||||||
|
got_json = False
|
||||||
|
|
||||||
|
for response in llm_response:
|
||||||
|
response = response.delta.message.content
|
||||||
|
if not isinstance(response, str):
|
||||||
|
continue
|
||||||
|
|
||||||
|
# stream
|
||||||
|
index = 0
|
||||||
|
while index < len(response):
|
||||||
|
steps = 1
|
||||||
|
delta = response[index:index+steps]
|
||||||
|
if delta == '`':
|
||||||
|
code_block_cache += delta
|
||||||
|
code_block_delimiter_count += 1
|
||||||
|
else:
|
||||||
|
if not in_code_block:
|
||||||
|
if code_block_delimiter_count > 0:
|
||||||
|
yield code_block_cache
|
||||||
|
code_block_cache = ''
|
||||||
|
else:
|
||||||
|
code_block_cache += delta
|
||||||
|
code_block_delimiter_count = 0
|
||||||
|
|
||||||
|
if code_block_delimiter_count == 3:
|
||||||
|
if in_code_block:
|
||||||
|
yield from extra_json_from_code_block(code_block_cache)
|
||||||
|
code_block_cache = ''
|
||||||
|
|
||||||
|
in_code_block = not in_code_block
|
||||||
|
code_block_delimiter_count = 0
|
||||||
|
|
||||||
|
if not in_code_block:
|
||||||
|
# handle single json
|
||||||
|
if delta == '{':
|
||||||
|
json_quote_count += 1
|
||||||
|
in_json = True
|
||||||
|
json_cache += delta
|
||||||
|
elif delta == '}':
|
||||||
|
json_cache += delta
|
||||||
|
if json_quote_count > 0:
|
||||||
|
json_quote_count -= 1
|
||||||
|
if json_quote_count == 0:
|
||||||
|
in_json = False
|
||||||
|
got_json = True
|
||||||
|
index += steps
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
if in_json:
|
||||||
|
json_cache += delta
|
||||||
|
|
||||||
|
if got_json:
|
||||||
|
got_json = False
|
||||||
|
yield parse_json(json_cache)
|
||||||
|
json_cache = ''
|
||||||
|
json_quote_count = 0
|
||||||
|
in_json = False
|
||||||
|
|
||||||
|
if not in_code_block and not in_json:
|
||||||
|
yield delta.replace('`', '')
|
||||||
|
|
||||||
|
index += steps
|
||||||
|
|
||||||
|
if code_block_cache:
|
||||||
|
yield code_block_cache
|
||||||
|
|
||||||
|
if json_cache:
|
||||||
|
yield parse_json(json_cache)
|
||||||
|
|
||||||
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
|
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
|
||||||
"""
|
"""
|
||||||
fill in inputs from external data tools
|
fill in inputs from external data tools
|
||||||
@ -363,121 +487,6 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
|||||||
|
|
||||||
return agent_scratchpad
|
return agent_scratchpad
|
||||||
|
|
||||||
def _extract_response_scratchpad(self, content: str) -> AgentScratchpadUnit:
|
|
||||||
"""
|
|
||||||
extract response from llm response
|
|
||||||
"""
|
|
||||||
def extra_quotes() -> AgentScratchpadUnit:
|
|
||||||
agent_response = content
|
|
||||||
# try to extract all quotes
|
|
||||||
pattern = re.compile(r'```(.*?)```', re.DOTALL)
|
|
||||||
quotes = pattern.findall(content)
|
|
||||||
|
|
||||||
# try to extract action from end to start
|
|
||||||
for i in range(len(quotes) - 1, 0, -1):
|
|
||||||
"""
|
|
||||||
1. use json load to parse action
|
|
||||||
2. use plain text `Action: xxx` to parse action
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
action = json.loads(quotes[i].replace('```', ''))
|
|
||||||
action_name = action.get("action")
|
|
||||||
action_input = action.get("action_input")
|
|
||||||
agent_thought = agent_response.replace(quotes[i], '')
|
|
||||||
|
|
||||||
if action_name and action_input:
|
|
||||||
return AgentScratchpadUnit(
|
|
||||||
agent_response=content,
|
|
||||||
thought=agent_thought,
|
|
||||||
action_str=quotes[i],
|
|
||||||
action=AgentScratchpadUnit.Action(
|
|
||||||
action_name=action_name,
|
|
||||||
action_input=action_input,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
except:
|
|
||||||
# try to parse action from plain text
|
|
||||||
action_name = re.findall(r'action: (.*)', quotes[i], re.IGNORECASE)
|
|
||||||
action_input = re.findall(r'action input: (.*)', quotes[i], re.IGNORECASE)
|
|
||||||
# delete action from agent response
|
|
||||||
agent_thought = agent_response.replace(quotes[i], '')
|
|
||||||
# remove extra quotes
|
|
||||||
agent_thought = re.sub(r'```(json)*\n*```', '', agent_thought, flags=re.DOTALL)
|
|
||||||
# remove Action: xxx from agent thought
|
|
||||||
agent_thought = re.sub(r'Action:.*', '', agent_thought, flags=re.IGNORECASE)
|
|
||||||
|
|
||||||
if action_name and action_input:
|
|
||||||
return AgentScratchpadUnit(
|
|
||||||
agent_response=content,
|
|
||||||
thought=agent_thought,
|
|
||||||
action_str=quotes[i],
|
|
||||||
action=AgentScratchpadUnit.Action(
|
|
||||||
action_name=action_name[0],
|
|
||||||
action_input=action_input[0],
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
def extra_json():
|
|
||||||
agent_response = content
|
|
||||||
# try to extract all json
|
|
||||||
structures, pair_match_stack = [], []
|
|
||||||
started_at, end_at = 0, 0
|
|
||||||
for i in range(len(content)):
|
|
||||||
if content[i] == '{':
|
|
||||||
pair_match_stack.append(i)
|
|
||||||
if len(pair_match_stack) == 1:
|
|
||||||
started_at = i
|
|
||||||
elif content[i] == '}':
|
|
||||||
begin = pair_match_stack.pop()
|
|
||||||
if not pair_match_stack:
|
|
||||||
end_at = i + 1
|
|
||||||
structures.append((content[begin:i+1], (started_at, end_at)))
|
|
||||||
|
|
||||||
# handle the last character
|
|
||||||
if pair_match_stack:
|
|
||||||
end_at = len(content)
|
|
||||||
structures.append((content[pair_match_stack[0]:], (started_at, end_at)))
|
|
||||||
|
|
||||||
for i in range(len(structures), 0, -1):
|
|
||||||
try:
|
|
||||||
json_content, (started_at, end_at) = structures[i - 1]
|
|
||||||
action = json.loads(json_content)
|
|
||||||
action_name = action.get("action")
|
|
||||||
action_input = action.get("action_input")
|
|
||||||
# delete json content from agent response
|
|
||||||
agent_thought = agent_response[:started_at] + agent_response[end_at:]
|
|
||||||
# remove extra quotes like ```(json)*\n\n```
|
|
||||||
agent_thought = re.sub(r'```(json)*\n*```', '', agent_thought, flags=re.DOTALL)
|
|
||||||
# remove Action: xxx from agent thought
|
|
||||||
agent_thought = re.sub(r'Action:.*', '', agent_thought, flags=re.IGNORECASE)
|
|
||||||
|
|
||||||
if action_name and action_input is not None:
|
|
||||||
return AgentScratchpadUnit(
|
|
||||||
agent_response=content,
|
|
||||||
thought=agent_thought,
|
|
||||||
action_str=json_content,
|
|
||||||
action=AgentScratchpadUnit.Action(
|
|
||||||
action_name=action_name,
|
|
||||||
action_input=action_input,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
|
|
||||||
agent_scratchpad = extra_quotes()
|
|
||||||
if agent_scratchpad:
|
|
||||||
return agent_scratchpad
|
|
||||||
agent_scratchpad = extra_json()
|
|
||||||
if agent_scratchpad:
|
|
||||||
return agent_scratchpad
|
|
||||||
|
|
||||||
return AgentScratchpadUnit(
|
|
||||||
agent_response=content,
|
|
||||||
thought=content,
|
|
||||||
action_str='',
|
|
||||||
action=None
|
|
||||||
)
|
|
||||||
|
|
||||||
def _check_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
def _check_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
||||||
agent_prompt_message: AgentPromptEntity,
|
agent_prompt_message: AgentPromptEntity,
|
||||||
):
|
):
|
||||||
@ -591,15 +600,15 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
|||||||
# organize prompt messages
|
# organize prompt messages
|
||||||
if mode == "chat":
|
if mode == "chat":
|
||||||
# override system message
|
# override system message
|
||||||
overrided = False
|
overridden = False
|
||||||
prompt_messages = prompt_messages.copy()
|
prompt_messages = prompt_messages.copy()
|
||||||
for prompt_message in prompt_messages:
|
for prompt_message in prompt_messages:
|
||||||
if isinstance(prompt_message, SystemPromptMessage):
|
if isinstance(prompt_message, SystemPromptMessage):
|
||||||
prompt_message.content = system_message
|
prompt_message.content = system_message
|
||||||
overrided = True
|
overridden = True
|
||||||
break
|
break
|
||||||
|
|
||||||
if not overrided:
|
if not overridden:
|
||||||
prompt_messages.insert(0, SystemPromptMessage(
|
prompt_messages.insert(0, SystemPromptMessage(
|
||||||
content=system_message,
|
content=system_message,
|
||||||
))
|
))
|
||||||
|
Loading…
x
Reference in New Issue
Block a user