mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-07-29 03:02:01 +08:00
delete document cache embedding (#2101)
Co-authored-by: jyong <jyong@dify.ai>
This commit is contained in:
parent
483dcb6340
commit
ee9c7e204f
@ -1,10 +1,12 @@
|
|||||||
import base64
|
import base64
|
||||||
import json
|
import json
|
||||||
import logging
|
import logging
|
||||||
from typing import List, Optional
|
from typing import List, Optional, cast
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from core.model_manager import ModelInstance
|
from core.model_manager import ModelInstance
|
||||||
|
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||||
|
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||||
from extensions.ext_database import db
|
from extensions.ext_database import db
|
||||||
from langchain.embeddings.base import Embeddings
|
from langchain.embeddings.base import Embeddings
|
||||||
|
|
||||||
@ -22,56 +24,33 @@ class CacheEmbedding(Embeddings):
|
|||||||
self._user = user
|
self._user = user
|
||||||
|
|
||||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||||
"""Embed search docs."""
|
"""Embed search docs in batches of 10."""
|
||||||
# use doc embedding cache or store if not exists
|
text_embeddings = []
|
||||||
text_embeddings = [None for _ in range(len(texts))]
|
try:
|
||||||
embedding_queue_indices = []
|
model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
|
||||||
for i, text in enumerate(texts):
|
model_schema = model_type_instance.get_model_schema(self._model_instance.model, self._model_instance.credentials)
|
||||||
hash = helper.generate_text_hash(text)
|
max_chunks = model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS] \
|
||||||
embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
|
if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties else 1
|
||||||
embedding = redis_client.get(embedding_cache_key)
|
for i in range(0, len(texts), max_chunks):
|
||||||
if embedding:
|
batch_texts = texts[i:i + max_chunks]
|
||||||
redis_client.expire(embedding_cache_key, 3600)
|
|
||||||
text_embeddings[i] = list(np.frombuffer(base64.b64decode(embedding), dtype="float"))
|
|
||||||
|
|
||||||
else:
|
|
||||||
embedding_queue_indices.append(i)
|
|
||||||
|
|
||||||
if embedding_queue_indices:
|
|
||||||
try:
|
|
||||||
embedding_result = self._model_instance.invoke_text_embedding(
|
embedding_result = self._model_instance.invoke_text_embedding(
|
||||||
texts=[texts[i] for i in embedding_queue_indices],
|
texts=batch_texts,
|
||||||
user=self._user
|
user=self._user
|
||||||
)
|
)
|
||||||
|
|
||||||
embedding_results = embedding_result.embeddings
|
for vector in embedding_result.embeddings:
|
||||||
except Exception as ex:
|
try:
|
||||||
logger.error('Failed to embed documents: ', ex)
|
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
|
||||||
raise ex
|
text_embeddings.append(normalized_embedding)
|
||||||
|
except IntegrityError:
|
||||||
|
db.session.rollback()
|
||||||
|
except Exception as e:
|
||||||
|
logging.exception('Failed to add embedding to redis')
|
||||||
|
|
||||||
for i, indice in enumerate(embedding_queue_indices):
|
except Exception as ex:
|
||||||
hash = helper.generate_text_hash(texts[indice])
|
logger.error('Failed to embed documents: ', ex)
|
||||||
|
raise ex
|
||||||
try:
|
|
||||||
embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
|
|
||||||
vector = embedding_results[i]
|
|
||||||
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
|
|
||||||
text_embeddings[indice] = normalized_embedding
|
|
||||||
# encode embedding to base64
|
|
||||||
embedding_vector = np.array(normalized_embedding)
|
|
||||||
vector_bytes = embedding_vector.tobytes()
|
|
||||||
# Transform to Base64
|
|
||||||
encoded_vector = base64.b64encode(vector_bytes)
|
|
||||||
# Transform to string
|
|
||||||
encoded_str = encoded_vector.decode("utf-8")
|
|
||||||
redis_client.setex(embedding_cache_key, 3600, encoded_str)
|
|
||||||
|
|
||||||
except IntegrityError:
|
|
||||||
db.session.rollback()
|
|
||||||
continue
|
|
||||||
except:
|
|
||||||
logging.exception('Failed to add embedding to redis')
|
|
||||||
continue
|
|
||||||
|
|
||||||
return text_embeddings
|
return text_embeddings
|
||||||
|
|
||||||
@ -82,7 +61,7 @@ class CacheEmbedding(Embeddings):
|
|||||||
embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
|
embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
|
||||||
embedding = redis_client.get(embedding_cache_key)
|
embedding = redis_client.get(embedding_cache_key)
|
||||||
if embedding:
|
if embedding:
|
||||||
redis_client.expire(embedding_cache_key, 3600)
|
redis_client.expire(embedding_cache_key, 600)
|
||||||
return list(np.frombuffer(base64.b64decode(embedding), dtype="float"))
|
return list(np.frombuffer(base64.b64decode(embedding), dtype="float"))
|
||||||
|
|
||||||
|
|
||||||
@ -105,7 +84,7 @@ class CacheEmbedding(Embeddings):
|
|||||||
encoded_vector = base64.b64encode(vector_bytes)
|
encoded_vector = base64.b64encode(vector_bytes)
|
||||||
# Transform to string
|
# Transform to string
|
||||||
encoded_str = encoded_vector.decode("utf-8")
|
encoded_str = encoded_vector.decode("utf-8")
|
||||||
redis_client.setex(embedding_cache_key, 3600, encoded_str)
|
redis_client.setex(embedding_cache_key, 600, encoded_str)
|
||||||
|
|
||||||
except IntegrityError:
|
except IntegrityError:
|
||||||
db.session.rollback()
|
db.session.rollback()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user