mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-14 14:06:15 +08:00
feat: support vision models from xinference (#4094)
Co-authored-by: Yeuoly <admin@srmxy.cn>
This commit is contained in:
parent
bb7c62777d
commit
f361c7004d
@ -28,7 +28,10 @@ from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
ImagePromptMessageContent,
|
||||
PromptMessage,
|
||||
PromptMessageContent,
|
||||
PromptMessageContentType,
|
||||
PromptMessageTool,
|
||||
SystemPromptMessage,
|
||||
ToolPromptMessage,
|
||||
@ -61,8 +64,8 @@ from core.model_runtime.utils import helper
|
||||
|
||||
|
||||
class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
def _invoke(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict, tools: list[PromptMessageTool] | None = None,
|
||||
def _invoke(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict, tools: list[PromptMessageTool] | None = None,
|
||||
stop: list[str] | None = None, stream: bool = True, user: str | None = None) \
|
||||
-> LLMResult | Generator:
|
||||
"""
|
||||
@ -99,7 +102,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
try:
|
||||
if "/" in credentials['model_uid'] or "?" in credentials['model_uid'] or "#" in credentials['model_uid']:
|
||||
raise CredentialsValidateFailedError("model_uid should not contain /, ?, or #")
|
||||
|
||||
|
||||
extra_param = XinferenceHelper.get_xinference_extra_parameter(
|
||||
server_url=credentials['server_url'],
|
||||
model_uid=credentials['model_uid']
|
||||
@ -111,10 +114,13 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
credentials['completion_type'] = 'completion'
|
||||
else:
|
||||
raise ValueError(f'xinference model ability {extra_param.model_ability} is not supported, check if you have the right model type')
|
||||
|
||||
|
||||
if extra_param.support_function_call:
|
||||
credentials['support_function_call'] = True
|
||||
|
||||
if extra_param.support_vision:
|
||||
credentials['support_vision'] = True
|
||||
|
||||
if extra_param.context_length:
|
||||
credentials['context_length'] = extra_param.context_length
|
||||
|
||||
@ -135,7 +141,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
"""
|
||||
return self._num_tokens_from_messages(prompt_messages, tools)
|
||||
|
||||
def _num_tokens_from_messages(self, messages: list[PromptMessage], tools: list[PromptMessageTool],
|
||||
def _num_tokens_from_messages(self, messages: list[PromptMessage], tools: list[PromptMessageTool],
|
||||
is_completion_model: bool = False) -> int:
|
||||
def tokens(text: str):
|
||||
return self._get_num_tokens_by_gpt2(text)
|
||||
@ -155,7 +161,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
text = ''
|
||||
for item in value:
|
||||
if isinstance(item, dict) and item['type'] == 'text':
|
||||
text += item.text
|
||||
text += item['text']
|
||||
|
||||
value = text
|
||||
|
||||
@ -191,7 +197,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
num_tokens += self._num_tokens_for_tools(tools)
|
||||
|
||||
return num_tokens
|
||||
|
||||
|
||||
def _num_tokens_for_tools(self, tools: list[PromptMessageTool]) -> int:
|
||||
"""
|
||||
Calculate num tokens for tool calling
|
||||
@ -234,7 +240,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
num_tokens += tokens(required_field)
|
||||
|
||||
return num_tokens
|
||||
|
||||
|
||||
def _convert_prompt_message_to_text(self, message: list[PromptMessage]) -> str:
|
||||
"""
|
||||
convert prompt message to text
|
||||
@ -260,7 +266,26 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
if isinstance(message.content, str):
|
||||
message_dict = {"role": "user", "content": message.content}
|
||||
else:
|
||||
raise ValueError("User message content must be str")
|
||||
sub_messages = []
|
||||
for message_content in message.content:
|
||||
if message_content.type == PromptMessageContentType.TEXT:
|
||||
message_content = cast(PromptMessageContent, message_content)
|
||||
sub_message_dict = {
|
||||
"type": "text",
|
||||
"text": message_content.data
|
||||
}
|
||||
sub_messages.append(sub_message_dict)
|
||||
elif message_content.type == PromptMessageContentType.IMAGE:
|
||||
message_content = cast(ImagePromptMessageContent, message_content)
|
||||
sub_message_dict = {
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": message_content.data,
|
||||
"detail": message_content.detail.value
|
||||
}
|
||||
}
|
||||
sub_messages.append(sub_message_dict)
|
||||
message_dict = {"role": "user", "content": sub_messages}
|
||||
elif isinstance(message, AssistantPromptMessage):
|
||||
message = cast(AssistantPromptMessage, message)
|
||||
message_dict = {"role": "assistant", "content": message.content}
|
||||
@ -277,7 +302,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
message_dict = {"tool_call_id": message.tool_call_id, "role": "tool", "content": message.content}
|
||||
else:
|
||||
raise ValueError(f"Unknown message type {type(message)}")
|
||||
|
||||
|
||||
return message_dict
|
||||
|
||||
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
|
||||
@ -338,8 +363,18 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
completion_type = LLMMode.COMPLETION.value
|
||||
else:
|
||||
raise ValueError(f'xinference model ability {extra_args.model_ability} is not supported')
|
||||
|
||||
|
||||
|
||||
features = []
|
||||
|
||||
support_function_call = credentials.get('support_function_call', False)
|
||||
if support_function_call:
|
||||
features.append(ModelFeature.TOOL_CALL)
|
||||
|
||||
support_vision = credentials.get('support_vision', False)
|
||||
if support_vision:
|
||||
features.append(ModelFeature.VISION)
|
||||
|
||||
context_length = credentials.get('context_length', 2048)
|
||||
|
||||
entity = AIModelEntity(
|
||||
@ -349,10 +384,8 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
),
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_type=ModelType.LLM,
|
||||
features=[
|
||||
ModelFeature.TOOL_CALL
|
||||
] if support_function_call else [],
|
||||
model_properties={
|
||||
features=features,
|
||||
model_properties={
|
||||
ModelPropertyKey.MODE: completion_type,
|
||||
ModelPropertyKey.CONTEXT_SIZE: context_length
|
||||
},
|
||||
@ -360,22 +393,22 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
)
|
||||
|
||||
return entity
|
||||
|
||||
def _generate(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
|
||||
def _generate(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict, extra_model_kwargs: XinferenceModelExtraParameter,
|
||||
tools: list[PromptMessageTool] | None = None,
|
||||
tools: list[PromptMessageTool] | None = None,
|
||||
stop: list[str] | None = None, stream: bool = True, user: str | None = None) \
|
||||
-> LLMResult | Generator:
|
||||
"""
|
||||
generate text from LLM
|
||||
|
||||
see `core.model_runtime.model_providers.__base.large_language_model.LargeLanguageModel._generate`
|
||||
|
||||
|
||||
extra_model_kwargs can be got by `XinferenceHelper.get_xinference_extra_parameter`
|
||||
"""
|
||||
if 'server_url' not in credentials:
|
||||
raise CredentialsValidateFailedError('server_url is required in credentials')
|
||||
|
||||
|
||||
if credentials['server_url'].endswith('/'):
|
||||
credentials['server_url'] = credentials['server_url'][:-1]
|
||||
|
||||
@ -408,11 +441,11 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
'function': helper.dump_model(tool)
|
||||
} for tool in tools
|
||||
]
|
||||
|
||||
vision = credentials.get('support_vision', False)
|
||||
if isinstance(xinference_model, RESTfulChatModelHandle | RESTfulChatglmCppChatModelHandle):
|
||||
resp = client.chat.completions.create(
|
||||
model=credentials['model_uid'],
|
||||
messages=[self._convert_prompt_message_to_dict(message) for message in prompt_messages],
|
||||
messages=[self._convert_prompt_message_to_dict(message) for message in prompt_messages],
|
||||
stream=stream,
|
||||
user=user,
|
||||
**generate_config,
|
||||
@ -497,7 +530,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
"""
|
||||
if len(resp.choices) == 0:
|
||||
raise InvokeServerUnavailableError("Empty response")
|
||||
|
||||
|
||||
assistant_message = resp.choices[0].message
|
||||
|
||||
# convert tool call to assistant message tool call
|
||||
@ -527,7 +560,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
def _handle_chat_stream_response(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
tools: list[PromptMessageTool],
|
||||
resp: Iterator[ChatCompletionChunk]) -> Generator:
|
||||
@ -544,7 +577,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
|
||||
if delta.finish_reason is None and (delta.delta.content is None or delta.delta.content == ''):
|
||||
continue
|
||||
|
||||
|
||||
# check if there is a tool call in the response
|
||||
function_call = None
|
||||
tool_calls = []
|
||||
@ -573,9 +606,9 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
prompt_tokens = self._num_tokens_from_messages(messages=prompt_messages, tools=tools)
|
||||
completion_tokens = self._num_tokens_from_messages(messages=[temp_assistant_prompt_message], tools=[])
|
||||
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials,
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials,
|
||||
prompt_tokens=prompt_tokens, completion_tokens=completion_tokens)
|
||||
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
@ -608,7 +641,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
"""
|
||||
if len(resp.choices) == 0:
|
||||
raise InvokeServerUnavailableError("Empty response")
|
||||
|
||||
|
||||
assistant_message = resp.choices[0].text
|
||||
|
||||
# transform assistant message to prompt message
|
||||
@ -670,9 +703,9 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
completion_tokens = self._num_tokens_from_messages(
|
||||
messages=[temp_assistant_prompt_message], tools=[], is_completion_model=True
|
||||
)
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials,
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials,
|
||||
prompt_tokens=prompt_tokens, completion_tokens=completion_tokens)
|
||||
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
|
@ -14,13 +14,15 @@ class XinferenceModelExtraParameter:
|
||||
max_tokens: int = 512
|
||||
context_length: int = 2048
|
||||
support_function_call: bool = False
|
||||
support_vision: bool = False
|
||||
|
||||
def __init__(self, model_format: str, model_handle_type: str, model_ability: list[str],
|
||||
support_function_call: bool, max_tokens: int, context_length: int) -> None:
|
||||
def __init__(self, model_format: str, model_handle_type: str, model_ability: list[str],
|
||||
support_function_call: bool, support_vision: bool, max_tokens: int, context_length: int) -> None:
|
||||
self.model_format = model_format
|
||||
self.model_handle_type = model_handle_type
|
||||
self.model_ability = model_ability
|
||||
self.support_function_call = support_function_call
|
||||
self.support_vision = support_vision
|
||||
self.max_tokens = max_tokens
|
||||
self.context_length = context_length
|
||||
|
||||
@ -71,7 +73,7 @@ class XinferenceHelper:
|
||||
raise RuntimeError(f'get xinference model extra parameter failed, url: {url}, error: {e}')
|
||||
if response.status_code != 200:
|
||||
raise RuntimeError(f'get xinference model extra parameter failed, status code: {response.status_code}, response: {response.text}')
|
||||
|
||||
|
||||
response_json = response.json()
|
||||
|
||||
model_format = response_json.get('model_format', 'ggmlv3')
|
||||
@ -87,17 +89,19 @@ class XinferenceHelper:
|
||||
model_handle_type = 'chat'
|
||||
else:
|
||||
raise NotImplementedError(f'xinference model handle type {model_handle_type} is not supported')
|
||||
|
||||
|
||||
support_function_call = 'tools' in model_ability
|
||||
support_vision = 'vision' in model_ability
|
||||
max_tokens = response_json.get('max_tokens', 512)
|
||||
|
||||
context_length = response_json.get('context_length', 2048)
|
||||
|
||||
|
||||
return XinferenceModelExtraParameter(
|
||||
model_format=model_format,
|
||||
model_handle_type=model_handle_type,
|
||||
model_ability=model_ability,
|
||||
support_function_call=support_function_call,
|
||||
support_vision=support_vision,
|
||||
max_tokens=max_tokens,
|
||||
context_length=context_length
|
||||
)
|
Loading…
x
Reference in New Issue
Block a user