let claude models in bedrock support the response_format parameter (#8220)

Co-authored-by: duyalei <>
This commit is contained in:
yalei 2024-09-11 18:24:50 +08:00 committed by GitHub
parent fe8191b899
commit f515af2232
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 55 additions and 0 deletions

View File

@ -52,6 +52,8 @@ parameter_rules:
help: help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。 zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses. en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing: pricing:
input: '0.00025' input: '0.00025'
output: '0.00125' output: '0.00125'

View File

@ -52,6 +52,8 @@ parameter_rules:
help: help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。 zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses. en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing: pricing:
input: '0.015' input: '0.015'
output: '0.075' output: '0.075'

View File

@ -51,6 +51,8 @@ parameter_rules:
help: help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。 zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses. en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing: pricing:
input: '0.003' input: '0.003'
output: '0.015' output: '0.015'

View File

@ -51,6 +51,8 @@ parameter_rules:
help: help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。 zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses. en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing: pricing:
input: '0.003' input: '0.003'
output: '0.015' output: '0.015'

View File

@ -45,6 +45,8 @@ parameter_rules:
help: help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。 zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses. en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing: pricing:
input: '0.008' input: '0.008'
output: '0.024' output: '0.024'

View File

@ -45,6 +45,8 @@ parameter_rules:
help: help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。 zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses. en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing: pricing:
input: '0.008' input: '0.008'
output: '0.024' output: '0.024'

View File

@ -20,6 +20,7 @@ from botocore.exceptions import (
from PIL.Image import Image from PIL.Image import Image
# local import # local import
from core.model_runtime.callbacks.base_callback import Callback
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import ( from core.model_runtime.entities.message_entities import (
AssistantPromptMessage, AssistantPromptMessage,
@ -44,6 +45,14 @@ from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
ANTHROPIC_BLOCK_MODE_PROMPT = """You should always follow the instructions and output a valid {{block}} object.
The structure of the {{block}} object you can found in the instructions, use {"answer": "$your_answer"} as the default structure
if you are not sure about the structure.
<instructions>
{{instructions}}
</instructions>
"""
class BedrockLargeLanguageModel(LargeLanguageModel): class BedrockLargeLanguageModel(LargeLanguageModel):
@ -70,6 +79,40 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
logger.info(f"current model id: {model_id} did not support by Converse API") logger.info(f"current model id: {model_id} did not support by Converse API")
return None return None
def _code_block_mode_wrapper(
self,
model: str,
credentials: dict,
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: list[Callback] = None,
) -> Union[LLMResult, Generator]:
"""
Code block mode wrapper for invoking large language model
"""
if model_parameters.get("response_format"):
stop = stop or []
if "```\n" not in stop:
stop.append("```\n")
if "\n```" not in stop:
stop.append("\n```")
response_format = model_parameters.pop("response_format")
format_prompt = SystemPromptMessage(
content=ANTHROPIC_BLOCK_MODE_PROMPT.replace("{{instructions}}", prompt_messages[0].content).replace(
"{{block}}", response_format
)
)
if len(prompt_messages) > 0 and isinstance(prompt_messages[0], SystemPromptMessage):
prompt_messages[0] = format_prompt
else:
prompt_messages.insert(0, format_prompt)
prompt_messages.append(AssistantPromptMessage(content=f"\n```{response_format}"))
return self._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream, user)
def _invoke( def _invoke(
self, self,
model: str, model: str,