mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-14 03:25:57 +08:00
[seanguo] modify bedrock Claude3 invoke method to converse API (#5768)
Co-authored-by: Chenhe Gu <guchenhe@gmail.com>
This commit is contained in:
parent
a27462d58b
commit
fdfbbde10d
@ -1,22 +1,14 @@
|
||||
# standard import
|
||||
import base64
|
||||
import json
|
||||
import logging
|
||||
import mimetypes
|
||||
import time
|
||||
from collections.abc import Generator
|
||||
from typing import Optional, Union, cast
|
||||
|
||||
# 3rd import
|
||||
import boto3
|
||||
import requests
|
||||
from anthropic import AnthropicBedrock, Stream
|
||||
from anthropic.types import (
|
||||
ContentBlockDeltaEvent,
|
||||
Message,
|
||||
MessageDeltaEvent,
|
||||
MessageStartEvent,
|
||||
MessageStopEvent,
|
||||
MessageStreamEvent,
|
||||
)
|
||||
from botocore.config import Config
|
||||
from botocore.exceptions import (
|
||||
ClientError,
|
||||
@ -27,7 +19,8 @@ from botocore.exceptions import (
|
||||
)
|
||||
from cohere import ChatMessage
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
# local import
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
ImagePromptMessageContent,
|
||||
@ -38,7 +31,6 @@ from core.model_runtime.entities.message_entities import (
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.errors.invoke import (
|
||||
InvokeAuthorizationError,
|
||||
InvokeBadRequestError,
|
||||
@ -73,8 +65,8 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
:param user: unique user id
|
||||
:return: full response or stream response chunk generator result
|
||||
"""
|
||||
|
||||
# invoke anthropic models via anthropic official SDK
|
||||
# TODO: consolidate different invocation methods for models based on base model capabilities
|
||||
# invoke anthropic models via boto3 client
|
||||
if "anthropic" in model:
|
||||
return self._generate_anthropic(model, credentials, prompt_messages, model_parameters, stop, stream, user)
|
||||
# invoke Cohere models via boto3 client
|
||||
@ -171,48 +163,34 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
:param stream: is stream response
|
||||
:return: full response or stream response chunk generator result
|
||||
"""
|
||||
# use Anthropic official SDK references
|
||||
# - https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
|
||||
# - https://github.com/anthropics/anthropic-sdk-python
|
||||
client = AnthropicBedrock(
|
||||
aws_access_key=credentials.get("aws_access_key_id"),
|
||||
aws_secret_key=credentials.get("aws_secret_access_key"),
|
||||
aws_region=credentials["aws_region"],
|
||||
)
|
||||
bedrock_client = boto3.client(service_name='bedrock-runtime',
|
||||
aws_access_key_id=credentials.get("aws_access_key_id"),
|
||||
aws_secret_access_key=credentials.get("aws_secret_access_key"),
|
||||
region_name=credentials["aws_region"])
|
||||
|
||||
extra_model_kwargs = {}
|
||||
if stop:
|
||||
extra_model_kwargs['stop_sequences'] = stop
|
||||
|
||||
# Notice: If you request the current version of the SDK to the bedrock server,
|
||||
# you will get the following error message and you need to wait for the service or SDK to be updated.
|
||||
# Response: Error code: 400
|
||||
# {'message': 'Malformed input request: #: subject must not be valid against schema
|
||||
# {"required":["messages"]}#: extraneous key [metadata] is not permitted, please reformat your input and try again.'}
|
||||
# TODO: Open in the future when the interface is properly supported
|
||||
# if user:
|
||||
# ref: https://github.com/anthropics/anthropic-sdk-python/blob/e84645b07ca5267066700a104b4d8d6a8da1383d/src/anthropic/resources/messages.py#L465
|
||||
# extra_model_kwargs['metadata'] = message_create_params.Metadata(user_id=user)
|
||||
|
||||
system, prompt_message_dicts = self._convert_claude_prompt_messages(prompt_messages)
|
||||
|
||||
if system:
|
||||
extra_model_kwargs['system'] = system
|
||||
|
||||
response = client.messages.create(
|
||||
model=model,
|
||||
messages=prompt_message_dicts,
|
||||
stream=stream,
|
||||
**model_parameters,
|
||||
**extra_model_kwargs
|
||||
)
|
||||
system, prompt_message_dicts = self._convert_converse_prompt_messages(prompt_messages)
|
||||
inference_config, additional_model_fields = self._convert_converse_api_model_parameters(model_parameters, stop)
|
||||
|
||||
if stream:
|
||||
return self._handle_claude_stream_response(model, credentials, response, prompt_messages)
|
||||
response = bedrock_client.converse_stream(
|
||||
modelId=model,
|
||||
messages=prompt_message_dicts,
|
||||
system=system,
|
||||
inferenceConfig=inference_config,
|
||||
additionalModelRequestFields=additional_model_fields
|
||||
)
|
||||
return self._handle_converse_stream_response(model, credentials, response, prompt_messages)
|
||||
else:
|
||||
response = bedrock_client.converse(
|
||||
modelId=model,
|
||||
messages=prompt_message_dicts,
|
||||
system=system,
|
||||
inferenceConfig=inference_config,
|
||||
additionalModelRequestFields=additional_model_fields
|
||||
)
|
||||
return self._handle_converse_response(model, credentials, response, prompt_messages)
|
||||
|
||||
return self._handle_claude_response(model, credentials, response, prompt_messages)
|
||||
|
||||
def _handle_claude_response(self, model: str, credentials: dict, response: Message,
|
||||
def _handle_converse_response(self, model: str, credentials: dict, response: dict,
|
||||
prompt_messages: list[PromptMessage]) -> LLMResult:
|
||||
"""
|
||||
Handle llm chat response
|
||||
@ -223,17 +201,16 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
:param prompt_messages: prompt messages
|
||||
:return: full response chunk generator result
|
||||
"""
|
||||
|
||||
# transform assistant message to prompt message
|
||||
assistant_prompt_message = AssistantPromptMessage(
|
||||
content=response.content[0].text
|
||||
content=response['output']['message']['content'][0]['text']
|
||||
)
|
||||
|
||||
# calculate num tokens
|
||||
if response.usage:
|
||||
if response['usage']:
|
||||
# transform usage
|
||||
prompt_tokens = response.usage.input_tokens
|
||||
completion_tokens = response.usage.output_tokens
|
||||
prompt_tokens = response['usage']['inputTokens']
|
||||
completion_tokens = response['usage']['outputTokens']
|
||||
else:
|
||||
# calculate num tokens
|
||||
prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)
|
||||
@ -242,17 +219,15 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
# transform usage
|
||||
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
||||
|
||||
# transform response
|
||||
response = LLMResult(
|
||||
model=response.model,
|
||||
result = LLMResult(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=assistant_prompt_message,
|
||||
usage=usage
|
||||
usage=usage,
|
||||
)
|
||||
return result
|
||||
|
||||
return response
|
||||
|
||||
def _handle_claude_stream_response(self, model: str, credentials: dict, response: Stream[MessageStreamEvent],
|
||||
def _handle_converse_stream_response(self, model: str, credentials: dict, response: dict,
|
||||
prompt_messages: list[PromptMessage], ) -> Generator:
|
||||
"""
|
||||
Handle llm chat stream response
|
||||
@ -272,14 +247,14 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
finish_reason = None
|
||||
index = 0
|
||||
|
||||
for chunk in response:
|
||||
if isinstance(chunk, MessageStartEvent):
|
||||
return_model = chunk.message.model
|
||||
input_tokens = chunk.message.usage.input_tokens
|
||||
elif isinstance(chunk, MessageDeltaEvent):
|
||||
output_tokens = chunk.usage.output_tokens
|
||||
finish_reason = chunk.delta.stop_reason
|
||||
elif isinstance(chunk, MessageStopEvent):
|
||||
for chunk in response['stream']:
|
||||
if 'messageStart' in chunk:
|
||||
return_model = model
|
||||
elif 'messageStop' in chunk:
|
||||
finish_reason = chunk['messageStop']['stopReason']
|
||||
elif 'metadata' in chunk:
|
||||
input_tokens = chunk['metadata']['usage']['inputTokens']
|
||||
output_tokens = chunk['metadata']['usage']['outputTokens']
|
||||
usage = self._calc_response_usage(model, credentials, input_tokens, output_tokens)
|
||||
yield LLMResultChunk(
|
||||
model=return_model,
|
||||
@ -293,13 +268,13 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
usage=usage
|
||||
)
|
||||
)
|
||||
elif isinstance(chunk, ContentBlockDeltaEvent):
|
||||
chunk_text = chunk.delta.text if chunk.delta.text else ''
|
||||
elif 'contentBlockDelta' in chunk:
|
||||
chunk_text = chunk['contentBlockDelta']['delta']['text'] if chunk['contentBlockDelta']['delta']['text'] else ''
|
||||
full_assistant_content += chunk_text
|
||||
assistant_prompt_message = AssistantPromptMessage(
|
||||
content=chunk_text if chunk_text else '',
|
||||
)
|
||||
index = chunk.index
|
||||
index = chunk['contentBlockDelta']['contentBlockIndex']
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
@ -311,56 +286,32 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
except Exception as ex:
|
||||
raise InvokeError(str(ex))
|
||||
|
||||
def _calc_claude_response_usage(self, model: str, credentials: dict, prompt_tokens: int, completion_tokens: int) -> LLMUsage:
|
||||
"""
|
||||
Calculate response usage
|
||||
def _convert_converse_api_model_parameters(self, model_parameters: dict, stop: Optional[list[str]] = None) -> tuple[dict, dict]:
|
||||
inference_config = {}
|
||||
additional_model_fields = {}
|
||||
if 'max_tokens' in model_parameters:
|
||||
inference_config['maxTokens'] = model_parameters['max_tokens']
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param prompt_tokens: prompt tokens
|
||||
:param completion_tokens: completion tokens
|
||||
:return: usage
|
||||
"""
|
||||
# get prompt price info
|
||||
prompt_price_info = self.get_price(
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
price_type=PriceType.INPUT,
|
||||
tokens=prompt_tokens,
|
||||
)
|
||||
if 'temperature' in model_parameters:
|
||||
inference_config['temperature'] = model_parameters['temperature']
|
||||
|
||||
# get completion price info
|
||||
completion_price_info = self.get_price(
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
price_type=PriceType.OUTPUT,
|
||||
tokens=completion_tokens
|
||||
)
|
||||
if 'top_p' in model_parameters:
|
||||
inference_config['topP'] = model_parameters['temperature']
|
||||
|
||||
# transform usage
|
||||
usage = LLMUsage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
prompt_unit_price=prompt_price_info.unit_price,
|
||||
prompt_price_unit=prompt_price_info.unit,
|
||||
prompt_price=prompt_price_info.total_amount,
|
||||
completion_tokens=completion_tokens,
|
||||
completion_unit_price=completion_price_info.unit_price,
|
||||
completion_price_unit=completion_price_info.unit,
|
||||
completion_price=completion_price_info.total_amount,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
total_price=prompt_price_info.total_amount + completion_price_info.total_amount,
|
||||
currency=prompt_price_info.currency,
|
||||
latency=time.perf_counter() - self.started_at
|
||||
)
|
||||
if stop:
|
||||
inference_config['stopSequences'] = stop
|
||||
|
||||
return usage
|
||||
if 'top_k' in model_parameters:
|
||||
additional_model_fields['top_k'] = model_parameters['top_k']
|
||||
|
||||
def _convert_claude_prompt_messages(self, prompt_messages: list[PromptMessage]) -> tuple[str, list[dict]]:
|
||||
return inference_config, additional_model_fields
|
||||
|
||||
def _convert_converse_prompt_messages(self, prompt_messages: list[PromptMessage]) -> tuple[str, list[dict]]:
|
||||
"""
|
||||
Convert prompt messages to dict list and system
|
||||
"""
|
||||
|
||||
system = ""
|
||||
system = []
|
||||
first_loop = True
|
||||
for message in prompt_messages:
|
||||
if isinstance(message, SystemPromptMessage):
|
||||
@ -375,25 +326,24 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
prompt_message_dicts = []
|
||||
for message in prompt_messages:
|
||||
if not isinstance(message, SystemPromptMessage):
|
||||
prompt_message_dicts.append(self._convert_claude_prompt_message_to_dict(message))
|
||||
prompt_message_dicts.append(self._convert_prompt_message_to_dict(message))
|
||||
|
||||
return system, prompt_message_dicts
|
||||
|
||||
def _convert_claude_prompt_message_to_dict(self, message: PromptMessage) -> dict:
|
||||
def _convert_prompt_message_to_dict(self, message: PromptMessage) -> dict:
|
||||
"""
|
||||
Convert PromptMessage to dict
|
||||
"""
|
||||
if isinstance(message, UserPromptMessage):
|
||||
message = cast(UserPromptMessage, message)
|
||||
if isinstance(message.content, str):
|
||||
message_dict = {"role": "user", "content": message.content}
|
||||
message_dict = {"role": "user", "content": [{'text': message.content}]}
|
||||
else:
|
||||
sub_messages = []
|
||||
for message_content in message.content:
|
||||
if message_content.type == PromptMessageContentType.TEXT:
|
||||
message_content = cast(TextPromptMessageContent, message_content)
|
||||
sub_message_dict = {
|
||||
"type": "text",
|
||||
"text": message_content.data
|
||||
}
|
||||
sub_messages.append(sub_message_dict)
|
||||
@ -404,24 +354,24 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
try:
|
||||
image_content = requests.get(message_content.data).content
|
||||
mime_type, _ = mimetypes.guess_type(message_content.data)
|
||||
base64_data = base64.b64encode(image_content).decode('utf-8')
|
||||
except Exception as ex:
|
||||
raise ValueError(f"Failed to fetch image data from url {message_content.data}, {ex}")
|
||||
else:
|
||||
data_split = message_content.data.split(";base64,")
|
||||
mime_type = data_split[0].replace("data:", "")
|
||||
base64_data = data_split[1]
|
||||
image_content = base64.b64decode(base64_data)
|
||||
|
||||
if mime_type not in ["image/jpeg", "image/png", "image/gif", "image/webp"]:
|
||||
raise ValueError(f"Unsupported image type {mime_type}, "
|
||||
f"only support image/jpeg, image/png, image/gif, and image/webp")
|
||||
|
||||
sub_message_dict = {
|
||||
"type": "image",
|
||||
"image": {
|
||||
"format": mime_type.replace('image/', ''),
|
||||
"source": {
|
||||
"type": "base64",
|
||||
"media_type": mime_type,
|
||||
"data": base64_data
|
||||
"bytes": image_content
|
||||
}
|
||||
}
|
||||
}
|
||||
sub_messages.append(sub_message_dict)
|
||||
@ -429,10 +379,10 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
message_dict = {"role": "user", "content": sub_messages}
|
||||
elif isinstance(message, AssistantPromptMessage):
|
||||
message = cast(AssistantPromptMessage, message)
|
||||
message_dict = {"role": "assistant", "content": message.content}
|
||||
message_dict = {"role": "assistant", "content": [{'text': message.content}]}
|
||||
elif isinstance(message, SystemPromptMessage):
|
||||
message = cast(SystemPromptMessage, message)
|
||||
message_dict = {"role": "system", "content": message.content}
|
||||
message_dict = [{'text': message.content}]
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
|
||||
|
38
api/poetry.lock
generated
38
api/poetry.lock
generated
@ -534,41 +534,41 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "boto3"
|
||||
version = "1.28.17"
|
||||
version = "1.34.136"
|
||||
description = "The AWS SDK for Python"
|
||||
optional = false
|
||||
python-versions = ">= 3.7"
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "boto3-1.28.17-py3-none-any.whl", hash = "sha256:bca0526f819e0f19c0f1e6eba3e2d1d6b6a92a45129f98c0d716e5aab6d9444b"},
|
||||
{file = "boto3-1.28.17.tar.gz", hash = "sha256:90f7cfb5e1821af95b1fc084bc50e6c47fa3edc99f32de1a2591faa0c546bea7"},
|
||||
{file = "boto3-1.34.136-py3-none-any.whl", hash = "sha256:d41037e2c680ab8d6c61a0a4ee6bf1fdd9e857f43996672830a95d62d6f6fa79"},
|
||||
{file = "boto3-1.34.136.tar.gz", hash = "sha256:0314e6598f59ee0f34eb4e6d1a0f69fa65c146d2b88a6e837a527a9956ec2731"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
botocore = ">=1.31.17,<1.32.0"
|
||||
botocore = ">=1.34.136,<1.35.0"
|
||||
jmespath = ">=0.7.1,<2.0.0"
|
||||
s3transfer = ">=0.6.0,<0.7.0"
|
||||
s3transfer = ">=0.10.0,<0.11.0"
|
||||
|
||||
[package.extras]
|
||||
crt = ["botocore[crt] (>=1.21.0,<2.0a0)"]
|
||||
|
||||
[[package]]
|
||||
name = "botocore"
|
||||
version = "1.31.85"
|
||||
version = "1.34.136"
|
||||
description = "Low-level, data-driven core of boto 3."
|
||||
optional = false
|
||||
python-versions = ">= 3.7"
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "botocore-1.31.85-py3-none-any.whl", hash = "sha256:b8f35d65f2b45af50c36fc25cc1844d6bd61d38d2148b2ef133b8f10e198555d"},
|
||||
{file = "botocore-1.31.85.tar.gz", hash = "sha256:ce58e688222df73ec5691f934be1a2122a52c9d11d3037b586b3fff16ed6d25f"},
|
||||
{file = "botocore-1.34.136-py3-none-any.whl", hash = "sha256:c63fe9032091fb9e9477706a3ebfa4d0c109b807907051d892ed574f9b573e61"},
|
||||
{file = "botocore-1.34.136.tar.gz", hash = "sha256:7f7135178692b39143c8f152a618d2a3b71065a317569a7102d2306d4946f42f"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
jmespath = ">=0.7.1,<2.0.0"
|
||||
python-dateutil = ">=2.1,<3.0.0"
|
||||
urllib3 = {version = ">=1.25.4,<2.1", markers = "python_version >= \"3.10\""}
|
||||
urllib3 = {version = ">=1.25.4,<2.2.0 || >2.2.0,<3", markers = "python_version >= \"3.10\""}
|
||||
|
||||
[package.extras]
|
||||
crt = ["awscrt (==0.19.12)"]
|
||||
crt = ["awscrt (==0.20.11)"]
|
||||
|
||||
[[package]]
|
||||
name = "bottleneck"
|
||||
@ -7032,20 +7032,20 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "s3transfer"
|
||||
version = "0.6.2"
|
||||
version = "0.10.2"
|
||||
description = "An Amazon S3 Transfer Manager"
|
||||
optional = false
|
||||
python-versions = ">= 3.7"
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "s3transfer-0.6.2-py3-none-any.whl", hash = "sha256:b014be3a8a2aab98cfe1abc7229cc5a9a0cf05eb9c1f2b86b230fd8df3f78084"},
|
||||
{file = "s3transfer-0.6.2.tar.gz", hash = "sha256:cab66d3380cca3e70939ef2255d01cd8aece6a4907a9528740f668c4b0611861"},
|
||||
{file = "s3transfer-0.10.2-py3-none-any.whl", hash = "sha256:eca1c20de70a39daee580aef4986996620f365c4e0fda6a86100231d62f1bf69"},
|
||||
{file = "s3transfer-0.10.2.tar.gz", hash = "sha256:0711534e9356d3cc692fdde846b4a1e4b0cb6519971860796e6bc4c7aea00ef6"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
botocore = ">=1.12.36,<2.0a.0"
|
||||
botocore = ">=1.33.2,<2.0a.0"
|
||||
|
||||
[package.extras]
|
||||
crt = ["botocore[crt] (>=1.20.29,<2.0a.0)"]
|
||||
crt = ["botocore[crt] (>=1.33.2,<2.0a.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "safetensors"
|
||||
@ -9095,4 +9095,4 @@ testing = ["coverage (>=5.0.3)", "zope.event", "zope.testing"]
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = "^3.10"
|
||||
content-hash = "d40bed69caecf3a2bcd5ec054288d7cb36a9a231fff210d4f1a42745dd3bf604"
|
||||
content-hash = "90f0e77567fbe5100d15bf2bc9472007aafc53c2fd594b6a90dd8455dea58582"
|
||||
|
@ -107,7 +107,7 @@ authlib = "1.3.1"
|
||||
azure-identity = "1.16.1"
|
||||
azure-storage-blob = "12.13.0"
|
||||
beautifulsoup4 = "4.12.2"
|
||||
boto3 = "1.28.17"
|
||||
boto3 = "1.34.136"
|
||||
bs4 = "~0.0.1"
|
||||
cachetools = "~5.3.0"
|
||||
celery = "~5.3.6"
|
||||
|
Loading…
x
Reference in New Issue
Block a user