mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-13 09:29:01 +08:00
refactor advanced prompt core. (#1350)
This commit is contained in:
parent
52ebffa857
commit
fe14130b3c
@ -16,6 +16,7 @@ from core.model_providers.models.entity.message import PromptMessage
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.orchestrator_rule_parser import OrchestratorRuleParser
|
||||
from core.prompt.prompt_template import PromptTemplateParser
|
||||
from core.prompt.prompt_transform import PromptTransform
|
||||
from models.model import App, AppModelConfig, Account, Conversation, EndUser
|
||||
|
||||
|
||||
@ -156,24 +157,28 @@ class Completion:
|
||||
conversation_message_task: ConversationMessageTask,
|
||||
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory],
|
||||
fake_response: Optional[str]):
|
||||
prompt_transform = PromptTransform()
|
||||
|
||||
# get llm prompt
|
||||
if app_model_config.prompt_type == 'simple':
|
||||
prompt_messages, stop_words = model_instance.get_prompt(
|
||||
prompt_messages, stop_words = prompt_transform.get_prompt(
|
||||
mode=mode,
|
||||
pre_prompt=app_model_config.pre_prompt,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
context=agent_execute_result.output if agent_execute_result else None,
|
||||
memory=memory
|
||||
memory=memory,
|
||||
model_instance=model_instance
|
||||
)
|
||||
else:
|
||||
prompt_messages = model_instance.get_advanced_prompt(
|
||||
prompt_messages = prompt_transform.get_advanced_prompt(
|
||||
app_mode=mode,
|
||||
app_model_config=app_model_config,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
context=agent_execute_result.output if agent_execute_result else None,
|
||||
memory=memory
|
||||
memory=memory,
|
||||
model_instance=model_instance
|
||||
)
|
||||
|
||||
model_config = app_model_config.model_dict
|
||||
@ -238,15 +243,30 @@ class Completion:
|
||||
if max_tokens is None:
|
||||
max_tokens = 0
|
||||
|
||||
prompt_transform = PromptTransform()
|
||||
prompt_messages = []
|
||||
|
||||
# get prompt without memory and context
|
||||
prompt_messages, _ = model_instance.get_prompt(
|
||||
mode=mode,
|
||||
pre_prompt=app_model_config.pre_prompt,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
context=None,
|
||||
memory=None
|
||||
)
|
||||
if app_model_config.prompt_type == 'simple':
|
||||
prompt_messages, _ = prompt_transform.get_prompt(
|
||||
mode=mode,
|
||||
pre_prompt=app_model_config.pre_prompt,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
context=None,
|
||||
memory=None,
|
||||
model_instance=model_instance
|
||||
)
|
||||
else:
|
||||
prompt_messages = prompt_transform.get_advanced_prompt(
|
||||
app_mode=mode,
|
||||
app_model_config=app_model_config,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
context=None,
|
||||
memory=None,
|
||||
model_instance=model_instance
|
||||
)
|
||||
|
||||
prompt_tokens = model_instance.get_num_tokens(prompt_messages)
|
||||
rest_tokens = model_limited_tokens - max_tokens - prompt_tokens
|
||||
|
@ -37,12 +37,6 @@ class BaichuanModel(BaseLLM):
|
||||
prompts = self._get_prompt_from_messages(messages)
|
||||
return self._client.generate([prompts], stop, callbacks)
|
||||
|
||||
def prompt_file_name(self, mode: str) -> str:
|
||||
if mode == 'completion':
|
||||
return 'baichuan_completion'
|
||||
else:
|
||||
return 'baichuan_chat'
|
||||
|
||||
def get_num_tokens(self, messages: List[PromptMessage]) -> int:
|
||||
"""
|
||||
get num tokens of prompt messages.
|
||||
|
@ -1,28 +1,18 @@
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import time
|
||||
from abc import abstractmethod
|
||||
from typing import List, Optional, Any, Union, Tuple
|
||||
from typing import List, Optional, Any, Union
|
||||
import decimal
|
||||
import logging
|
||||
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.memory.chat_memory import BaseChatMemory
|
||||
from langchain.schema import LLMResult, SystemMessage, AIMessage, HumanMessage, BaseMessage, ChatGeneration
|
||||
from langchain.schema import LLMResult, BaseMessage, ChatGeneration
|
||||
|
||||
from core.callback_handler.std_out_callback_handler import DifyStreamingStdOutCallbackHandler, DifyStdOutCallbackHandler
|
||||
from core.helper import moderation
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
from core.model_providers.models.entity.message import PromptMessage, MessageType, LLMRunResult, to_prompt_messages, \
|
||||
to_lc_messages
|
||||
from core.model_providers.models.entity.message import PromptMessage, MessageType, LLMRunResult, to_lc_messages
|
||||
from core.model_providers.models.entity.model_params import ModelType, ModelKwargs, ModelMode, ModelKwargsRules
|
||||
from core.model_providers.providers.base import BaseModelProvider
|
||||
from core.prompt.prompt_builder import PromptBuilder
|
||||
from core.prompt.prompt_template import PromptTemplateParser
|
||||
from core.third_party.langchain.llms.fake import FakeLLM
|
||||
import logging
|
||||
|
||||
from extensions.ext_database import db
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -320,206 +310,8 @@ class BaseLLM(BaseProviderModel):
|
||||
def support_streaming(self):
|
||||
return False
|
||||
|
||||
def get_prompt(self, mode: str,
|
||||
pre_prompt: str, inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory]) -> \
|
||||
Tuple[List[PromptMessage], Optional[List[str]]]:
|
||||
prompt_rules = self._read_prompt_rules_from_file(self.prompt_file_name(mode))
|
||||
prompt, stops = self._get_prompt_and_stop(prompt_rules, pre_prompt, inputs, query, context, memory)
|
||||
return [PromptMessage(content=prompt)], stops
|
||||
|
||||
def get_advanced_prompt(self, app_mode: str,
|
||||
app_model_config: str, inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory]) -> List[PromptMessage]:
|
||||
|
||||
model_mode = app_model_config.model_dict['mode']
|
||||
conversation_histories_role = {}
|
||||
|
||||
raw_prompt_list = []
|
||||
prompt_messages = []
|
||||
|
||||
if app_mode == 'chat' and model_mode == ModelMode.COMPLETION.value:
|
||||
prompt_text = app_model_config.completion_prompt_config_dict['prompt']['text']
|
||||
raw_prompt_list = [{
|
||||
'role': MessageType.USER.value,
|
||||
'text': prompt_text
|
||||
}]
|
||||
conversation_histories_role = app_model_config.completion_prompt_config_dict['conversation_histories_role']
|
||||
elif app_mode == 'chat' and model_mode == ModelMode.CHAT.value:
|
||||
raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
|
||||
elif app_mode == 'completion' and model_mode == ModelMode.CHAT.value:
|
||||
raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
|
||||
elif app_mode == 'completion' and model_mode == ModelMode.COMPLETION.value:
|
||||
prompt_text = app_model_config.completion_prompt_config_dict['prompt']['text']
|
||||
raw_prompt_list = [{
|
||||
'role': MessageType.USER.value,
|
||||
'text': prompt_text
|
||||
}]
|
||||
else:
|
||||
raise Exception("app_mode or model_mode not support")
|
||||
|
||||
for prompt_item in raw_prompt_list:
|
||||
prompt = prompt_item['text']
|
||||
|
||||
# set prompt template variables
|
||||
prompt_template = PromptTemplateParser(template=prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
if '#context#' in prompt:
|
||||
if context:
|
||||
prompt_inputs['#context#'] = context
|
||||
else:
|
||||
prompt_inputs['#context#'] = ''
|
||||
|
||||
if '#query#' in prompt:
|
||||
if query:
|
||||
prompt_inputs['#query#'] = query
|
||||
else:
|
||||
prompt_inputs['#query#'] = ''
|
||||
|
||||
if '#histories#' in prompt:
|
||||
if memory and app_mode == 'chat' and model_mode == ModelMode.COMPLETION.value:
|
||||
memory.human_prefix = conversation_histories_role['user_prefix']
|
||||
memory.ai_prefix = conversation_histories_role['assistant_prefix']
|
||||
histories = self._get_history_messages_from_memory(memory, 2000)
|
||||
prompt_inputs['#histories#'] = histories
|
||||
else:
|
||||
prompt_inputs['#histories#'] = ''
|
||||
|
||||
prompt = prompt_template.format(
|
||||
prompt_inputs
|
||||
)
|
||||
|
||||
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
||||
|
||||
prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt))
|
||||
|
||||
if memory and app_mode == 'chat' and model_mode == ModelMode.CHAT.value:
|
||||
memory.human_prefix = MessageType.USER.value
|
||||
memory.ai_prefix = MessageType.ASSISTANT.value
|
||||
histories = self._get_history_messages_list_from_memory(memory, 2000)
|
||||
prompt_messages.extend(histories)
|
||||
|
||||
if app_mode == 'chat' and model_mode == ModelMode.CHAT.value:
|
||||
prompt_messages.append(PromptMessage(type = MessageType.USER ,content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def prompt_file_name(self, mode: str) -> str:
|
||||
if mode == 'completion':
|
||||
return 'common_completion'
|
||||
else:
|
||||
return 'common_chat'
|
||||
|
||||
def _get_prompt_and_stop(self, prompt_rules: dict, pre_prompt: str, inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory]) -> Tuple[str, Optional[list]]:
|
||||
context_prompt_content = ''
|
||||
if context and 'context_prompt' in prompt_rules:
|
||||
prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
|
||||
context_prompt_content = prompt_template.format(
|
||||
{'context': context}
|
||||
)
|
||||
|
||||
pre_prompt_content = ''
|
||||
if pre_prompt:
|
||||
prompt_template = PromptTemplateParser(template=pre_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
pre_prompt_content = prompt_template.format(
|
||||
prompt_inputs
|
||||
)
|
||||
|
||||
prompt = ''
|
||||
for order in prompt_rules['system_prompt_orders']:
|
||||
if order == 'context_prompt':
|
||||
prompt += context_prompt_content
|
||||
elif order == 'pre_prompt':
|
||||
prompt += pre_prompt_content
|
||||
|
||||
query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}'
|
||||
|
||||
if memory and 'histories_prompt' in prompt_rules:
|
||||
# append chat histories
|
||||
tmp_human_message = PromptBuilder.to_human_message(
|
||||
prompt_content=prompt + query_prompt,
|
||||
inputs={
|
||||
'query': query
|
||||
}
|
||||
)
|
||||
|
||||
if self.model_rules.max_tokens.max:
|
||||
curr_message_tokens = self.get_num_tokens(to_prompt_messages([tmp_human_message]))
|
||||
max_tokens = self.model_kwargs.max_tokens
|
||||
rest_tokens = self.model_rules.max_tokens.max - max_tokens - curr_message_tokens
|
||||
rest_tokens = max(rest_tokens, 0)
|
||||
else:
|
||||
rest_tokens = 2000
|
||||
|
||||
memory.human_prefix = prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human'
|
||||
memory.ai_prefix = prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
|
||||
|
||||
histories = self._get_history_messages_from_memory(memory, rest_tokens)
|
||||
prompt_template = PromptTemplateParser(template=prompt_rules['histories_prompt'])
|
||||
histories_prompt_content = prompt_template.format({'histories': histories})
|
||||
|
||||
prompt = ''
|
||||
for order in prompt_rules['system_prompt_orders']:
|
||||
if order == 'context_prompt':
|
||||
prompt += context_prompt_content
|
||||
elif order == 'pre_prompt':
|
||||
prompt += (pre_prompt_content + '\n') if pre_prompt_content else ''
|
||||
elif order == 'histories_prompt':
|
||||
prompt += histories_prompt_content
|
||||
|
||||
prompt_template = PromptTemplateParser(template=query_prompt)
|
||||
query_prompt_content = prompt_template.format({'query': query})
|
||||
|
||||
prompt += query_prompt_content
|
||||
|
||||
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
||||
|
||||
stops = prompt_rules.get('stops')
|
||||
if stops is not None and len(stops) == 0:
|
||||
stops = None
|
||||
|
||||
return prompt, stops
|
||||
|
||||
def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
|
||||
# Get the absolute path of the subdirectory
|
||||
prompt_path = os.path.join(
|
||||
os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))),
|
||||
'prompt/generate_prompts')
|
||||
|
||||
json_file_path = os.path.join(prompt_path, f'{prompt_name}.json')
|
||||
# Open the JSON file and read its content
|
||||
with open(json_file_path, 'r') as json_file:
|
||||
return json.load(json_file)
|
||||
|
||||
def _get_history_messages_from_memory(self, memory: BaseChatMemory,
|
||||
max_token_limit: int) -> str:
|
||||
"""Get memory messages."""
|
||||
memory.max_token_limit = max_token_limit
|
||||
memory_key = memory.memory_variables[0]
|
||||
external_context = memory.load_memory_variables({})
|
||||
return external_context[memory_key]
|
||||
|
||||
def _get_history_messages_list_from_memory(self, memory: BaseChatMemory,
|
||||
max_token_limit: int) -> List[PromptMessage]:
|
||||
"""Get memory messages."""
|
||||
memory.max_token_limit = max_token_limit
|
||||
memory.return_messages = True
|
||||
memory_key = memory.memory_variables[0]
|
||||
external_context = memory.load_memory_variables({})
|
||||
memory.return_messages = False
|
||||
return to_prompt_messages(external_context[memory_key])
|
||||
|
||||
def _get_prompt_from_messages(self, messages: List[PromptMessage],
|
||||
model_mode: Optional[ModelMode] = None) -> Union[str | List[BaseMessage]]:
|
||||
model_mode: Optional[ModelMode] = None) -> Union[str , List[BaseMessage]]:
|
||||
if not model_mode:
|
||||
model_mode = self.model_mode
|
||||
|
||||
|
@ -66,15 +66,6 @@ class HuggingfaceHubModel(BaseLLM):
|
||||
prompts = self._get_prompt_from_messages(messages)
|
||||
return self._client.get_num_tokens(prompts)
|
||||
|
||||
def prompt_file_name(self, mode: str) -> str:
|
||||
if 'baichuan' in self.name.lower():
|
||||
if mode == 'completion':
|
||||
return 'baichuan_completion'
|
||||
else:
|
||||
return 'baichuan_chat'
|
||||
else:
|
||||
return super().prompt_file_name(mode)
|
||||
|
||||
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
|
||||
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
|
||||
self.client.model_kwargs = provider_model_kwargs
|
||||
|
@ -49,15 +49,6 @@ class OpenLLMModel(BaseLLM):
|
||||
prompts = self._get_prompt_from_messages(messages)
|
||||
return max(self._client.get_num_tokens(prompts), 0)
|
||||
|
||||
def prompt_file_name(self, mode: str) -> str:
|
||||
if 'baichuan' in self.name.lower():
|
||||
if mode == 'completion':
|
||||
return 'baichuan_completion'
|
||||
else:
|
||||
return 'baichuan_chat'
|
||||
else:
|
||||
return super().prompt_file_name(mode)
|
||||
|
||||
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
|
||||
pass
|
||||
|
||||
|
@ -59,15 +59,6 @@ class XinferenceModel(BaseLLM):
|
||||
prompts = self._get_prompt_from_messages(messages)
|
||||
return max(self._client.get_num_tokens(prompts), 0)
|
||||
|
||||
def prompt_file_name(self, mode: str) -> str:
|
||||
if 'baichuan' in self.name.lower():
|
||||
if mode == 'completion':
|
||||
return 'baichuan_completion'
|
||||
else:
|
||||
return 'baichuan_chat'
|
||||
else:
|
||||
return super().prompt_file_name(mode)
|
||||
|
||||
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
|
||||
pass
|
||||
|
||||
|
344
api/core/prompt/prompt_transform.py
Normal file
344
api/core/prompt/prompt_transform.py
Normal file
@ -0,0 +1,344 @@
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import enum
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
from langchain.memory.chat_memory import BaseChatMemory
|
||||
from langchain.schema import BaseMessage
|
||||
|
||||
from core.model_providers.models.entity.model_params import ModelMode
|
||||
from core.model_providers.models.entity.message import PromptMessage, MessageType, to_prompt_messages
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.model_providers.models.llm.baichuan_model import BaichuanModel
|
||||
from core.model_providers.models.llm.huggingface_hub_model import HuggingfaceHubModel
|
||||
from core.model_providers.models.llm.openllm_model import OpenLLMModel
|
||||
from core.model_providers.models.llm.xinference_model import XinferenceModel
|
||||
from core.prompt.prompt_builder import PromptBuilder
|
||||
from core.prompt.prompt_template import PromptTemplateParser
|
||||
|
||||
class AppMode(enum.Enum):
|
||||
COMPLETION = 'completion'
|
||||
CHAT = 'chat'
|
||||
|
||||
class PromptTransform:
|
||||
def get_prompt(self, mode: str,
|
||||
pre_prompt: str, inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory],
|
||||
model_instance: BaseLLM) -> \
|
||||
Tuple[List[PromptMessage], Optional[List[str]]]:
|
||||
prompt_rules = self._read_prompt_rules_from_file(self._prompt_file_name(mode, model_instance))
|
||||
prompt, stops = self._get_prompt_and_stop(prompt_rules, pre_prompt, inputs, query, context, memory, model_instance)
|
||||
return [PromptMessage(content=prompt)], stops
|
||||
|
||||
def get_advanced_prompt(self,
|
||||
app_mode: str,
|
||||
app_model_config: str,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory],
|
||||
model_instance: BaseLLM) -> List[PromptMessage]:
|
||||
|
||||
model_mode = app_model_config.model_dict['mode']
|
||||
|
||||
app_mode_enum = AppMode(app_mode)
|
||||
model_mode_enum = ModelMode(model_mode)
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
if app_mode_enum == AppMode.CHAT:
|
||||
if model_mode_enum == ModelMode.COMPLETION:
|
||||
prompt_messages = self._get_chat_app_completion_model_prompt_messages(app_model_config, inputs, query, context, memory, model_instance)
|
||||
elif model_mode_enum == ModelMode.CHAT:
|
||||
prompt_messages = self._get_chat_app_chat_model_prompt_messages(app_model_config, inputs, query, context, memory, model_instance)
|
||||
elif app_mode_enum == AppMode.COMPLETION:
|
||||
if model_mode_enum == ModelMode.CHAT:
|
||||
prompt_messages = self._get_completion_app_chat_model_prompt_messages(app_model_config, inputs, context)
|
||||
elif model_mode_enum == ModelMode.COMPLETION:
|
||||
prompt_messages = self._get_completion_app_completion_model_prompt_messages(app_model_config, inputs, context)
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_history_messages_from_memory(self, memory: BaseChatMemory,
|
||||
max_token_limit: int) -> str:
|
||||
"""Get memory messages."""
|
||||
memory.max_token_limit = max_token_limit
|
||||
memory_key = memory.memory_variables[0]
|
||||
external_context = memory.load_memory_variables({})
|
||||
return external_context[memory_key]
|
||||
|
||||
def _get_history_messages_list_from_memory(self, memory: BaseChatMemory,
|
||||
max_token_limit: int) -> List[PromptMessage]:
|
||||
"""Get memory messages."""
|
||||
memory.max_token_limit = max_token_limit
|
||||
memory.return_messages = True
|
||||
memory_key = memory.memory_variables[0]
|
||||
external_context = memory.load_memory_variables({})
|
||||
memory.return_messages = False
|
||||
return to_prompt_messages(external_context[memory_key])
|
||||
|
||||
def _prompt_file_name(self, mode: str, model_instance: BaseLLM) -> str:
|
||||
# baichuan
|
||||
if isinstance(model_instance, BaichuanModel):
|
||||
return self._prompt_file_name_for_baichuan(mode)
|
||||
|
||||
baichuan_model_hosted_platforms = (HuggingfaceHubModel, OpenLLMModel, XinferenceModel)
|
||||
if isinstance(model_instance, baichuan_model_hosted_platforms) and 'baichuan' in model_instance.name.lower():
|
||||
return self._prompt_file_name_for_baichuan(mode)
|
||||
|
||||
# common
|
||||
if mode == 'completion':
|
||||
return 'common_completion'
|
||||
else:
|
||||
return 'common_chat'
|
||||
|
||||
def _prompt_file_name_for_baichuan(self, mode: str) -> str:
|
||||
if mode == 'completion':
|
||||
return 'baichuan_completion'
|
||||
else:
|
||||
return 'baichuan_chat'
|
||||
|
||||
def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
|
||||
# Get the absolute path of the subdirectory
|
||||
prompt_path = os.path.join(
|
||||
os.path.dirname(os.path.realpath(__file__)),
|
||||
'generate_prompts')
|
||||
|
||||
json_file_path = os.path.join(prompt_path, f'{prompt_name}.json')
|
||||
# Open the JSON file and read its content
|
||||
with open(json_file_path, 'r') as json_file:
|
||||
return json.load(json_file)
|
||||
|
||||
def _get_prompt_and_stop(self, prompt_rules: dict, pre_prompt: str, inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory],
|
||||
model_instance: BaseLLM) -> Tuple[str, Optional[list]]:
|
||||
context_prompt_content = ''
|
||||
if context and 'context_prompt' in prompt_rules:
|
||||
prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
|
||||
context_prompt_content = prompt_template.format(
|
||||
{'context': context}
|
||||
)
|
||||
|
||||
pre_prompt_content = ''
|
||||
if pre_prompt:
|
||||
prompt_template = PromptTemplateParser(template=pre_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
pre_prompt_content = prompt_template.format(
|
||||
prompt_inputs
|
||||
)
|
||||
|
||||
prompt = ''
|
||||
for order in prompt_rules['system_prompt_orders']:
|
||||
if order == 'context_prompt':
|
||||
prompt += context_prompt_content
|
||||
elif order == 'pre_prompt':
|
||||
prompt += pre_prompt_content
|
||||
|
||||
query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}'
|
||||
|
||||
if memory and 'histories_prompt' in prompt_rules:
|
||||
# append chat histories
|
||||
tmp_human_message = PromptBuilder.to_human_message(
|
||||
prompt_content=prompt + query_prompt,
|
||||
inputs={
|
||||
'query': query
|
||||
}
|
||||
)
|
||||
|
||||
rest_tokens = self._calculate_rest_token(tmp_human_message, model_instance)
|
||||
|
||||
memory.human_prefix = prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human'
|
||||
memory.ai_prefix = prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
|
||||
|
||||
histories = self._get_history_messages_from_memory(memory, rest_tokens)
|
||||
prompt_template = PromptTemplateParser(template=prompt_rules['histories_prompt'])
|
||||
histories_prompt_content = prompt_template.format({'histories': histories})
|
||||
|
||||
prompt = ''
|
||||
for order in prompt_rules['system_prompt_orders']:
|
||||
if order == 'context_prompt':
|
||||
prompt += context_prompt_content
|
||||
elif order == 'pre_prompt':
|
||||
prompt += (pre_prompt_content + '\n') if pre_prompt_content else ''
|
||||
elif order == 'histories_prompt':
|
||||
prompt += histories_prompt_content
|
||||
|
||||
prompt_template = PromptTemplateParser(template=query_prompt)
|
||||
query_prompt_content = prompt_template.format({'query': query})
|
||||
|
||||
prompt += query_prompt_content
|
||||
|
||||
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
||||
|
||||
stops = prompt_rules.get('stops')
|
||||
if stops is not None and len(stops) == 0:
|
||||
stops = None
|
||||
|
||||
return prompt, stops
|
||||
|
||||
def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
|
||||
if '#context#' in prompt_template.variable_keys:
|
||||
if context:
|
||||
prompt_inputs['#context#'] = context
|
||||
else:
|
||||
prompt_inputs['#context#'] = ''
|
||||
|
||||
def _set_query_variable(self, query: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
|
||||
if '#query#' in prompt_template.variable_keys:
|
||||
if query:
|
||||
prompt_inputs['#query#'] = query
|
||||
else:
|
||||
prompt_inputs['#query#'] = ''
|
||||
|
||||
def _set_histories_variable(self, memory: BaseChatMemory, raw_prompt: str, conversation_histories_role: dict,
|
||||
prompt_template: PromptTemplateParser, prompt_inputs: dict, model_instance: BaseLLM) -> None:
|
||||
if '#histories#' in prompt_template.variable_keys:
|
||||
if memory:
|
||||
tmp_human_message = PromptBuilder.to_human_message(
|
||||
prompt_content=raw_prompt,
|
||||
inputs={ '#histories#': '', **prompt_inputs }
|
||||
)
|
||||
|
||||
rest_tokens = self._calculate_rest_token(tmp_human_message, model_instance)
|
||||
|
||||
memory.human_prefix = conversation_histories_role['user_prefix']
|
||||
memory.ai_prefix = conversation_histories_role['assistant_prefix']
|
||||
histories = self._get_history_messages_from_memory(memory, rest_tokens)
|
||||
prompt_inputs['#histories#'] = histories
|
||||
else:
|
||||
prompt_inputs['#histories#'] = ''
|
||||
|
||||
def _append_chat_histories(self, memory: BaseChatMemory, prompt_messages: list[PromptMessage], model_instance: BaseLLM) -> None:
|
||||
if memory:
|
||||
rest_tokens = self._calculate_rest_token(prompt_messages, model_instance)
|
||||
|
||||
memory.human_prefix = MessageType.USER.value
|
||||
memory.ai_prefix = MessageType.ASSISTANT.value
|
||||
histories = self._get_history_messages_list_from_memory(memory, rest_tokens)
|
||||
prompt_messages.extend(histories)
|
||||
|
||||
def _calculate_rest_token(self, prompt_messages: BaseMessage, model_instance: BaseLLM) -> int:
|
||||
rest_tokens = 2000
|
||||
|
||||
if model_instance.model_rules.max_tokens.max:
|
||||
curr_message_tokens = model_instance.get_num_tokens(to_prompt_messages(prompt_messages))
|
||||
max_tokens = model_instance.model_kwargs.max_tokens
|
||||
rest_tokens = model_instance.model_rules.max_tokens.max - max_tokens - curr_message_tokens
|
||||
rest_tokens = max(rest_tokens, 0)
|
||||
|
||||
return rest_tokens
|
||||
|
||||
def _format_prompt(self, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> str:
|
||||
prompt = prompt_template.format(
|
||||
prompt_inputs
|
||||
)
|
||||
|
||||
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
||||
return prompt
|
||||
|
||||
def _get_chat_app_completion_model_prompt_messages(self,
|
||||
app_model_config: str,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory],
|
||||
model_instance: BaseLLM) -> List[PromptMessage]:
|
||||
|
||||
raw_prompt = app_model_config.completion_prompt_config_dict['prompt']['text']
|
||||
conversation_histories_role = app_model_config.completion_prompt_config_dict['conversation_histories_role']
|
||||
|
||||
prompt_messages = []
|
||||
prompt = ''
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
self._set_context_variable(context, prompt_template, prompt_inputs)
|
||||
|
||||
self._set_query_variable(query, prompt_template, prompt_inputs)
|
||||
|
||||
self._set_histories_variable(memory, raw_prompt, conversation_histories_role, prompt_template, prompt_inputs, model_instance)
|
||||
|
||||
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
||||
|
||||
prompt_messages.append(PromptMessage(type = MessageType(MessageType.USER) ,content=prompt))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_chat_app_chat_model_prompt_messages(self,
|
||||
app_model_config: str,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory],
|
||||
model_instance: BaseLLM) -> List[PromptMessage]:
|
||||
raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
for prompt_item in raw_prompt_list:
|
||||
raw_prompt = prompt_item['text']
|
||||
prompt = ''
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
self._set_context_variable(context, prompt_template, prompt_inputs)
|
||||
|
||||
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
||||
|
||||
prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt))
|
||||
|
||||
self._append_chat_histories(memory, prompt_messages, model_instance)
|
||||
|
||||
prompt_messages.append(PromptMessage(type = MessageType.USER ,content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_completion_app_completion_model_prompt_messages(self,
|
||||
app_model_config: str,
|
||||
inputs: dict,
|
||||
context: Optional[str]) -> List[PromptMessage]:
|
||||
raw_prompt = app_model_config.completion_prompt_config_dict['prompt']['text']
|
||||
|
||||
prompt_messages = []
|
||||
prompt = ''
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
self._set_context_variable(context, prompt_template, prompt_inputs)
|
||||
|
||||
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
||||
|
||||
prompt_messages.append(PromptMessage(type = MessageType(MessageType.USER) ,content=prompt))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_completion_app_chat_model_prompt_messages(self,
|
||||
app_model_config: str,
|
||||
inputs: dict,
|
||||
context: Optional[str]) -> List[PromptMessage]:
|
||||
raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
for prompt_item in raw_prompt_list:
|
||||
raw_prompt = prompt_item['text']
|
||||
prompt = ''
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
self._set_context_variable(context, prompt_template, prompt_inputs)
|
||||
|
||||
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
||||
|
||||
prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt))
|
||||
|
||||
return prompt_messages
|
@ -1,6 +1,8 @@
|
||||
|
||||
import copy
|
||||
|
||||
from core.model_providers.models.entity.model_params import ModelMode
|
||||
from core.prompt.prompt_transform import AppMode
|
||||
from core.prompt.advanced_prompt_templates import CHAT_APP_COMPLETION_PROMPT_CONFIG, CHAT_APP_CHAT_PROMPT_CONFIG, COMPLETION_APP_CHAT_PROMPT_CONFIG, COMPLETION_APP_COMPLETION_PROMPT_CONFIG, \
|
||||
BAICHUAN_CHAT_APP_COMPLETION_PROMPT_CONFIG, BAICHUAN_CHAT_APP_CHAT_PROMPT_CONFIG, BAICHUAN_COMPLETION_APP_COMPLETION_PROMPT_CONFIG, BAICHUAN_COMPLETION_APP_CHAT_PROMPT_CONFIG, CONTEXT, BAICHUAN_CONTEXT
|
||||
|
||||
@ -13,7 +15,7 @@ class AdvancedPromptTemplateService:
|
||||
model_name = args['model_name']
|
||||
has_context = args['has_context']
|
||||
|
||||
if 'baichuan' in model_name:
|
||||
if 'baichuan' in model_name.lower():
|
||||
return cls.get_baichuan_prompt(app_mode, model_mode, has_context)
|
||||
else:
|
||||
return cls.get_common_prompt(app_mode, model_mode, has_context)
|
||||
@ -22,15 +24,15 @@ class AdvancedPromptTemplateService:
|
||||
def get_common_prompt(cls, app_mode: str, model_mode:str, has_context: str) -> dict:
|
||||
context_prompt = copy.deepcopy(CONTEXT)
|
||||
|
||||
if app_mode == 'chat':
|
||||
if model_mode == 'completion':
|
||||
if app_mode == AppMode.CHAT.value:
|
||||
if model_mode == ModelMode.COMPLETION.value:
|
||||
return cls.get_completion_prompt(copy.deepcopy(CHAT_APP_COMPLETION_PROMPT_CONFIG), has_context, context_prompt)
|
||||
elif model_mode == 'chat':
|
||||
elif model_mode == ModelMode.CHAT.value:
|
||||
return cls.get_chat_prompt(copy.deepcopy(CHAT_APP_CHAT_PROMPT_CONFIG), has_context, context_prompt)
|
||||
elif app_mode == 'completion':
|
||||
if model_mode == 'completion':
|
||||
elif app_mode == AppMode.COMPLETION.value:
|
||||
if model_mode == ModelMode.COMPLETION.value:
|
||||
return cls.get_completion_prompt(copy.deepcopy(COMPLETION_APP_COMPLETION_PROMPT_CONFIG), has_context, context_prompt)
|
||||
elif model_mode == 'chat':
|
||||
elif model_mode == ModelMode.CHAT.value:
|
||||
return cls.get_chat_prompt(copy.deepcopy(COMPLETION_APP_CHAT_PROMPT_CONFIG), has_context, context_prompt)
|
||||
|
||||
@classmethod
|
||||
@ -51,13 +53,13 @@ class AdvancedPromptTemplateService:
|
||||
def get_baichuan_prompt(cls, app_mode: str, model_mode:str, has_context: str) -> dict:
|
||||
baichuan_context_prompt = copy.deepcopy(BAICHUAN_CONTEXT)
|
||||
|
||||
if app_mode == 'chat':
|
||||
if model_mode == 'completion':
|
||||
if app_mode == AppMode.CHAT.value:
|
||||
if model_mode == ModelMode.COMPLETION.value:
|
||||
return cls.get_completion_prompt(copy.deepcopy(BAICHUAN_CHAT_APP_COMPLETION_PROMPT_CONFIG), has_context, baichuan_context_prompt)
|
||||
elif model_mode == 'chat':
|
||||
elif model_mode == ModelMode.CHAT.value:
|
||||
return cls.get_chat_prompt(copy.deepcopy(BAICHUAN_CHAT_APP_CHAT_PROMPT_CONFIG), has_context, baichuan_context_prompt)
|
||||
elif app_mode == 'completion':
|
||||
if model_mode == 'completion':
|
||||
elif app_mode == AppMode.COMPLETION.value:
|
||||
if model_mode == ModelMode.COMPLETION.value:
|
||||
return cls.get_completion_prompt(copy.deepcopy(BAICHUAN_COMPLETION_APP_COMPLETION_PROMPT_CONFIG), has_context, baichuan_context_prompt)
|
||||
elif model_mode == 'chat':
|
||||
elif model_mode == ModelMode.CHAT.value:
|
||||
return cls.get_chat_prompt(copy.deepcopy(BAICHUAN_COMPLETION_APP_CHAT_PROMPT_CONFIG), has_context, baichuan_context_prompt)
|
@ -1,6 +1,7 @@
|
||||
import re
|
||||
import uuid
|
||||
|
||||
from core.prompt.prompt_transform import AppMode
|
||||
from core.agent.agent_executor import PlanningStrategy
|
||||
from core.model_providers.model_provider_factory import ModelProviderFactory
|
||||
from core.model_providers.models.entity.model_params import ModelType, ModelMode
|
||||
@ -418,7 +419,7 @@ class AppModelConfigService:
|
||||
if config['model']["mode"] not in ['chat', 'completion']:
|
||||
raise ValueError("model.mode must be in ['chat', 'completion'] when prompt_type is advanced")
|
||||
|
||||
if app_mode == 'chat' and config['model']["mode"] == ModelMode.COMPLETION.value:
|
||||
if app_mode == AppMode.CHAT.value and config['model']["mode"] == ModelMode.COMPLETION.value:
|
||||
user_prefix = config['completion_prompt_config']['conversation_histories_role']['user_prefix']
|
||||
assistant_prefix = config['completion_prompt_config']['conversation_histories_role']['assistant_prefix']
|
||||
|
||||
@ -427,3 +428,10 @@ class AppModelConfigService:
|
||||
|
||||
if not assistant_prefix:
|
||||
config['completion_prompt_config']['conversation_histories_role']['assistant_prefix'] = 'Assistant'
|
||||
|
||||
|
||||
if config['model']["mode"] == ModelMode.CHAT.value:
|
||||
prompt_list = config['chat_prompt_config']['prompt']
|
||||
|
||||
if len(prompt_list) > 10:
|
||||
raise ValueError("prompt messages must be less than 10")
|
Loading…
x
Reference in New Issue
Block a user