mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-20 01:29:04 +08:00
Merge branch 'main' into jzh
This commit is contained in:
commit
fff40aae58
4
.github/workflows/style.yml
vendored
4
.github/workflows/style.yml
vendored
@ -45,6 +45,10 @@ jobs:
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
run: poetry run -C api dotenv-linter ./api/.env.example ./web/.env.example
|
||||
|
||||
- name: Ruff formatter check
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
run: poetry run -C api ruff format --check ./api
|
||||
|
||||
- name: Lint hints
|
||||
if: failure()
|
||||
run: echo "Please run 'dev/reformat' to fix the fixable linting errors."
|
||||
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -178,3 +178,4 @@ pyrightconfig.json
|
||||
api/.vscode
|
||||
|
||||
.idea/
|
||||
.vscode
|
@ -267,4 +267,13 @@ APP_MAX_ACTIVE_REQUESTS=0
|
||||
|
||||
|
||||
# Celery beat configuration
|
||||
CELERY_BEAT_SCHEDULER_TIME=1
|
||||
CELERY_BEAT_SCHEDULER_TIME=1
|
||||
|
||||
# Position configuration
|
||||
POSITION_TOOL_PINS=
|
||||
POSITION_TOOL_INCLUDES=
|
||||
POSITION_TOOL_EXCLUDES=
|
||||
|
||||
POSITION_PROVIDER_PINS=
|
||||
POSITION_PROVIDER_INCLUDES=
|
||||
POSITION_PROVIDER_EXCLUDES=
|
||||
|
0
.idea/icon.png → api/.idea/icon.png
generated
0
.idea/icon.png → api/.idea/icon.png
generated
Before Width: | Height: | Size: 1.7 KiB After Width: | Height: | Size: 1.7 KiB |
0
.idea/vcs.xml → api/.idea/vcs.xml
generated
0
.idea/vcs.xml → api/.idea/vcs.xml
generated
@ -5,8 +5,8 @@
|
||||
"name": "Python: Flask",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "${workspaceFolder}/api/.venv/bin/python",
|
||||
"cwd": "${workspaceFolder}/api",
|
||||
"python": "${workspaceFolder}/.venv/bin/python",
|
||||
"cwd": "${workspaceFolder}",
|
||||
"envFile": ".env",
|
||||
"module": "flask",
|
||||
"justMyCode": true,
|
||||
@ -18,15 +18,15 @@
|
||||
"args": [
|
||||
"run",
|
||||
"--host=0.0.0.0",
|
||||
"--port=5001",
|
||||
"--port=5001"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "Python: Celery",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "${workspaceFolder}/api/.venv/bin/python",
|
||||
"cwd": "${workspaceFolder}/api",
|
||||
"python": "${workspaceFolder}/.venv/bin/python",
|
||||
"cwd": "${workspaceFolder}",
|
||||
"module": "celery",
|
||||
"justMyCode": true,
|
||||
"envFile": ".env",
|
161
api/app.py
161
api/app.py
@ -1,6 +1,6 @@
|
||||
import os
|
||||
|
||||
if os.environ.get("DEBUG", "false").lower() != 'true':
|
||||
if os.environ.get("DEBUG", "false").lower() != "true":
|
||||
from gevent import monkey
|
||||
|
||||
monkey.patch_all()
|
||||
@ -57,7 +57,7 @@ warnings.simplefilter("ignore", ResourceWarning)
|
||||
if os.name == "nt":
|
||||
os.system('tzutil /s "UTC"')
|
||||
else:
|
||||
os.environ['TZ'] = 'UTC'
|
||||
os.environ["TZ"] = "UTC"
|
||||
time.tzset()
|
||||
|
||||
|
||||
@ -70,13 +70,14 @@ class DifyApp(Flask):
|
||||
# -------------
|
||||
|
||||
|
||||
config_type = os.getenv('EDITION', default='SELF_HOSTED') # ce edition first
|
||||
config_type = os.getenv("EDITION", default="SELF_HOSTED") # ce edition first
|
||||
|
||||
|
||||
# ----------------------------
|
||||
# Application Factory Function
|
||||
# ----------------------------
|
||||
|
||||
|
||||
def create_flask_app_with_configs() -> Flask:
|
||||
"""
|
||||
create a raw flask app
|
||||
@ -92,7 +93,7 @@ def create_flask_app_with_configs() -> Flask:
|
||||
elif isinstance(value, int | float | bool):
|
||||
os.environ[key] = str(value)
|
||||
elif value is None:
|
||||
os.environ[key] = ''
|
||||
os.environ[key] = ""
|
||||
|
||||
return dify_app
|
||||
|
||||
@ -100,10 +101,10 @@ def create_flask_app_with_configs() -> Flask:
|
||||
def create_app() -> Flask:
|
||||
app = create_flask_app_with_configs()
|
||||
|
||||
app.secret_key = app.config['SECRET_KEY']
|
||||
app.secret_key = app.config["SECRET_KEY"]
|
||||
|
||||
log_handlers = None
|
||||
log_file = app.config.get('LOG_FILE')
|
||||
log_file = app.config.get("LOG_FILE")
|
||||
if log_file:
|
||||
log_dir = os.path.dirname(log_file)
|
||||
os.makedirs(log_dir, exist_ok=True)
|
||||
@ -111,23 +112,24 @@ def create_app() -> Flask:
|
||||
RotatingFileHandler(
|
||||
filename=log_file,
|
||||
maxBytes=1024 * 1024 * 1024,
|
||||
backupCount=5
|
||||
backupCount=5,
|
||||
),
|
||||
logging.StreamHandler(sys.stdout)
|
||||
logging.StreamHandler(sys.stdout),
|
||||
]
|
||||
|
||||
logging.basicConfig(
|
||||
level=app.config.get('LOG_LEVEL'),
|
||||
format=app.config.get('LOG_FORMAT'),
|
||||
datefmt=app.config.get('LOG_DATEFORMAT'),
|
||||
level=app.config.get("LOG_LEVEL"),
|
||||
format=app.config.get("LOG_FORMAT"),
|
||||
datefmt=app.config.get("LOG_DATEFORMAT"),
|
||||
handlers=log_handlers,
|
||||
force=True
|
||||
force=True,
|
||||
)
|
||||
log_tz = app.config.get('LOG_TZ')
|
||||
log_tz = app.config.get("LOG_TZ")
|
||||
if log_tz:
|
||||
from datetime import datetime
|
||||
|
||||
import pytz
|
||||
|
||||
timezone = pytz.timezone(log_tz)
|
||||
|
||||
def time_converter(seconds):
|
||||
@ -162,24 +164,24 @@ def initialize_extensions(app):
|
||||
@login_manager.request_loader
|
||||
def load_user_from_request(request_from_flask_login):
|
||||
"""Load user based on the request."""
|
||||
if request.blueprint not in ['console', 'inner_api']:
|
||||
if request.blueprint not in ["console", "inner_api"]:
|
||||
return None
|
||||
# Check if the user_id contains a dot, indicating the old format
|
||||
auth_header = request.headers.get('Authorization', '')
|
||||
auth_header = request.headers.get("Authorization", "")
|
||||
if not auth_header:
|
||||
auth_token = request.args.get('_token')
|
||||
auth_token = request.args.get("_token")
|
||||
if not auth_token:
|
||||
raise Unauthorized('Invalid Authorization token.')
|
||||
raise Unauthorized("Invalid Authorization token.")
|
||||
else:
|
||||
if ' ' not in auth_header:
|
||||
raise Unauthorized('Invalid Authorization header format. Expected \'Bearer <api-key>\' format.')
|
||||
if " " not in auth_header:
|
||||
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
|
||||
auth_scheme, auth_token = auth_header.split(None, 1)
|
||||
auth_scheme = auth_scheme.lower()
|
||||
if auth_scheme != 'bearer':
|
||||
raise Unauthorized('Invalid Authorization header format. Expected \'Bearer <api-key>\' format.')
|
||||
if auth_scheme != "bearer":
|
||||
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
|
||||
|
||||
decoded = PassportService().verify(auth_token)
|
||||
user_id = decoded.get('user_id')
|
||||
user_id = decoded.get("user_id")
|
||||
|
||||
account = AccountService.load_logged_in_account(account_id=user_id, token=auth_token)
|
||||
if account:
|
||||
@ -190,10 +192,11 @@ def load_user_from_request(request_from_flask_login):
|
||||
@login_manager.unauthorized_handler
|
||||
def unauthorized_handler():
|
||||
"""Handle unauthorized requests."""
|
||||
return Response(json.dumps({
|
||||
'code': 'unauthorized',
|
||||
'message': "Unauthorized."
|
||||
}), status=401, content_type="application/json")
|
||||
return Response(
|
||||
json.dumps({"code": "unauthorized", "message": "Unauthorized."}),
|
||||
status=401,
|
||||
content_type="application/json",
|
||||
)
|
||||
|
||||
|
||||
# register blueprint routers
|
||||
@ -204,38 +207,36 @@ def register_blueprints(app):
|
||||
from controllers.service_api import bp as service_api_bp
|
||||
from controllers.web import bp as web_bp
|
||||
|
||||
CORS(service_api_bp,
|
||||
allow_headers=['Content-Type', 'Authorization', 'X-App-Code'],
|
||||
methods=['GET', 'PUT', 'POST', 'DELETE', 'OPTIONS', 'PATCH']
|
||||
)
|
||||
CORS(
|
||||
service_api_bp,
|
||||
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
|
||||
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
|
||||
)
|
||||
app.register_blueprint(service_api_bp)
|
||||
|
||||
CORS(web_bp,
|
||||
resources={
|
||||
r"/*": {"origins": app.config['WEB_API_CORS_ALLOW_ORIGINS']}},
|
||||
supports_credentials=True,
|
||||
allow_headers=['Content-Type', 'Authorization', 'X-App-Code'],
|
||||
methods=['GET', 'PUT', 'POST', 'DELETE', 'OPTIONS', 'PATCH'],
|
||||
expose_headers=['X-Version', 'X-Env']
|
||||
)
|
||||
CORS(
|
||||
web_bp,
|
||||
resources={r"/*": {"origins": app.config["WEB_API_CORS_ALLOW_ORIGINS"]}},
|
||||
supports_credentials=True,
|
||||
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
|
||||
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
|
||||
expose_headers=["X-Version", "X-Env"],
|
||||
)
|
||||
|
||||
app.register_blueprint(web_bp)
|
||||
|
||||
CORS(console_app_bp,
|
||||
resources={
|
||||
r"/*": {"origins": app.config['CONSOLE_CORS_ALLOW_ORIGINS']}},
|
||||
supports_credentials=True,
|
||||
allow_headers=['Content-Type', 'Authorization'],
|
||||
methods=['GET', 'PUT', 'POST', 'DELETE', 'OPTIONS', 'PATCH'],
|
||||
expose_headers=['X-Version', 'X-Env']
|
||||
)
|
||||
CORS(
|
||||
console_app_bp,
|
||||
resources={r"/*": {"origins": app.config["CONSOLE_CORS_ALLOW_ORIGINS"]}},
|
||||
supports_credentials=True,
|
||||
allow_headers=["Content-Type", "Authorization"],
|
||||
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
|
||||
expose_headers=["X-Version", "X-Env"],
|
||||
)
|
||||
|
||||
app.register_blueprint(console_app_bp)
|
||||
|
||||
CORS(files_bp,
|
||||
allow_headers=['Content-Type'],
|
||||
methods=['GET', 'PUT', 'POST', 'DELETE', 'OPTIONS', 'PATCH']
|
||||
)
|
||||
CORS(files_bp, allow_headers=["Content-Type"], methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"])
|
||||
app.register_blueprint(files_bp)
|
||||
|
||||
app.register_blueprint(inner_api_bp)
|
||||
@ -245,29 +246,29 @@ def register_blueprints(app):
|
||||
app = create_app()
|
||||
celery = app.extensions["celery"]
|
||||
|
||||
if app.config.get('TESTING'):
|
||||
if app.config.get("TESTING"):
|
||||
print("App is running in TESTING mode")
|
||||
|
||||
|
||||
@app.after_request
|
||||
def after_request(response):
|
||||
"""Add Version headers to the response."""
|
||||
response.set_cookie('remember_token', '', expires=0)
|
||||
response.headers.add('X-Version', app.config['CURRENT_VERSION'])
|
||||
response.headers.add('X-Env', app.config['DEPLOY_ENV'])
|
||||
response.set_cookie("remember_token", "", expires=0)
|
||||
response.headers.add("X-Version", app.config["CURRENT_VERSION"])
|
||||
response.headers.add("X-Env", app.config["DEPLOY_ENV"])
|
||||
return response
|
||||
|
||||
|
||||
@app.route('/health')
|
||||
@app.route("/health")
|
||||
def health():
|
||||
return Response(json.dumps({
|
||||
'pid': os.getpid(),
|
||||
'status': 'ok',
|
||||
'version': app.config['CURRENT_VERSION']
|
||||
}), status=200, content_type="application/json")
|
||||
return Response(
|
||||
json.dumps({"pid": os.getpid(), "status": "ok", "version": app.config["CURRENT_VERSION"]}),
|
||||
status=200,
|
||||
content_type="application/json",
|
||||
)
|
||||
|
||||
|
||||
@app.route('/threads')
|
||||
@app.route("/threads")
|
||||
def threads():
|
||||
num_threads = threading.active_count()
|
||||
threads = threading.enumerate()
|
||||
@ -278,32 +279,34 @@ def threads():
|
||||
thread_id = thread.ident
|
||||
is_alive = thread.is_alive()
|
||||
|
||||
thread_list.append({
|
||||
'name': thread_name,
|
||||
'id': thread_id,
|
||||
'is_alive': is_alive
|
||||
})
|
||||
thread_list.append(
|
||||
{
|
||||
"name": thread_name,
|
||||
"id": thread_id,
|
||||
"is_alive": is_alive,
|
||||
}
|
||||
)
|
||||
|
||||
return {
|
||||
'pid': os.getpid(),
|
||||
'thread_num': num_threads,
|
||||
'threads': thread_list
|
||||
"pid": os.getpid(),
|
||||
"thread_num": num_threads,
|
||||
"threads": thread_list,
|
||||
}
|
||||
|
||||
|
||||
@app.route('/db-pool-stat')
|
||||
@app.route("/db-pool-stat")
|
||||
def pool_stat():
|
||||
engine = db.engine
|
||||
return {
|
||||
'pid': os.getpid(),
|
||||
'pool_size': engine.pool.size(),
|
||||
'checked_in_connections': engine.pool.checkedin(),
|
||||
'checked_out_connections': engine.pool.checkedout(),
|
||||
'overflow_connections': engine.pool.overflow(),
|
||||
'connection_timeout': engine.pool.timeout(),
|
||||
'recycle_time': db.engine.pool._recycle
|
||||
"pid": os.getpid(),
|
||||
"pool_size": engine.pool.size(),
|
||||
"checked_in_connections": engine.pool.checkedin(),
|
||||
"checked_out_connections": engine.pool.checkedout(),
|
||||
"overflow_connections": engine.pool.overflow(),
|
||||
"connection_timeout": engine.pool.timeout(),
|
||||
"recycle_time": db.engine.pool._recycle,
|
||||
}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(host='0.0.0.0', port=5001)
|
||||
if __name__ == "__main__":
|
||||
app.run(host="0.0.0.0", port=5001)
|
||||
|
415
api/commands.py
415
api/commands.py
@ -27,32 +27,29 @@ from models.provider import Provider, ProviderModel
|
||||
from services.account_service import RegisterService, TenantService
|
||||
|
||||
|
||||
@click.command('reset-password', help='Reset the account password.')
|
||||
@click.option('--email', prompt=True, help='The email address of the account whose password you need to reset')
|
||||
@click.option('--new-password', prompt=True, help='the new password.')
|
||||
@click.option('--password-confirm', prompt=True, help='the new password confirm.')
|
||||
@click.command("reset-password", help="Reset the account password.")
|
||||
@click.option("--email", prompt=True, help="The email address of the account whose password you need to reset")
|
||||
@click.option("--new-password", prompt=True, help="the new password.")
|
||||
@click.option("--password-confirm", prompt=True, help="the new password confirm.")
|
||||
def reset_password(email, new_password, password_confirm):
|
||||
"""
|
||||
Reset password of owner account
|
||||
Only available in SELF_HOSTED mode
|
||||
"""
|
||||
if str(new_password).strip() != str(password_confirm).strip():
|
||||
click.echo(click.style('sorry. The two passwords do not match.', fg='red'))
|
||||
click.echo(click.style("sorry. The two passwords do not match.", fg="red"))
|
||||
return
|
||||
|
||||
account = db.session.query(Account). \
|
||||
filter(Account.email == email). \
|
||||
one_or_none()
|
||||
account = db.session.query(Account).filter(Account.email == email).one_or_none()
|
||||
|
||||
if not account:
|
||||
click.echo(click.style('sorry. the account: [{}] not exist .'.format(email), fg='red'))
|
||||
click.echo(click.style("sorry. the account: [{}] not exist .".format(email), fg="red"))
|
||||
return
|
||||
|
||||
try:
|
||||
valid_password(new_password)
|
||||
except:
|
||||
click.echo(
|
||||
click.style('sorry. The passwords must match {} '.format(password_pattern), fg='red'))
|
||||
click.echo(click.style("sorry. The passwords must match {} ".format(password_pattern), fg="red"))
|
||||
return
|
||||
|
||||
# generate password salt
|
||||
@ -65,80 +62,87 @@ def reset_password(email, new_password, password_confirm):
|
||||
account.password = base64_password_hashed
|
||||
account.password_salt = base64_salt
|
||||
db.session.commit()
|
||||
click.echo(click.style('Congratulations! Password has been reset.', fg='green'))
|
||||
click.echo(click.style("Congratulations! Password has been reset.", fg="green"))
|
||||
|
||||
|
||||
@click.command('reset-email', help='Reset the account email.')
|
||||
@click.option('--email', prompt=True, help='The old email address of the account whose email you need to reset')
|
||||
@click.option('--new-email', prompt=True, help='the new email.')
|
||||
@click.option('--email-confirm', prompt=True, help='the new email confirm.')
|
||||
@click.command("reset-email", help="Reset the account email.")
|
||||
@click.option("--email", prompt=True, help="The old email address of the account whose email you need to reset")
|
||||
@click.option("--new-email", prompt=True, help="the new email.")
|
||||
@click.option("--email-confirm", prompt=True, help="the new email confirm.")
|
||||
def reset_email(email, new_email, email_confirm):
|
||||
"""
|
||||
Replace account email
|
||||
:return:
|
||||
"""
|
||||
if str(new_email).strip() != str(email_confirm).strip():
|
||||
click.echo(click.style('Sorry, new email and confirm email do not match.', fg='red'))
|
||||
click.echo(click.style("Sorry, new email and confirm email do not match.", fg="red"))
|
||||
return
|
||||
|
||||
account = db.session.query(Account). \
|
||||
filter(Account.email == email). \
|
||||
one_or_none()
|
||||
account = db.session.query(Account).filter(Account.email == email).one_or_none()
|
||||
|
||||
if not account:
|
||||
click.echo(click.style('sorry. the account: [{}] not exist .'.format(email), fg='red'))
|
||||
click.echo(click.style("sorry. the account: [{}] not exist .".format(email), fg="red"))
|
||||
return
|
||||
|
||||
try:
|
||||
email_validate(new_email)
|
||||
except:
|
||||
click.echo(
|
||||
click.style('sorry. {} is not a valid email. '.format(email), fg='red'))
|
||||
click.echo(click.style("sorry. {} is not a valid email. ".format(email), fg="red"))
|
||||
return
|
||||
|
||||
account.email = new_email
|
||||
db.session.commit()
|
||||
click.echo(click.style('Congratulations!, email has been reset.', fg='green'))
|
||||
click.echo(click.style("Congratulations!, email has been reset.", fg="green"))
|
||||
|
||||
|
||||
@click.command('reset-encrypt-key-pair', help='Reset the asymmetric key pair of workspace for encrypt LLM credentials. '
|
||||
'After the reset, all LLM credentials will become invalid, '
|
||||
'requiring re-entry.'
|
||||
'Only support SELF_HOSTED mode.')
|
||||
@click.confirmation_option(prompt=click.style('Are you sure you want to reset encrypt key pair?'
|
||||
' this operation cannot be rolled back!', fg='red'))
|
||||
@click.command(
|
||||
"reset-encrypt-key-pair",
|
||||
help="Reset the asymmetric key pair of workspace for encrypt LLM credentials. "
|
||||
"After the reset, all LLM credentials will become invalid, "
|
||||
"requiring re-entry."
|
||||
"Only support SELF_HOSTED mode.",
|
||||
)
|
||||
@click.confirmation_option(
|
||||
prompt=click.style(
|
||||
"Are you sure you want to reset encrypt key pair?" " this operation cannot be rolled back!", fg="red"
|
||||
)
|
||||
)
|
||||
def reset_encrypt_key_pair():
|
||||
"""
|
||||
Reset the encrypted key pair of workspace for encrypt LLM credentials.
|
||||
After the reset, all LLM credentials will become invalid, requiring re-entry.
|
||||
Only support SELF_HOSTED mode.
|
||||
"""
|
||||
if dify_config.EDITION != 'SELF_HOSTED':
|
||||
click.echo(click.style('Sorry, only support SELF_HOSTED mode.', fg='red'))
|
||||
if dify_config.EDITION != "SELF_HOSTED":
|
||||
click.echo(click.style("Sorry, only support SELF_HOSTED mode.", fg="red"))
|
||||
return
|
||||
|
||||
tenants = db.session.query(Tenant).all()
|
||||
for tenant in tenants:
|
||||
if not tenant:
|
||||
click.echo(click.style('Sorry, no workspace found. Please enter /install to initialize.', fg='red'))
|
||||
click.echo(click.style("Sorry, no workspace found. Please enter /install to initialize.", fg="red"))
|
||||
return
|
||||
|
||||
tenant.encrypt_public_key = generate_key_pair(tenant.id)
|
||||
|
||||
db.session.query(Provider).filter(Provider.provider_type == 'custom', Provider.tenant_id == tenant.id).delete()
|
||||
db.session.query(Provider).filter(Provider.provider_type == "custom", Provider.tenant_id == tenant.id).delete()
|
||||
db.session.query(ProviderModel).filter(ProviderModel.tenant_id == tenant.id).delete()
|
||||
db.session.commit()
|
||||
|
||||
click.echo(click.style('Congratulations! '
|
||||
'the asymmetric key pair of workspace {} has been reset.'.format(tenant.id), fg='green'))
|
||||
click.echo(
|
||||
click.style(
|
||||
"Congratulations! " "the asymmetric key pair of workspace {} has been reset.".format(tenant.id),
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@click.command('vdb-migrate', help='migrate vector db.')
|
||||
@click.option('--scope', default='all', prompt=False, help='The scope of vector database to migrate, Default is All.')
|
||||
@click.command("vdb-migrate", help="migrate vector db.")
|
||||
@click.option("--scope", default="all", prompt=False, help="The scope of vector database to migrate, Default is All.")
|
||||
def vdb_migrate(scope: str):
|
||||
if scope in ['knowledge', 'all']:
|
||||
if scope in ["knowledge", "all"]:
|
||||
migrate_knowledge_vector_database()
|
||||
if scope in ['annotation', 'all']:
|
||||
if scope in ["annotation", "all"]:
|
||||
migrate_annotation_vector_database()
|
||||
|
||||
|
||||
@ -146,7 +150,7 @@ def migrate_annotation_vector_database():
|
||||
"""
|
||||
Migrate annotation datas to target vector database .
|
||||
"""
|
||||
click.echo(click.style('Start migrate annotation data.', fg='green'))
|
||||
click.echo(click.style("Start migrate annotation data.", fg="green"))
|
||||
create_count = 0
|
||||
skipped_count = 0
|
||||
total_count = 0
|
||||
@ -154,98 +158,103 @@ def migrate_annotation_vector_database():
|
||||
while True:
|
||||
try:
|
||||
# get apps info
|
||||
apps = db.session.query(App).filter(
|
||||
App.status == 'normal'
|
||||
).order_by(App.created_at.desc()).paginate(page=page, per_page=50)
|
||||
apps = (
|
||||
db.session.query(App)
|
||||
.filter(App.status == "normal")
|
||||
.order_by(App.created_at.desc())
|
||||
.paginate(page=page, per_page=50)
|
||||
)
|
||||
except NotFound:
|
||||
break
|
||||
|
||||
page += 1
|
||||
for app in apps:
|
||||
total_count = total_count + 1
|
||||
click.echo(f'Processing the {total_count} app {app.id}. '
|
||||
+ f'{create_count} created, {skipped_count} skipped.')
|
||||
click.echo(
|
||||
f"Processing the {total_count} app {app.id}. " + f"{create_count} created, {skipped_count} skipped."
|
||||
)
|
||||
try:
|
||||
click.echo('Create app annotation index: {}'.format(app.id))
|
||||
app_annotation_setting = db.session.query(AppAnnotationSetting).filter(
|
||||
AppAnnotationSetting.app_id == app.id
|
||||
).first()
|
||||
click.echo("Create app annotation index: {}".format(app.id))
|
||||
app_annotation_setting = (
|
||||
db.session.query(AppAnnotationSetting).filter(AppAnnotationSetting.app_id == app.id).first()
|
||||
)
|
||||
|
||||
if not app_annotation_setting:
|
||||
skipped_count = skipped_count + 1
|
||||
click.echo('App annotation setting is disabled: {}'.format(app.id))
|
||||
click.echo("App annotation setting is disabled: {}".format(app.id))
|
||||
continue
|
||||
# get dataset_collection_binding info
|
||||
dataset_collection_binding = db.session.query(DatasetCollectionBinding).filter(
|
||||
DatasetCollectionBinding.id == app_annotation_setting.collection_binding_id
|
||||
).first()
|
||||
dataset_collection_binding = (
|
||||
db.session.query(DatasetCollectionBinding)
|
||||
.filter(DatasetCollectionBinding.id == app_annotation_setting.collection_binding_id)
|
||||
.first()
|
||||
)
|
||||
if not dataset_collection_binding:
|
||||
click.echo('App annotation collection binding is not exist: {}'.format(app.id))
|
||||
click.echo("App annotation collection binding is not exist: {}".format(app.id))
|
||||
continue
|
||||
annotations = db.session.query(MessageAnnotation).filter(MessageAnnotation.app_id == app.id).all()
|
||||
dataset = Dataset(
|
||||
id=app.id,
|
||||
tenant_id=app.tenant_id,
|
||||
indexing_technique='high_quality',
|
||||
indexing_technique="high_quality",
|
||||
embedding_model_provider=dataset_collection_binding.provider_name,
|
||||
embedding_model=dataset_collection_binding.model_name,
|
||||
collection_binding_id=dataset_collection_binding.id
|
||||
collection_binding_id=dataset_collection_binding.id,
|
||||
)
|
||||
documents = []
|
||||
if annotations:
|
||||
for annotation in annotations:
|
||||
document = Document(
|
||||
page_content=annotation.question,
|
||||
metadata={
|
||||
"annotation_id": annotation.id,
|
||||
"app_id": app.id,
|
||||
"doc_id": annotation.id
|
||||
}
|
||||
metadata={"annotation_id": annotation.id, "app_id": app.id, "doc_id": annotation.id},
|
||||
)
|
||||
documents.append(document)
|
||||
|
||||
vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
|
||||
vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
|
||||
click.echo(f"Start to migrate annotation, app_id: {app.id}.")
|
||||
|
||||
try:
|
||||
vector.delete()
|
||||
click.echo(
|
||||
click.style(f'Successfully delete vector index for app: {app.id}.',
|
||||
fg='green'))
|
||||
click.echo(click.style(f"Successfully delete vector index for app: {app.id}.", fg="green"))
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style(f'Failed to delete vector index for app {app.id}.',
|
||||
fg='red'))
|
||||
click.echo(click.style(f"Failed to delete vector index for app {app.id}.", fg="red"))
|
||||
raise e
|
||||
if documents:
|
||||
try:
|
||||
click.echo(click.style(
|
||||
f'Start to created vector index with {len(documents)} annotations for app {app.id}.',
|
||||
fg='green'))
|
||||
vector.create(documents)
|
||||
click.echo(
|
||||
click.style(f'Successfully created vector index for app {app.id}.', fg='green'))
|
||||
click.style(
|
||||
f"Start to created vector index with {len(documents)} annotations for app {app.id}.",
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
vector.create(documents)
|
||||
click.echo(click.style(f"Successfully created vector index for app {app.id}.", fg="green"))
|
||||
except Exception as e:
|
||||
click.echo(click.style(f'Failed to created vector index for app {app.id}.', fg='red'))
|
||||
click.echo(click.style(f"Failed to created vector index for app {app.id}.", fg="red"))
|
||||
raise e
|
||||
click.echo(f'Successfully migrated app annotation {app.id}.')
|
||||
click.echo(f"Successfully migrated app annotation {app.id}.")
|
||||
create_count += 1
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style('Create app annotation index error: {} {}'.format(e.__class__.__name__, str(e)),
|
||||
fg='red'))
|
||||
click.style(
|
||||
"Create app annotation index error: {} {}".format(e.__class__.__name__, str(e)), fg="red"
|
||||
)
|
||||
)
|
||||
continue
|
||||
|
||||
click.echo(
|
||||
click.style(f'Congratulations! Create {create_count} app annotation indexes, and skipped {skipped_count} apps.',
|
||||
fg='green'))
|
||||
click.style(
|
||||
f"Congratulations! Create {create_count} app annotation indexes, and skipped {skipped_count} apps.",
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def migrate_knowledge_vector_database():
|
||||
"""
|
||||
Migrate vector database datas to target vector database .
|
||||
"""
|
||||
click.echo(click.style('Start migrate vector db.', fg='green'))
|
||||
click.echo(click.style("Start migrate vector db.", fg="green"))
|
||||
create_count = 0
|
||||
skipped_count = 0
|
||||
total_count = 0
|
||||
@ -253,87 +262,77 @@ def migrate_knowledge_vector_database():
|
||||
page = 1
|
||||
while True:
|
||||
try:
|
||||
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
|
||||
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
|
||||
datasets = (
|
||||
db.session.query(Dataset)
|
||||
.filter(Dataset.indexing_technique == "high_quality")
|
||||
.order_by(Dataset.created_at.desc())
|
||||
.paginate(page=page, per_page=50)
|
||||
)
|
||||
except NotFound:
|
||||
break
|
||||
|
||||
page += 1
|
||||
for dataset in datasets:
|
||||
total_count = total_count + 1
|
||||
click.echo(f'Processing the {total_count} dataset {dataset.id}. '
|
||||
+ f'{create_count} created, {skipped_count} skipped.')
|
||||
click.echo(
|
||||
f"Processing the {total_count} dataset {dataset.id}. "
|
||||
+ f"{create_count} created, {skipped_count} skipped."
|
||||
)
|
||||
try:
|
||||
click.echo('Create dataset vdb index: {}'.format(dataset.id))
|
||||
click.echo("Create dataset vdb index: {}".format(dataset.id))
|
||||
if dataset.index_struct_dict:
|
||||
if dataset.index_struct_dict['type'] == vector_type:
|
||||
if dataset.index_struct_dict["type"] == vector_type:
|
||||
skipped_count = skipped_count + 1
|
||||
continue
|
||||
collection_name = ''
|
||||
collection_name = ""
|
||||
if vector_type == VectorType.WEAVIATE:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": VectorType.WEAVIATE,
|
||||
"vector_store": {"class_prefix": collection_name}
|
||||
}
|
||||
index_struct_dict = {"type": VectorType.WEAVIATE, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.QDRANT:
|
||||
if dataset.collection_binding_id:
|
||||
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
|
||||
filter(DatasetCollectionBinding.id == dataset.collection_binding_id). \
|
||||
one_or_none()
|
||||
dataset_collection_binding = (
|
||||
db.session.query(DatasetCollectionBinding)
|
||||
.filter(DatasetCollectionBinding.id == dataset.collection_binding_id)
|
||||
.one_or_none()
|
||||
)
|
||||
if dataset_collection_binding:
|
||||
collection_name = dataset_collection_binding.collection_name
|
||||
else:
|
||||
raise ValueError('Dataset Collection Bindings is not exist!')
|
||||
raise ValueError("Dataset Collection Bindings is not exist!")
|
||||
else:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": VectorType.QDRANT,
|
||||
"vector_store": {"class_prefix": collection_name}
|
||||
}
|
||||
index_struct_dict = {"type": VectorType.QDRANT, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
|
||||
elif vector_type == VectorType.MILVUS:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": VectorType.MILVUS,
|
||||
"vector_store": {"class_prefix": collection_name}
|
||||
}
|
||||
index_struct_dict = {"type": VectorType.MILVUS, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.RELYT:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": 'relyt',
|
||||
"vector_store": {"class_prefix": collection_name}
|
||||
}
|
||||
index_struct_dict = {"type": "relyt", "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.TENCENT:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": VectorType.TENCENT,
|
||||
"vector_store": {"class_prefix": collection_name}
|
||||
}
|
||||
index_struct_dict = {"type": VectorType.TENCENT, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.PGVECTOR:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": VectorType.PGVECTOR,
|
||||
"vector_store": {"class_prefix": collection_name}
|
||||
}
|
||||
index_struct_dict = {"type": VectorType.PGVECTOR, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.OPENSEARCH:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": VectorType.OPENSEARCH,
|
||||
"vector_store": {"class_prefix": collection_name}
|
||||
"vector_store": {"class_prefix": collection_name},
|
||||
}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.ANALYTICDB:
|
||||
@ -341,16 +340,13 @@ def migrate_knowledge_vector_database():
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": VectorType.ANALYTICDB,
|
||||
"vector_store": {"class_prefix": collection_name}
|
||||
"vector_store": {"class_prefix": collection_name},
|
||||
}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.ELASTICSEARCH:
|
||||
dataset_id = dataset.id
|
||||
index_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": 'elasticsearch',
|
||||
"vector_store": {"class_prefix": index_name}
|
||||
}
|
||||
index_struct_dict = {"type": "elasticsearch", "vector_store": {"class_prefix": index_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
else:
|
||||
raise ValueError(f"Vector store {vector_type} is not supported.")
|
||||
@ -361,29 +357,41 @@ def migrate_knowledge_vector_database():
|
||||
try:
|
||||
vector.delete()
|
||||
click.echo(
|
||||
click.style(f'Successfully delete vector index {collection_name} for dataset {dataset.id}.',
|
||||
fg='green'))
|
||||
click.style(
|
||||
f"Successfully delete vector index {collection_name} for dataset {dataset.id}.", fg="green"
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style(f'Failed to delete vector index {collection_name} for dataset {dataset.id}.',
|
||||
fg='red'))
|
||||
click.style(
|
||||
f"Failed to delete vector index {collection_name} for dataset {dataset.id}.", fg="red"
|
||||
)
|
||||
)
|
||||
raise e
|
||||
|
||||
dataset_documents = db.session.query(DatasetDocument).filter(
|
||||
DatasetDocument.dataset_id == dataset.id,
|
||||
DatasetDocument.indexing_status == 'completed',
|
||||
DatasetDocument.enabled == True,
|
||||
DatasetDocument.archived == False,
|
||||
).all()
|
||||
dataset_documents = (
|
||||
db.session.query(DatasetDocument)
|
||||
.filter(
|
||||
DatasetDocument.dataset_id == dataset.id,
|
||||
DatasetDocument.indexing_status == "completed",
|
||||
DatasetDocument.enabled == True,
|
||||
DatasetDocument.archived == False,
|
||||
)
|
||||
.all()
|
||||
)
|
||||
|
||||
documents = []
|
||||
segments_count = 0
|
||||
for dataset_document in dataset_documents:
|
||||
segments = db.session.query(DocumentSegment).filter(
|
||||
DocumentSegment.document_id == dataset_document.id,
|
||||
DocumentSegment.status == 'completed',
|
||||
DocumentSegment.enabled == True
|
||||
).all()
|
||||
segments = (
|
||||
db.session.query(DocumentSegment)
|
||||
.filter(
|
||||
DocumentSegment.document_id == dataset_document.id,
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.enabled == True,
|
||||
)
|
||||
.all()
|
||||
)
|
||||
|
||||
for segment in segments:
|
||||
document = Document(
|
||||
@ -393,7 +401,7 @@ def migrate_knowledge_vector_database():
|
||||
"doc_hash": segment.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
documents.append(document)
|
||||
@ -401,37 +409,43 @@ def migrate_knowledge_vector_database():
|
||||
|
||||
if documents:
|
||||
try:
|
||||
click.echo(click.style(
|
||||
f'Start to created vector index with {len(documents)} documents of {segments_count} segments for dataset {dataset.id}.',
|
||||
fg='green'))
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Start to created vector index with {len(documents)} documents of {segments_count} segments for dataset {dataset.id}.",
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
vector.create(documents)
|
||||
click.echo(
|
||||
click.style(f'Successfully created vector index for dataset {dataset.id}.', fg='green'))
|
||||
click.style(f"Successfully created vector index for dataset {dataset.id}.", fg="green")
|
||||
)
|
||||
except Exception as e:
|
||||
click.echo(click.style(f'Failed to created vector index for dataset {dataset.id}.', fg='red'))
|
||||
click.echo(click.style(f"Failed to created vector index for dataset {dataset.id}.", fg="red"))
|
||||
raise e
|
||||
db.session.add(dataset)
|
||||
db.session.commit()
|
||||
click.echo(f'Successfully migrated dataset {dataset.id}.')
|
||||
click.echo(f"Successfully migrated dataset {dataset.id}.")
|
||||
create_count += 1
|
||||
except Exception as e:
|
||||
db.session.rollback()
|
||||
click.echo(
|
||||
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
|
||||
fg='red'))
|
||||
click.style("Create dataset index error: {} {}".format(e.__class__.__name__, str(e)), fg="red")
|
||||
)
|
||||
continue
|
||||
|
||||
click.echo(
|
||||
click.style(f'Congratulations! Create {create_count} dataset indexes, and skipped {skipped_count} datasets.',
|
||||
fg='green'))
|
||||
click.style(
|
||||
f"Congratulations! Create {create_count} dataset indexes, and skipped {skipped_count} datasets.", fg="green"
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@click.command('convert-to-agent-apps', help='Convert Agent Assistant to Agent App.')
|
||||
@click.command("convert-to-agent-apps", help="Convert Agent Assistant to Agent App.")
|
||||
def convert_to_agent_apps():
|
||||
"""
|
||||
Convert Agent Assistant to Agent App.
|
||||
"""
|
||||
click.echo(click.style('Start convert to agent apps.', fg='green'))
|
||||
click.echo(click.style("Start convert to agent apps.", fg="green"))
|
||||
|
||||
proceeded_app_ids = []
|
||||
|
||||
@ -466,7 +480,7 @@ def convert_to_agent_apps():
|
||||
break
|
||||
|
||||
for app in apps:
|
||||
click.echo('Converting app: {}'.format(app.id))
|
||||
click.echo("Converting app: {}".format(app.id))
|
||||
|
||||
try:
|
||||
app.mode = AppMode.AGENT_CHAT.value
|
||||
@ -478,137 +492,139 @@ def convert_to_agent_apps():
|
||||
)
|
||||
|
||||
db.session.commit()
|
||||
click.echo(click.style('Converted app: {}'.format(app.id), fg='green'))
|
||||
click.echo(click.style("Converted app: {}".format(app.id), fg="green"))
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style('Convert app error: {} {}'.format(e.__class__.__name__,
|
||||
str(e)), fg='red'))
|
||||
click.echo(click.style("Convert app error: {} {}".format(e.__class__.__name__, str(e)), fg="red"))
|
||||
|
||||
click.echo(click.style('Congratulations! Converted {} agent apps.'.format(len(proceeded_app_ids)), fg='green'))
|
||||
click.echo(click.style("Congratulations! Converted {} agent apps.".format(len(proceeded_app_ids)), fg="green"))
|
||||
|
||||
|
||||
@click.command('add-qdrant-doc-id-index', help='add qdrant doc_id index.')
|
||||
@click.option('--field', default='metadata.doc_id', prompt=False, help='index field , default is metadata.doc_id.')
|
||||
@click.command("add-qdrant-doc-id-index", help="add qdrant doc_id index.")
|
||||
@click.option("--field", default="metadata.doc_id", prompt=False, help="index field , default is metadata.doc_id.")
|
||||
def add_qdrant_doc_id_index(field: str):
|
||||
click.echo(click.style('Start add qdrant doc_id index.', fg='green'))
|
||||
click.echo(click.style("Start add qdrant doc_id index.", fg="green"))
|
||||
vector_type = dify_config.VECTOR_STORE
|
||||
if vector_type != "qdrant":
|
||||
click.echo(click.style('Sorry, only support qdrant vector store.', fg='red'))
|
||||
click.echo(click.style("Sorry, only support qdrant vector store.", fg="red"))
|
||||
return
|
||||
create_count = 0
|
||||
|
||||
try:
|
||||
bindings = db.session.query(DatasetCollectionBinding).all()
|
||||
if not bindings:
|
||||
click.echo(click.style('Sorry, no dataset collection bindings found.', fg='red'))
|
||||
click.echo(click.style("Sorry, no dataset collection bindings found.", fg="red"))
|
||||
return
|
||||
import qdrant_client
|
||||
from qdrant_client.http.exceptions import UnexpectedResponse
|
||||
from qdrant_client.http.models import PayloadSchemaType
|
||||
|
||||
from core.rag.datasource.vdb.qdrant.qdrant_vector import QdrantConfig
|
||||
|
||||
for binding in bindings:
|
||||
if dify_config.QDRANT_URL is None:
|
||||
raise ValueError('Qdrant url is required.')
|
||||
raise ValueError("Qdrant url is required.")
|
||||
qdrant_config = QdrantConfig(
|
||||
endpoint=dify_config.QDRANT_URL,
|
||||
api_key=dify_config.QDRANT_API_KEY,
|
||||
root_path=current_app.root_path,
|
||||
timeout=dify_config.QDRANT_CLIENT_TIMEOUT,
|
||||
grpc_port=dify_config.QDRANT_GRPC_PORT,
|
||||
prefer_grpc=dify_config.QDRANT_GRPC_ENABLED
|
||||
prefer_grpc=dify_config.QDRANT_GRPC_ENABLED,
|
||||
)
|
||||
try:
|
||||
client = qdrant_client.QdrantClient(**qdrant_config.to_qdrant_params())
|
||||
# create payload index
|
||||
client.create_payload_index(binding.collection_name, field,
|
||||
field_schema=PayloadSchemaType.KEYWORD)
|
||||
client.create_payload_index(binding.collection_name, field, field_schema=PayloadSchemaType.KEYWORD)
|
||||
create_count += 1
|
||||
except UnexpectedResponse as e:
|
||||
# Collection does not exist, so return
|
||||
if e.status_code == 404:
|
||||
click.echo(click.style(f'Collection not found, collection_name:{binding.collection_name}.', fg='red'))
|
||||
click.echo(
|
||||
click.style(f"Collection not found, collection_name:{binding.collection_name}.", fg="red")
|
||||
)
|
||||
continue
|
||||
# Some other error occurred, so re-raise the exception
|
||||
else:
|
||||
click.echo(click.style(f'Failed to create qdrant index, collection_name:{binding.collection_name}.', fg='red'))
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Failed to create qdrant index, collection_name:{binding.collection_name}.", fg="red"
|
||||
)
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
click.echo(click.style('Failed to create qdrant client.', fg='red'))
|
||||
click.echo(click.style("Failed to create qdrant client.", fg="red"))
|
||||
|
||||
click.echo(
|
||||
click.style(f'Congratulations! Create {create_count} collection indexes.',
|
||||
fg='green'))
|
||||
click.echo(click.style(f"Congratulations! Create {create_count} collection indexes.", fg="green"))
|
||||
|
||||
|
||||
@click.command('create-tenant', help='Create account and tenant.')
|
||||
@click.option('--email', prompt=True, help='The email address of the tenant account.')
|
||||
@click.option('--language', prompt=True, help='Account language, default: en-US.')
|
||||
@click.command("create-tenant", help="Create account and tenant.")
|
||||
@click.option("--email", prompt=True, help="The email address of the tenant account.")
|
||||
@click.option("--language", prompt=True, help="Account language, default: en-US.")
|
||||
def create_tenant(email: str, language: Optional[str] = None):
|
||||
"""
|
||||
Create tenant account
|
||||
"""
|
||||
if not email:
|
||||
click.echo(click.style('Sorry, email is required.', fg='red'))
|
||||
click.echo(click.style("Sorry, email is required.", fg="red"))
|
||||
return
|
||||
|
||||
# Create account
|
||||
email = email.strip()
|
||||
|
||||
if '@' not in email:
|
||||
click.echo(click.style('Sorry, invalid email address.', fg='red'))
|
||||
if "@" not in email:
|
||||
click.echo(click.style("Sorry, invalid email address.", fg="red"))
|
||||
return
|
||||
|
||||
account_name = email.split('@')[0]
|
||||
account_name = email.split("@")[0]
|
||||
|
||||
if language not in languages:
|
||||
language = 'en-US'
|
||||
language = "en-US"
|
||||
|
||||
# generate random password
|
||||
new_password = secrets.token_urlsafe(16)
|
||||
|
||||
# register account
|
||||
account = RegisterService.register(
|
||||
email=email,
|
||||
name=account_name,
|
||||
password=new_password,
|
||||
language=language
|
||||
)
|
||||
account = RegisterService.register(email=email, name=account_name, password=new_password, language=language)
|
||||
|
||||
TenantService.create_owner_tenant_if_not_exist(account)
|
||||
|
||||
click.echo(click.style('Congratulations! Account and tenant created.\n'
|
||||
'Account: {}\nPassword: {}'.format(email, new_password), fg='green'))
|
||||
click.echo(
|
||||
click.style(
|
||||
"Congratulations! Account and tenant created.\n" "Account: {}\nPassword: {}".format(email, new_password),
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@click.command('upgrade-db', help='upgrade the database')
|
||||
@click.command("upgrade-db", help="upgrade the database")
|
||||
def upgrade_db():
|
||||
click.echo('Preparing database migration...')
|
||||
lock = redis_client.lock(name='db_upgrade_lock', timeout=60)
|
||||
click.echo("Preparing database migration...")
|
||||
lock = redis_client.lock(name="db_upgrade_lock", timeout=60)
|
||||
if lock.acquire(blocking=False):
|
||||
try:
|
||||
click.echo(click.style('Start database migration.', fg='green'))
|
||||
click.echo(click.style("Start database migration.", fg="green"))
|
||||
|
||||
# run db migration
|
||||
import flask_migrate
|
||||
|
||||
flask_migrate.upgrade()
|
||||
|
||||
click.echo(click.style('Database migration successful!', fg='green'))
|
||||
click.echo(click.style("Database migration successful!", fg="green"))
|
||||
|
||||
except Exception as e:
|
||||
logging.exception(f'Database migration failed, error: {e}')
|
||||
logging.exception(f"Database migration failed, error: {e}")
|
||||
finally:
|
||||
lock.release()
|
||||
else:
|
||||
click.echo('Database migration skipped')
|
||||
click.echo("Database migration skipped")
|
||||
|
||||
|
||||
@click.command('fix-app-site-missing', help='Fix app related site missing issue.')
|
||||
@click.command("fix-app-site-missing", help="Fix app related site missing issue.")
|
||||
def fix_app_site_missing():
|
||||
"""
|
||||
Fix app related site missing issue.
|
||||
"""
|
||||
click.echo(click.style('Start fix app related site missing issue.', fg='green'))
|
||||
click.echo(click.style("Start fix app related site missing issue.", fg="green"))
|
||||
|
||||
failed_app_ids = []
|
||||
while True:
|
||||
@ -639,15 +655,14 @@ where sites.id is null limit 1000"""
|
||||
app_was_created.send(app, account=account)
|
||||
except Exception as e:
|
||||
failed_app_ids.append(app_id)
|
||||
click.echo(click.style('Fix app {} related site missing issue failed!'.format(app_id), fg='red'))
|
||||
logging.exception(f'Fix app related site missing issue failed, error: {e}')
|
||||
click.echo(click.style("Fix app {} related site missing issue failed!".format(app_id), fg="red"))
|
||||
logging.exception(f"Fix app related site missing issue failed, error: {e}")
|
||||
continue
|
||||
|
||||
if not processed_count:
|
||||
break
|
||||
|
||||
|
||||
click.echo(click.style('Congratulations! Fix app related site missing issue successful!', fg='green'))
|
||||
click.echo(click.style("Congratulations! Fix app related site missing issue successful!", fg="green"))
|
||||
|
||||
|
||||
def register_commands(app):
|
||||
|
@ -37,6 +37,7 @@ class DifyConfig(
|
||||
|
||||
CODE_MAX_NUMBER: int = 9223372036854775807
|
||||
CODE_MIN_NUMBER: int = -9223372036854775808
|
||||
CODE_MAX_DEPTH: int = 5
|
||||
CODE_MAX_STRING_LENGTH: int = 80000
|
||||
CODE_MAX_STRING_ARRAY_LENGTH: int = 30
|
||||
CODE_MAX_OBJECT_ARRAY_LENGTH: int = 30
|
||||
|
@ -406,6 +406,7 @@ class DataSetConfig(BaseSettings):
|
||||
default=False,
|
||||
)
|
||||
|
||||
|
||||
class WorkspaceConfig(BaseSettings):
|
||||
"""
|
||||
Workspace configs
|
||||
@ -442,6 +443,63 @@ class CeleryBeatConfig(BaseSettings):
|
||||
)
|
||||
|
||||
|
||||
class PositionConfig(BaseSettings):
|
||||
|
||||
POSITION_PROVIDER_PINS: str = Field(
|
||||
description='The heads of model providers',
|
||||
default='',
|
||||
)
|
||||
|
||||
POSITION_PROVIDER_INCLUDES: str = Field(
|
||||
description='The included model providers',
|
||||
default='',
|
||||
)
|
||||
|
||||
POSITION_PROVIDER_EXCLUDES: str = Field(
|
||||
description='The excluded model providers',
|
||||
default='',
|
||||
)
|
||||
|
||||
POSITION_TOOL_PINS: str = Field(
|
||||
description='The heads of tools',
|
||||
default='',
|
||||
)
|
||||
|
||||
POSITION_TOOL_INCLUDES: str = Field(
|
||||
description='The included tools',
|
||||
default='',
|
||||
)
|
||||
|
||||
POSITION_TOOL_EXCLUDES: str = Field(
|
||||
description='The excluded tools',
|
||||
default='',
|
||||
)
|
||||
|
||||
@computed_field
|
||||
def POSITION_PROVIDER_PINS_LIST(self) -> list[str]:
|
||||
return [item.strip() for item in self.POSITION_PROVIDER_PINS.split(',') if item.strip() != '']
|
||||
|
||||
@computed_field
|
||||
def POSITION_PROVIDER_INCLUDES_SET(self) -> set[str]:
|
||||
return {item.strip() for item in self.POSITION_PROVIDER_INCLUDES.split(',') if item.strip() != ''}
|
||||
|
||||
@computed_field
|
||||
def POSITION_PROVIDER_EXCLUDES_SET(self) -> set[str]:
|
||||
return {item.strip() for item in self.POSITION_PROVIDER_EXCLUDES.split(',') if item.strip() != ''}
|
||||
|
||||
@computed_field
|
||||
def POSITION_TOOL_PINS_LIST(self) -> list[str]:
|
||||
return [item.strip() for item in self.POSITION_TOOL_PINS.split(',') if item.strip() != '']
|
||||
|
||||
@computed_field
|
||||
def POSITION_TOOL_INCLUDES_SET(self) -> set[str]:
|
||||
return {item.strip() for item in self.POSITION_TOOL_INCLUDES.split(',') if item.strip() != ''}
|
||||
|
||||
@computed_field
|
||||
def POSITION_TOOL_EXCLUDES_SET(self) -> set[str]:
|
||||
return {item.strip() for item in self.POSITION_TOOL_EXCLUDES.split(',') if item.strip() != ''}
|
||||
|
||||
|
||||
class FeatureConfig(
|
||||
# place the configs in alphabet order
|
||||
AppExecutionConfig,
|
||||
@ -466,6 +524,7 @@ class FeatureConfig(
|
||||
UpdateConfig,
|
||||
WorkflowConfig,
|
||||
WorkspaceConfig,
|
||||
PositionConfig,
|
||||
|
||||
# hosted services config
|
||||
HostedServiceConfig,
|
||||
|
@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
|
||||
|
||||
CURRENT_VERSION: str = Field(
|
||||
description='Dify version',
|
||||
default='0.7.0',
|
||||
default='0.7.1',
|
||||
)
|
||||
|
||||
COMMIT_SHA: str = Field(
|
||||
|
@ -1 +1 @@
|
||||
HIDDEN_VALUE = '[__HIDDEN__]'
|
||||
HIDDEN_VALUE = "[__HIDDEN__]"
|
||||
|
@ -1,22 +1,22 @@
|
||||
language_timezone_mapping = {
|
||||
'en-US': 'America/New_York',
|
||||
'zh-Hans': 'Asia/Shanghai',
|
||||
'zh-Hant': 'Asia/Taipei',
|
||||
'pt-BR': 'America/Sao_Paulo',
|
||||
'es-ES': 'Europe/Madrid',
|
||||
'fr-FR': 'Europe/Paris',
|
||||
'de-DE': 'Europe/Berlin',
|
||||
'ja-JP': 'Asia/Tokyo',
|
||||
'ko-KR': 'Asia/Seoul',
|
||||
'ru-RU': 'Europe/Moscow',
|
||||
'it-IT': 'Europe/Rome',
|
||||
'uk-UA': 'Europe/Kyiv',
|
||||
'vi-VN': 'Asia/Ho_Chi_Minh',
|
||||
'ro-RO': 'Europe/Bucharest',
|
||||
'pl-PL': 'Europe/Warsaw',
|
||||
'hi-IN': 'Asia/Kolkata',
|
||||
'tr-TR': 'Europe/Istanbul',
|
||||
'fa-IR': 'Asia/Tehran',
|
||||
"en-US": "America/New_York",
|
||||
"zh-Hans": "Asia/Shanghai",
|
||||
"zh-Hant": "Asia/Taipei",
|
||||
"pt-BR": "America/Sao_Paulo",
|
||||
"es-ES": "Europe/Madrid",
|
||||
"fr-FR": "Europe/Paris",
|
||||
"de-DE": "Europe/Berlin",
|
||||
"ja-JP": "Asia/Tokyo",
|
||||
"ko-KR": "Asia/Seoul",
|
||||
"ru-RU": "Europe/Moscow",
|
||||
"it-IT": "Europe/Rome",
|
||||
"uk-UA": "Europe/Kyiv",
|
||||
"vi-VN": "Asia/Ho_Chi_Minh",
|
||||
"ro-RO": "Europe/Bucharest",
|
||||
"pl-PL": "Europe/Warsaw",
|
||||
"hi-IN": "Asia/Kolkata",
|
||||
"tr-TR": "Europe/Istanbul",
|
||||
"fa-IR": "Asia/Tehran",
|
||||
}
|
||||
|
||||
languages = list(language_timezone_mapping.keys())
|
||||
@ -26,6 +26,5 @@ def supported_language(lang):
|
||||
if lang in languages:
|
||||
return lang
|
||||
|
||||
error = ('{lang} is not a valid language.'
|
||||
.format(lang=lang))
|
||||
error = "{lang} is not a valid language.".format(lang=lang)
|
||||
raise ValueError(error)
|
||||
|
@ -5,82 +5,79 @@ from models.model import AppMode
|
||||
default_app_templates = {
|
||||
# workflow default mode
|
||||
AppMode.WORKFLOW: {
|
||||
'app': {
|
||||
'mode': AppMode.WORKFLOW.value,
|
||||
'enable_site': True,
|
||||
'enable_api': True
|
||||
"app": {
|
||||
"mode": AppMode.WORKFLOW.value,
|
||||
"enable_site": True,
|
||||
"enable_api": True,
|
||||
}
|
||||
},
|
||||
|
||||
# completion default mode
|
||||
AppMode.COMPLETION: {
|
||||
'app': {
|
||||
'mode': AppMode.COMPLETION.value,
|
||||
'enable_site': True,
|
||||
'enable_api': True
|
||||
"app": {
|
||||
"mode": AppMode.COMPLETION.value,
|
||||
"enable_site": True,
|
||||
"enable_api": True,
|
||||
},
|
||||
'model_config': {
|
||||
'model': {
|
||||
"model_config": {
|
||||
"model": {
|
||||
"provider": "openai",
|
||||
"name": "gpt-4o",
|
||||
"mode": "chat",
|
||||
"completion_params": {}
|
||||
"completion_params": {},
|
||||
},
|
||||
'user_input_form': json.dumps([
|
||||
{
|
||||
"paragraph": {
|
||||
"label": "Query",
|
||||
"variable": "query",
|
||||
"required": True,
|
||||
"default": ""
|
||||
}
|
||||
}
|
||||
]),
|
||||
'pre_prompt': '{{query}}'
|
||||
"user_input_form": json.dumps(
|
||||
[
|
||||
{
|
||||
"paragraph": {
|
||||
"label": "Query",
|
||||
"variable": "query",
|
||||
"required": True,
|
||||
"default": "",
|
||||
},
|
||||
},
|
||||
]
|
||||
),
|
||||
"pre_prompt": "{{query}}",
|
||||
},
|
||||
|
||||
},
|
||||
|
||||
# chat default mode
|
||||
AppMode.CHAT: {
|
||||
'app': {
|
||||
'mode': AppMode.CHAT.value,
|
||||
'enable_site': True,
|
||||
'enable_api': True
|
||||
"app": {
|
||||
"mode": AppMode.CHAT.value,
|
||||
"enable_site": True,
|
||||
"enable_api": True,
|
||||
},
|
||||
'model_config': {
|
||||
'model': {
|
||||
"model_config": {
|
||||
"model": {
|
||||
"provider": "openai",
|
||||
"name": "gpt-4o",
|
||||
"mode": "chat",
|
||||
"completion_params": {}
|
||||
}
|
||||
}
|
||||
"completion_params": {},
|
||||
},
|
||||
},
|
||||
},
|
||||
|
||||
# advanced-chat default mode
|
||||
AppMode.ADVANCED_CHAT: {
|
||||
'app': {
|
||||
'mode': AppMode.ADVANCED_CHAT.value,
|
||||
'enable_site': True,
|
||||
'enable_api': True
|
||||
}
|
||||
"app": {
|
||||
"mode": AppMode.ADVANCED_CHAT.value,
|
||||
"enable_site": True,
|
||||
"enable_api": True,
|
||||
},
|
||||
},
|
||||
|
||||
# agent-chat default mode
|
||||
AppMode.AGENT_CHAT: {
|
||||
'app': {
|
||||
'mode': AppMode.AGENT_CHAT.value,
|
||||
'enable_site': True,
|
||||
'enable_api': True
|
||||
"app": {
|
||||
"mode": AppMode.AGENT_CHAT.value,
|
||||
"enable_site": True,
|
||||
"enable_api": True,
|
||||
},
|
||||
'model_config': {
|
||||
'model': {
|
||||
"model_config": {
|
||||
"model": {
|
||||
"provider": "openai",
|
||||
"name": "gpt-4o",
|
||||
"mode": "chat",
|
||||
"completion_params": {}
|
||||
}
|
||||
}
|
||||
}
|
||||
"completion_params": {},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
@ -2,6 +2,6 @@ from contextvars import ContextVar
|
||||
|
||||
from core.workflow.entities.variable_pool import VariablePool
|
||||
|
||||
tenant_id: ContextVar[str] = ContextVar('tenant_id')
|
||||
tenant_id: ContextVar[str] = ContextVar("tenant_id")
|
||||
|
||||
workflow_variable_pool: ContextVar[VariablePool] = ContextVar('workflow_variable_pool')
|
||||
workflow_variable_pool: ContextVar[VariablePool] = ContextVar("workflow_variable_pool")
|
||||
|
@ -61,6 +61,7 @@ class AppListApi(Resource):
|
||||
parser.add_argument('name', type=str, required=True, location='json')
|
||||
parser.add_argument('description', type=str, location='json')
|
||||
parser.add_argument('mode', type=str, choices=ALLOW_CREATE_APP_MODES, location='json')
|
||||
parser.add_argument('icon_type', type=str, location='json')
|
||||
parser.add_argument('icon', type=str, location='json')
|
||||
parser.add_argument('icon_background', type=str, location='json')
|
||||
args = parser.parse_args()
|
||||
@ -94,6 +95,7 @@ class AppImportApi(Resource):
|
||||
parser.add_argument('data', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('name', type=str, location='json')
|
||||
parser.add_argument('description', type=str, location='json')
|
||||
parser.add_argument('icon_type', type=str, location='json')
|
||||
parser.add_argument('icon', type=str, location='json')
|
||||
parser.add_argument('icon_background', type=str, location='json')
|
||||
args = parser.parse_args()
|
||||
@ -167,6 +169,7 @@ class AppApi(Resource):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('name', type=str, required=True, nullable=False, location='json')
|
||||
parser.add_argument('description', type=str, location='json')
|
||||
parser.add_argument('icon_type', type=str, location='json')
|
||||
parser.add_argument('icon', type=str, location='json')
|
||||
parser.add_argument('icon_background', type=str, location='json')
|
||||
parser.add_argument('max_active_requests', type=int, location='json')
|
||||
@ -208,6 +211,7 @@ class AppCopyApi(Resource):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('name', type=str, location='json')
|
||||
parser.add_argument('description', type=str, location='json')
|
||||
parser.add_argument('icon_type', type=str, location='json')
|
||||
parser.add_argument('icon', type=str, location='json')
|
||||
parser.add_argument('icon_background', type=str, location='json')
|
||||
args = parser.parse_args()
|
||||
|
@ -33,7 +33,7 @@ class CompletionConversationApi(Resource):
|
||||
@get_app_model(mode=AppMode.COMPLETION)
|
||||
@marshal_with(conversation_pagination_fields)
|
||||
def get(self, app_model):
|
||||
if not current_user.is_admin_or_owner:
|
||||
if not current_user.is_editor:
|
||||
raise Forbidden()
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('keyword', type=str, location='args')
|
||||
@ -108,7 +108,7 @@ class CompletionConversationDetailApi(Resource):
|
||||
@get_app_model(mode=AppMode.COMPLETION)
|
||||
@marshal_with(conversation_message_detail_fields)
|
||||
def get(self, app_model, conversation_id):
|
||||
if not current_user.is_admin_or_owner:
|
||||
if not current_user.is_editor:
|
||||
raise Forbidden()
|
||||
conversation_id = str(conversation_id)
|
||||
|
||||
@ -119,7 +119,7 @@ class CompletionConversationDetailApi(Resource):
|
||||
@account_initialization_required
|
||||
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
|
||||
def delete(self, app_model, conversation_id):
|
||||
if not current_user.is_admin_or_owner:
|
||||
if not current_user.is_editor:
|
||||
raise Forbidden()
|
||||
conversation_id = str(conversation_id)
|
||||
|
||||
@ -154,6 +154,8 @@ class ChatConversationApi(Resource):
|
||||
parser.add_argument('message_count_gte', type=int_range(1, 99999), required=False, location='args')
|
||||
parser.add_argument('page', type=int_range(1, 99999), required=False, default=1, location='args')
|
||||
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
|
||||
parser.add_argument('sort_by', type=str, choices=['created_at', '-created_at', 'updated_at', '-updated_at'],
|
||||
required=False, default='-updated_at', location='args')
|
||||
args = parser.parse_args()
|
||||
|
||||
subquery = (
|
||||
@ -225,7 +227,17 @@ class ChatConversationApi(Resource):
|
||||
if app_model.mode == AppMode.ADVANCED_CHAT.value:
|
||||
query = query.where(Conversation.invoke_from != InvokeFrom.DEBUGGER.value)
|
||||
|
||||
query = query.order_by(Conversation.created_at.desc())
|
||||
match args['sort_by']:
|
||||
case 'created_at':
|
||||
query = query.order_by(Conversation.created_at.asc())
|
||||
case '-created_at':
|
||||
query = query.order_by(Conversation.created_at.desc())
|
||||
case 'updated_at':
|
||||
query = query.order_by(Conversation.updated_at.asc())
|
||||
case '-updated_at':
|
||||
query = query.order_by(Conversation.updated_at.desc())
|
||||
case _:
|
||||
query = query.order_by(Conversation.created_at.desc())
|
||||
|
||||
conversations = db.paginate(
|
||||
query,
|
||||
@ -256,7 +268,7 @@ class ChatConversationDetailApi(Resource):
|
||||
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
|
||||
@account_initialization_required
|
||||
def delete(self, app_model, conversation_id):
|
||||
if not current_user.is_admin_or_owner:
|
||||
if not current_user.is_editor:
|
||||
raise Forbidden()
|
||||
conversation_id = str(conversation_id)
|
||||
|
||||
|
@ -16,6 +16,7 @@ from models.model import Site
|
||||
def parse_app_site_args():
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('title', type=str, required=False, location='json')
|
||||
parser.add_argument('icon_type', type=str, required=False, location='json')
|
||||
parser.add_argument('icon', type=str, required=False, location='json')
|
||||
parser.add_argument('icon_background', type=str, required=False, location='json')
|
||||
parser.add_argument('description', type=str, required=False, location='json')
|
||||
@ -53,6 +54,7 @@ class AppSite(Resource):
|
||||
|
||||
for attr_name in [
|
||||
'title',
|
||||
'icon_type',
|
||||
'icon',
|
||||
'icon_background',
|
||||
'description',
|
||||
|
@ -459,6 +459,7 @@ class ConvertToWorkflowApi(Resource):
|
||||
if request.data:
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('name', type=str, required=False, nullable=True, location='json')
|
||||
parser.add_argument('icon_type', type=str, required=False, nullable=True, location='json')
|
||||
parser.add_argument('icon', type=str, required=False, nullable=True, location='json')
|
||||
parser.add_argument('icon_background', type=str, required=False, nullable=True, location='json')
|
||||
args = parser.parse_args()
|
||||
|
@ -573,13 +573,13 @@ class DatasetRetrievalSettingMockApi(Resource):
|
||||
@account_initialization_required
|
||||
def get(self, vector_type):
|
||||
match vector_type:
|
||||
case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCENT:
|
||||
case VectorType.MILVUS | VectorType.RELYT | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCENT | VectorType.PGVECTO_RS:
|
||||
return {
|
||||
'retrieval_method': [
|
||||
RetrievalMethod.SEMANTIC_SEARCH.value
|
||||
]
|
||||
}
|
||||
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH| VectorType.ANALYTICDB | VectorType.MYSCALE | VectorType.ORACLE | VectorType.ELASTICSEARCH:
|
||||
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH | VectorType.ANALYTICDB | VectorType.MYSCALE | VectorType.ORACLE | VectorType.ELASTICSEARCH | VectorType.PGVECTOR:
|
||||
return {
|
||||
'retrieval_method': [
|
||||
RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||
|
@ -25,6 +25,8 @@ class ConversationApi(Resource):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('last_id', type=uuid_value, location='args')
|
||||
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
|
||||
parser.add_argument('sort_by', type=str, choices=['created_at', '-created_at', 'updated_at', '-updated_at'],
|
||||
required=False, default='-updated_at', location='args')
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
@ -33,7 +35,8 @@ class ConversationApi(Resource):
|
||||
user=end_user,
|
||||
last_id=args['last_id'],
|
||||
limit=args['limit'],
|
||||
invoke_from=InvokeFrom.SERVICE_API
|
||||
invoke_from=InvokeFrom.SERVICE_API,
|
||||
sort_by=args['sort_by']
|
||||
)
|
||||
except services.errors.conversation.LastConversationNotExistsError:
|
||||
raise NotFound("Last Conversation Not Exists.")
|
||||
|
@ -53,19 +53,22 @@ class SegmentApi(DatasetApiResource):
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
# validate args
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument('segments', type=list, required=False, nullable=True, location='json')
|
||||
args = parser.parse_args()
|
||||
for args_item in args['segments']:
|
||||
SegmentService.segment_create_args_validate(args_item, document)
|
||||
segments = SegmentService.multi_create_segment(args['segments'], document, dataset)
|
||||
return {
|
||||
'data': marshal(segments, segment_fields),
|
||||
'doc_form': document.doc_form
|
||||
}, 200
|
||||
if args['segments'] is not None:
|
||||
for args_item in args['segments']:
|
||||
SegmentService.segment_create_args_validate(args_item, document)
|
||||
segments = SegmentService.multi_create_segment(args['segments'], document, dataset)
|
||||
return {
|
||||
'data': marshal(segments, segment_fields),
|
||||
'doc_form': document.doc_form
|
||||
}, 200
|
||||
else:
|
||||
return {"error": "Segemtns is required"}, 400
|
||||
|
||||
def get(self, tenant_id, dataset_id, document_id):
|
||||
"""Create single segment."""
|
||||
|
@ -26,6 +26,8 @@ class ConversationListApi(WebApiResource):
|
||||
parser.add_argument('last_id', type=uuid_value, location='args')
|
||||
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
|
||||
parser.add_argument('pinned', type=str, choices=['true', 'false', None], location='args')
|
||||
parser.add_argument('sort_by', type=str, choices=['created_at', '-created_at', 'updated_at', '-updated_at'],
|
||||
required=False, default='-updated_at', location='args')
|
||||
args = parser.parse_args()
|
||||
|
||||
pinned = None
|
||||
@ -40,6 +42,7 @@ class ConversationListApi(WebApiResource):
|
||||
limit=args['limit'],
|
||||
invoke_from=InvokeFrom.WEB_APP,
|
||||
pinned=pinned,
|
||||
sort_by=args['sort_by']
|
||||
)
|
||||
except LastConversationNotExistsError:
|
||||
raise NotFound("Last Conversation Not Exists.")
|
||||
|
@ -6,6 +6,7 @@ from configs import dify_config
|
||||
from controllers.web import api
|
||||
from controllers.web.wraps import WebApiResource
|
||||
from extensions.ext_database import db
|
||||
from libs.helper import AppIconUrlField
|
||||
from models.account import TenantStatus
|
||||
from models.model import Site
|
||||
from services.feature_service import FeatureService
|
||||
@ -28,8 +29,10 @@ class AppSiteApi(WebApiResource):
|
||||
'title': fields.String,
|
||||
'chat_color_theme': fields.String,
|
||||
'chat_color_theme_inverted': fields.Boolean,
|
||||
'icon_type': fields.String,
|
||||
'icon': fields.String,
|
||||
'icon_background': fields.String,
|
||||
'icon_url': AppIconUrlField,
|
||||
'description': fields.String,
|
||||
'copyright': fields.String,
|
||||
'privacy_policy': fields.String,
|
||||
|
@ -64,15 +64,19 @@ class BaseAgentRunner(AppRunner):
|
||||
"""
|
||||
Agent runner
|
||||
:param tenant_id: tenant id
|
||||
:param application_generate_entity: application generate entity
|
||||
:param conversation: conversation
|
||||
:param app_config: app generate entity
|
||||
:param model_config: model config
|
||||
:param config: dataset config
|
||||
:param queue_manager: queue manager
|
||||
:param message: message
|
||||
:param user_id: user id
|
||||
:param agent_llm_callback: agent llm callback
|
||||
:param callback: callback
|
||||
:param memory: memory
|
||||
:param prompt_messages: prompt messages
|
||||
:param variables_pool: variables pool
|
||||
:param db_variables: db variables
|
||||
:param model_instance: model instance
|
||||
"""
|
||||
self.tenant_id = tenant_id
|
||||
self.application_generate_entity = application_generate_entity
|
||||
@ -445,7 +449,7 @@ class BaseAgentRunner(AppRunner):
|
||||
try:
|
||||
tool_responses = json.loads(agent_thought.observation)
|
||||
except Exception as e:
|
||||
tool_responses = { tool: agent_thought.observation for tool in tools }
|
||||
tool_responses = dict.fromkeys(tools, agent_thought.observation)
|
||||
|
||||
for tool in tools:
|
||||
# generate a uuid for tool call
|
||||
|
@ -292,6 +292,8 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
handle invoke action
|
||||
:param action: action
|
||||
:param tool_instances: tool instances
|
||||
:param message_file_ids: message file ids
|
||||
:param trace_manager: trace manager
|
||||
:return: observation, meta
|
||||
"""
|
||||
# action is tool call, invoke tool
|
||||
|
@ -1,6 +1,6 @@
|
||||
import re
|
||||
|
||||
from core.app.app_config.entities import ExternalDataVariableEntity, VariableEntity
|
||||
from core.app.app_config.entities import ExternalDataVariableEntity, VariableEntity, VariableEntityType
|
||||
from core.external_data_tool.factory import ExternalDataToolFactory
|
||||
|
||||
|
||||
@ -13,7 +13,7 @@ class BasicVariablesConfigManager:
|
||||
:param config: model config args
|
||||
"""
|
||||
external_data_variables = []
|
||||
variables = []
|
||||
variable_entities = []
|
||||
|
||||
# old external_data_tools
|
||||
external_data_tools = config.get('external_data_tools', [])
|
||||
@ -30,50 +30,41 @@ class BasicVariablesConfigManager:
|
||||
)
|
||||
|
||||
# variables and external_data_tools
|
||||
for variable in config.get('user_input_form', []):
|
||||
typ = list(variable.keys())[0]
|
||||
if typ == 'external_data_tool':
|
||||
val = variable[typ]
|
||||
if 'config' not in val:
|
||||
for variables in config.get('user_input_form', []):
|
||||
variable_type = list(variables.keys())[0]
|
||||
if variable_type == VariableEntityType.EXTERNAL_DATA_TOOL:
|
||||
variable = variables[variable_type]
|
||||
if 'config' not in variable:
|
||||
continue
|
||||
|
||||
external_data_variables.append(
|
||||
ExternalDataVariableEntity(
|
||||
variable=val['variable'],
|
||||
type=val['type'],
|
||||
config=val['config']
|
||||
variable=variable['variable'],
|
||||
type=variable['type'],
|
||||
config=variable['config']
|
||||
)
|
||||
)
|
||||
elif typ in [
|
||||
VariableEntity.Type.TEXT_INPUT.value,
|
||||
VariableEntity.Type.PARAGRAPH.value,
|
||||
VariableEntity.Type.NUMBER.value,
|
||||
elif variable_type in [
|
||||
VariableEntityType.TEXT_INPUT,
|
||||
VariableEntityType.PARAGRAPH,
|
||||
VariableEntityType.NUMBER,
|
||||
VariableEntityType.SELECT,
|
||||
]:
|
||||
variables.append(
|
||||
variable = variables[variable_type]
|
||||
variable_entities.append(
|
||||
VariableEntity(
|
||||
type=VariableEntity.Type.value_of(typ),
|
||||
variable=variable[typ].get('variable'),
|
||||
description=variable[typ].get('description'),
|
||||
label=variable[typ].get('label'),
|
||||
required=variable[typ].get('required', False),
|
||||
max_length=variable[typ].get('max_length'),
|
||||
default=variable[typ].get('default'),
|
||||
)
|
||||
)
|
||||
elif typ == VariableEntity.Type.SELECT.value:
|
||||
variables.append(
|
||||
VariableEntity(
|
||||
type=VariableEntity.Type.SELECT,
|
||||
variable=variable[typ].get('variable'),
|
||||
description=variable[typ].get('description'),
|
||||
label=variable[typ].get('label'),
|
||||
required=variable[typ].get('required', False),
|
||||
options=variable[typ].get('options'),
|
||||
default=variable[typ].get('default'),
|
||||
type=variable_type,
|
||||
variable=variable.get('variable'),
|
||||
description=variable.get('description'),
|
||||
label=variable.get('label'),
|
||||
required=variable.get('required', False),
|
||||
max_length=variable.get('max_length'),
|
||||
options=variable.get('options'),
|
||||
default=variable.get('default'),
|
||||
)
|
||||
)
|
||||
|
||||
return variables, external_data_variables
|
||||
return variable_entities, external_data_variables
|
||||
|
||||
@classmethod
|
||||
def validate_and_set_defaults(cls, tenant_id: str, config: dict) -> tuple[dict, list[str]]:
|
||||
@ -183,4 +174,4 @@ class BasicVariablesConfigManager:
|
||||
config=config
|
||||
)
|
||||
|
||||
return config, ["external_data_tools"]
|
||||
return config, ["external_data_tools"]
|
||||
|
@ -82,43 +82,29 @@ class PromptTemplateEntity(BaseModel):
|
||||
advanced_completion_prompt_template: Optional[AdvancedCompletionPromptTemplateEntity] = None
|
||||
|
||||
|
||||
class VariableEntityType(str, Enum):
|
||||
TEXT_INPUT = "text-input"
|
||||
SELECT = "select"
|
||||
PARAGRAPH = "paragraph"
|
||||
NUMBER = "number"
|
||||
EXTERNAL_DATA_TOOL = "external-data-tool"
|
||||
|
||||
|
||||
class VariableEntity(BaseModel):
|
||||
"""
|
||||
Variable Entity.
|
||||
"""
|
||||
class Type(Enum):
|
||||
TEXT_INPUT = 'text-input'
|
||||
SELECT = 'select'
|
||||
PARAGRAPH = 'paragraph'
|
||||
NUMBER = 'number'
|
||||
|
||||
@classmethod
|
||||
def value_of(cls, value: str) -> 'VariableEntity.Type':
|
||||
"""
|
||||
Get value of given mode.
|
||||
|
||||
:param value: mode value
|
||||
:return: mode
|
||||
"""
|
||||
for mode in cls:
|
||||
if mode.value == value:
|
||||
return mode
|
||||
raise ValueError(f'invalid variable type value {value}')
|
||||
|
||||
variable: str
|
||||
label: str
|
||||
description: Optional[str] = None
|
||||
type: Type
|
||||
type: VariableEntityType
|
||||
required: bool = False
|
||||
max_length: Optional[int] = None
|
||||
options: Optional[list[str]] = None
|
||||
default: Optional[str] = None
|
||||
hint: Optional[str] = None
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return self.variable
|
||||
|
||||
|
||||
class ExternalDataVariableEntity(BaseModel):
|
||||
"""
|
||||
@ -252,4 +238,4 @@ class WorkflowUIBasedAppConfig(AppConfig):
|
||||
"""
|
||||
Workflow UI Based App Config Entity.
|
||||
"""
|
||||
workflow_id: str
|
||||
workflow_id: str
|
||||
|
@ -29,7 +29,7 @@ from core.file.message_file_parser import MessageFileParser
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeError
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.workflow.entities.variable_pool import VariablePool
|
||||
from core.workflow.enums import SystemVariable
|
||||
from core.workflow.enums import SystemVariableKey
|
||||
from extensions.ext_database import db
|
||||
from models.account import Account
|
||||
from models.model import App, Conversation, EndUser, Message
|
||||
@ -46,7 +46,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
args: dict,
|
||||
invoke_from: InvokeFrom,
|
||||
stream: bool = True,
|
||||
) -> Union[dict, Generator[dict, None, None]]:
|
||||
):
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
@ -73,8 +73,9 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
|
||||
# get conversation
|
||||
conversation = None
|
||||
if args.get('conversation_id'):
|
||||
conversation = self._get_conversation_by_user(app_model, args.get('conversation_id'), user)
|
||||
conversation_id = args.get('conversation_id')
|
||||
if conversation_id:
|
||||
conversation = self._get_conversation_by_user(app_model=app_model, conversation_id=conversation_id, user=user)
|
||||
|
||||
# parse files
|
||||
files = args['files'] if args.get('files') else []
|
||||
@ -133,8 +134,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
node_id: str,
|
||||
user: Account,
|
||||
args: dict,
|
||||
stream: bool = True) \
|
||||
-> Union[dict, Generator[dict, None, None]]:
|
||||
stream: bool = True):
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
@ -157,8 +157,9 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
|
||||
# get conversation
|
||||
conversation = None
|
||||
if args.get('conversation_id'):
|
||||
conversation = self._get_conversation_by_user(app_model, args.get('conversation_id'), user)
|
||||
conversation_id = args.get('conversation_id')
|
||||
if conversation_id:
|
||||
conversation = self._get_conversation_by_user(app_model=app_model, conversation_id=conversation_id, user=user)
|
||||
|
||||
# convert to app config
|
||||
app_config = AdvancedChatAppConfigManager.get_app_config(
|
||||
@ -200,8 +201,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
invoke_from: InvokeFrom,
|
||||
application_generate_entity: AdvancedChatAppGenerateEntity,
|
||||
conversation: Conversation | None = None,
|
||||
stream: bool = True) \
|
||||
-> Union[dict, Generator[dict, None, None]]:
|
||||
stream: bool = True):
|
||||
is_first_conversation = False
|
||||
if not conversation:
|
||||
is_first_conversation = True
|
||||
@ -270,11 +270,11 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
|
||||
# Create a variable pool.
|
||||
system_inputs = {
|
||||
SystemVariable.QUERY: query,
|
||||
SystemVariable.FILES: files,
|
||||
SystemVariable.CONVERSATION_ID: conversation_id,
|
||||
SystemVariable.USER_ID: user_id,
|
||||
SystemVariable.DIALOGUE_COUNT: conversation_dialogue_count,
|
||||
SystemVariableKey.QUERY: query,
|
||||
SystemVariableKey.FILES: files,
|
||||
SystemVariableKey.CONVERSATION_ID: conversation_id,
|
||||
SystemVariableKey.USER_ID: user_id,
|
||||
SystemVariableKey.DIALOGUE_COUNT: conversation_dialogue_count,
|
||||
}
|
||||
variable_pool = VariablePool(
|
||||
system_variables=system_inputs,
|
||||
@ -362,7 +362,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
logger.exception("Validation Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except (ValueError, InvokeError) as e:
|
||||
if os.environ.get("DEBUG") and os.environ.get("DEBUG").lower() == 'true':
|
||||
if os.environ.get("DEBUG", "false").lower() == 'true':
|
||||
logger.exception("Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except Exception as e:
|
||||
|
@ -49,7 +49,7 @@ from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.workflow.entities.node_entities import NodeType
|
||||
from core.workflow.enums import SystemVariable
|
||||
from core.workflow.enums import SystemVariableKey
|
||||
from core.workflow.nodes.answer.answer_node import AnswerNode
|
||||
from core.workflow.nodes.answer.entities import TextGenerateRouteChunk, VarGenerateRouteChunk
|
||||
from events.message_event import message_was_created
|
||||
@ -74,7 +74,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
||||
_workflow: Workflow
|
||||
_user: Union[Account, EndUser]
|
||||
# Deprecated
|
||||
_workflow_system_variables: dict[SystemVariable, Any]
|
||||
_workflow_system_variables: dict[SystemVariableKey, Any]
|
||||
_iteration_nested_relations: dict[str, list[str]]
|
||||
|
||||
def __init__(
|
||||
@ -108,10 +108,10 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
||||
self._message = message
|
||||
# Deprecated
|
||||
self._workflow_system_variables = {
|
||||
SystemVariable.QUERY: message.query,
|
||||
SystemVariable.FILES: application_generate_entity.files,
|
||||
SystemVariable.CONVERSATION_ID: conversation.id,
|
||||
SystemVariable.USER_ID: user_id,
|
||||
SystemVariableKey.QUERY: message.query,
|
||||
SystemVariableKey.FILES: application_generate_entity.files,
|
||||
SystemVariableKey.CONVERSATION_ID: conversation.id,
|
||||
SystemVariableKey.USER_ID: user_id,
|
||||
}
|
||||
|
||||
self._task_state = AdvancedChatTaskState(
|
||||
@ -249,8 +249,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
|
||||
"""
|
||||
for message in self._queue_manager.listen():
|
||||
if (message.event
|
||||
and hasattr(message.event, 'metadata')
|
||||
and message.event.metadata
|
||||
and getattr(message.event, 'metadata', None)
|
||||
and message.event.metadata.get('is_answer_previous_node', False)
|
||||
and publisher):
|
||||
publisher.publish(message=message)
|
||||
|
@ -1,7 +1,7 @@
|
||||
from collections.abc import Mapping
|
||||
from typing import Any, Optional
|
||||
|
||||
from core.app.app_config.entities import AppConfig, VariableEntity
|
||||
from core.app.app_config.entities import AppConfig, VariableEntity, VariableEntityType
|
||||
|
||||
|
||||
class BaseAppGenerator:
|
||||
@ -9,29 +9,29 @@ class BaseAppGenerator:
|
||||
user_inputs = user_inputs or {}
|
||||
# Filter input variables from form configuration, handle required fields, default values, and option values
|
||||
variables = app_config.variables
|
||||
filtered_inputs = {var.name: self._validate_input(inputs=user_inputs, var=var) for var in variables}
|
||||
filtered_inputs = {var.variable: self._validate_input(inputs=user_inputs, var=var) for var in variables}
|
||||
filtered_inputs = {k: self._sanitize_value(v) for k, v in filtered_inputs.items()}
|
||||
return filtered_inputs
|
||||
|
||||
def _validate_input(self, *, inputs: Mapping[str, Any], var: VariableEntity):
|
||||
user_input_value = inputs.get(var.name)
|
||||
user_input_value = inputs.get(var.variable)
|
||||
if var.required and not user_input_value:
|
||||
raise ValueError(f'{var.name} is required in input form')
|
||||
raise ValueError(f'{var.variable} is required in input form')
|
||||
if not var.required and not user_input_value:
|
||||
# TODO: should we return None here if the default value is None?
|
||||
return var.default or ''
|
||||
if (
|
||||
var.type
|
||||
in (
|
||||
VariableEntity.Type.TEXT_INPUT,
|
||||
VariableEntity.Type.SELECT,
|
||||
VariableEntity.Type.PARAGRAPH,
|
||||
VariableEntityType.TEXT_INPUT,
|
||||
VariableEntityType.SELECT,
|
||||
VariableEntityType.PARAGRAPH,
|
||||
)
|
||||
and user_input_value
|
||||
and not isinstance(user_input_value, str)
|
||||
):
|
||||
raise ValueError(f"(type '{var.type}') {var.name} in input form must be a string")
|
||||
if var.type == VariableEntity.Type.NUMBER and isinstance(user_input_value, str):
|
||||
raise ValueError(f"(type '{var.type}') {var.variable} in input form must be a string")
|
||||
if var.type == VariableEntityType.NUMBER and isinstance(user_input_value, str):
|
||||
# may raise ValueError if user_input_value is not a valid number
|
||||
try:
|
||||
if '.' in user_input_value:
|
||||
@ -39,14 +39,14 @@ class BaseAppGenerator:
|
||||
else:
|
||||
return int(user_input_value)
|
||||
except ValueError:
|
||||
raise ValueError(f"{var.name} in input form must be a valid number")
|
||||
if var.type == VariableEntity.Type.SELECT:
|
||||
raise ValueError(f"{var.variable} in input form must be a valid number")
|
||||
if var.type == VariableEntityType.SELECT:
|
||||
options = var.options or []
|
||||
if user_input_value not in options:
|
||||
raise ValueError(f'{var.name} in input form must be one of the following: {options}')
|
||||
elif var.type in (VariableEntity.Type.TEXT_INPUT, VariableEntity.Type.PARAGRAPH):
|
||||
raise ValueError(f'{var.variable} in input form must be one of the following: {options}')
|
||||
elif var.type in (VariableEntityType.TEXT_INPUT, VariableEntityType.PARAGRAPH):
|
||||
if var.max_length and user_input_value and len(user_input_value) > var.max_length:
|
||||
raise ValueError(f'{var.name} in input form must be less than {var.max_length} characters')
|
||||
raise ValueError(f'{var.variable} in input form must be less than {var.max_length} characters')
|
||||
|
||||
return user_input_value
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
import time
|
||||
from collections.abc import Generator
|
||||
from typing import Optional, Union
|
||||
from typing import TYPE_CHECKING, Optional, Union
|
||||
|
||||
from core.app.app_config.entities import ExternalDataVariableEntity, PromptTemplateEntity
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
@ -14,7 +14,6 @@ from core.app.entities.queue_entities import QueueAgentMessageEvent, QueueLLMChu
|
||||
from core.app.features.annotation_reply.annotation_reply import AnnotationReplyFeature
|
||||
from core.app.features.hosting_moderation.hosting_moderation import HostingModerationFeature
|
||||
from core.external_data_tool.external_data_fetch import ExternalDataFetch
|
||||
from core.file.file_obj import FileVar
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
@ -27,13 +26,16 @@ from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, Comp
|
||||
from core.prompt.simple_prompt_transform import ModelMode, SimplePromptTransform
|
||||
from models.model import App, AppMode, Message, MessageAnnotation
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.file.file_obj import FileVar
|
||||
|
||||
|
||||
class AppRunner:
|
||||
def get_pre_calculate_rest_tokens(self, app_record: App,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict[str, str],
|
||||
files: list[FileVar],
|
||||
files: list["FileVar"],
|
||||
query: Optional[str] = None) -> int:
|
||||
"""
|
||||
Get pre calculate rest tokens
|
||||
@ -126,7 +128,7 @@ class AppRunner:
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict[str, str],
|
||||
files: list[FileVar],
|
||||
files: list["FileVar"],
|
||||
query: Optional[str] = None,
|
||||
context: Optional[str] = None,
|
||||
memory: Optional[TokenBufferMemory] = None) \
|
||||
@ -254,6 +256,7 @@ class AppRunner:
|
||||
:param invoke_result: invoke result
|
||||
:param queue_manager: application queue manager
|
||||
:param stream: stream
|
||||
:param agent: agent
|
||||
:return:
|
||||
"""
|
||||
if not stream:
|
||||
@ -276,6 +279,7 @@ class AppRunner:
|
||||
Handle invoke result direct
|
||||
:param invoke_result: invoke result
|
||||
:param queue_manager: application queue manager
|
||||
:param agent: agent
|
||||
:return:
|
||||
"""
|
||||
queue_manager.publish(
|
||||
@ -291,6 +295,7 @@ class AppRunner:
|
||||
Handle invoke result
|
||||
:param invoke_result: invoke result
|
||||
:param queue_manager: application queue manager
|
||||
:param agent: agent
|
||||
:return:
|
||||
"""
|
||||
model = None
|
||||
@ -366,7 +371,7 @@ class AppRunner:
|
||||
message_id=message_id,
|
||||
trace_manager=app_generate_entity.trace_manager
|
||||
)
|
||||
|
||||
|
||||
def check_hosting_moderation(self, application_generate_entity: EasyUIBasedAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
prompt_messages: list[PromptMessage]) -> bool:
|
||||
@ -418,7 +423,7 @@ class AppRunner:
|
||||
inputs=inputs,
|
||||
query=query
|
||||
)
|
||||
|
||||
|
||||
def query_app_annotations_to_reply(self, app_record: App,
|
||||
message: Message,
|
||||
query: str,
|
||||
|
@ -1,6 +1,7 @@
|
||||
import json
|
||||
import logging
|
||||
from collections.abc import Generator
|
||||
from datetime import datetime, timezone
|
||||
from typing import Optional, Union
|
||||
|
||||
from sqlalchemy import and_
|
||||
@ -36,17 +37,17 @@ logger = logging.getLogger(__name__)
|
||||
class MessageBasedAppGenerator(BaseAppGenerator):
|
||||
|
||||
def _handle_response(
|
||||
self, application_generate_entity: Union[
|
||||
ChatAppGenerateEntity,
|
||||
CompletionAppGenerateEntity,
|
||||
AgentChatAppGenerateEntity,
|
||||
AdvancedChatAppGenerateEntity
|
||||
],
|
||||
queue_manager: AppQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
user: Union[Account, EndUser],
|
||||
stream: bool = False,
|
||||
self, application_generate_entity: Union[
|
||||
ChatAppGenerateEntity,
|
||||
CompletionAppGenerateEntity,
|
||||
AgentChatAppGenerateEntity,
|
||||
AdvancedChatAppGenerateEntity
|
||||
],
|
||||
queue_manager: AppQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
user: Union[Account, EndUser],
|
||||
stream: bool = False,
|
||||
) -> Union[
|
||||
ChatbotAppBlockingResponse,
|
||||
CompletionAppBlockingResponse,
|
||||
@ -138,6 +139,7 @@ class MessageBasedAppGenerator(BaseAppGenerator):
|
||||
"""
|
||||
Initialize generate records
|
||||
:param application_generate_entity: application generate entity
|
||||
:conversation conversation
|
||||
:return:
|
||||
"""
|
||||
app_config = application_generate_entity.app_config
|
||||
@ -192,6 +194,9 @@ class MessageBasedAppGenerator(BaseAppGenerator):
|
||||
db.session.add(conversation)
|
||||
db.session.commit()
|
||||
db.session.refresh(conversation)
|
||||
else:
|
||||
conversation.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
|
||||
message = Message(
|
||||
app_id=app_config.app_id,
|
||||
|
@ -12,7 +12,7 @@ from core.app.entities.app_invoke_entities import (
|
||||
)
|
||||
from core.workflow.callbacks.base_workflow_callback import WorkflowCallback
|
||||
from core.workflow.entities.variable_pool import VariablePool
|
||||
from core.workflow.enums import SystemVariable
|
||||
from core.workflow.enums import SystemVariableKey
|
||||
from core.workflow.nodes.base_node import UserFrom
|
||||
from core.workflow.workflow_engine_manager import WorkflowEngineManager
|
||||
from extensions.ext_database import db
|
||||
@ -67,8 +67,8 @@ class WorkflowAppRunner:
|
||||
|
||||
# Create a variable pool.
|
||||
system_inputs = {
|
||||
SystemVariable.FILES: files,
|
||||
SystemVariable.USER_ID: user_id,
|
||||
SystemVariableKey.FILES: files,
|
||||
SystemVariableKey.USER_ID: user_id,
|
||||
}
|
||||
variable_pool = VariablePool(
|
||||
system_variables=system_inputs,
|
||||
|
@ -43,7 +43,7 @@ from core.app.task_pipeline.based_generate_task_pipeline import BasedGenerateTas
|
||||
from core.app.task_pipeline.workflow_cycle_manage import WorkflowCycleManage
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.workflow.entities.node_entities import NodeType
|
||||
from core.workflow.enums import SystemVariable
|
||||
from core.workflow.enums import SystemVariableKey
|
||||
from core.workflow.nodes.end.end_node import EndNode
|
||||
from extensions.ext_database import db
|
||||
from models.account import Account
|
||||
@ -67,7 +67,7 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
||||
_user: Union[Account, EndUser]
|
||||
_task_state: WorkflowTaskState
|
||||
_application_generate_entity: WorkflowAppGenerateEntity
|
||||
_workflow_system_variables: dict[SystemVariable, Any]
|
||||
_workflow_system_variables: dict[SystemVariableKey, Any]
|
||||
_iteration_nested_relations: dict[str, list[str]]
|
||||
|
||||
def __init__(self, application_generate_entity: WorkflowAppGenerateEntity,
|
||||
@ -92,8 +92,8 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
|
||||
|
||||
self._workflow = workflow
|
||||
self._workflow_system_variables = {
|
||||
SystemVariable.FILES: application_generate_entity.files,
|
||||
SystemVariable.USER_ID: user_id
|
||||
SystemVariableKey.FILES: application_generate_entity.files,
|
||||
SystemVariableKey.USER_ID: user_id
|
||||
}
|
||||
|
||||
self._task_state = WorkflowTaskState(
|
||||
|
@ -166,4 +166,4 @@ class WorkflowAppGenerateEntity(AppGenerateEntity):
|
||||
node_id: str
|
||||
inputs: dict
|
||||
|
||||
single_iteration_run: Optional[SingleIterationRunEntity] = None
|
||||
single_iteration_run: Optional[SingleIterationRunEntity] = None
|
||||
|
@ -99,7 +99,13 @@ class ObjectSegment(Segment):
|
||||
class ArraySegment(Segment):
|
||||
@property
|
||||
def markdown(self) -> str:
|
||||
return '\n'.join(['- ' + item.markdown for item in self.value])
|
||||
items = []
|
||||
for item in self.value:
|
||||
if hasattr(item, 'to_markdown'):
|
||||
items.append(item.to_markdown())
|
||||
else:
|
||||
items.append(str(item))
|
||||
return '\n'.join(items)
|
||||
|
||||
|
||||
class ArrayAnySegment(ArraySegment):
|
||||
|
@ -2,7 +2,7 @@ from typing import Any, Union
|
||||
|
||||
from core.app.entities.app_invoke_entities import AdvancedChatAppGenerateEntity, WorkflowAppGenerateEntity
|
||||
from core.app.entities.task_entities import AdvancedChatTaskState, WorkflowTaskState
|
||||
from core.workflow.enums import SystemVariable
|
||||
from core.workflow.enums import SystemVariableKey
|
||||
from models.account import Account
|
||||
from models.model import EndUser
|
||||
from models.workflow import Workflow
|
||||
@ -13,4 +13,4 @@ class WorkflowCycleStateManager:
|
||||
_workflow: Workflow
|
||||
_user: Union[Account, EndUser]
|
||||
_task_state: Union[AdvancedChatTaskState, WorkflowTaskState]
|
||||
_workflow_system_variables: dict[SystemVariable, Any]
|
||||
_workflow_system_variables: dict[SystemVariableKey, Any]
|
||||
|
@ -99,7 +99,7 @@ class MessageFileParser:
|
||||
# return all file objs
|
||||
return new_files
|
||||
|
||||
def transform_message_files(self, files: list[MessageFile], file_extra_config: FileExtraConfig) -> list[FileVar]:
|
||||
def transform_message_files(self, files: list[MessageFile], file_extra_config: FileExtraConfig):
|
||||
"""
|
||||
transform message files
|
||||
|
||||
@ -144,7 +144,7 @@ class MessageFileParser:
|
||||
|
||||
return type_file_objs
|
||||
|
||||
def _to_file_obj(self, file: Union[dict, MessageFile], file_extra_config: FileExtraConfig) -> FileVar:
|
||||
def _to_file_obj(self, file: Union[dict, MessageFile], file_extra_config: FileExtraConfig):
|
||||
"""
|
||||
transform file to file obj
|
||||
|
||||
|
@ -3,6 +3,7 @@ from collections import OrderedDict
|
||||
from collections.abc import Callable
|
||||
from typing import Any
|
||||
|
||||
from configs import dify_config
|
||||
from core.tools.utils.yaml_utils import load_yaml_file
|
||||
|
||||
|
||||
@ -19,6 +20,87 @@ def get_position_map(folder_path: str, *, file_name: str = "_position.yaml") ->
|
||||
return {name: index for index, name in enumerate(positions)}
|
||||
|
||||
|
||||
def get_tool_position_map(folder_path: str, file_name: str = "_position.yaml") -> dict[str, int]:
|
||||
"""
|
||||
Get the mapping for tools from name to index from a YAML file.
|
||||
:param folder_path:
|
||||
:param file_name: the YAML file name, default to '_position.yaml'
|
||||
:return: a dict with name as key and index as value
|
||||
"""
|
||||
position_map = get_position_map(folder_path, file_name=file_name)
|
||||
|
||||
return pin_position_map(
|
||||
position_map,
|
||||
pin_list=dify_config.POSITION_TOOL_PINS_LIST,
|
||||
)
|
||||
|
||||
|
||||
def get_provider_position_map(folder_path: str, file_name: str = "_position.yaml") -> dict[str, int]:
|
||||
"""
|
||||
Get the mapping for providers from name to index from a YAML file.
|
||||
:param folder_path:
|
||||
:param file_name: the YAML file name, default to '_position.yaml'
|
||||
:return: a dict with name as key and index as value
|
||||
"""
|
||||
position_map = get_position_map(folder_path, file_name=file_name)
|
||||
return pin_position_map(
|
||||
position_map,
|
||||
pin_list=dify_config.POSITION_PROVIDER_PINS_LIST,
|
||||
)
|
||||
|
||||
|
||||
def pin_position_map(original_position_map: dict[str, int], pin_list: list[str]) -> dict[str, int]:
|
||||
"""
|
||||
Pin the items in the pin list to the beginning of the position map.
|
||||
Overall logic: exclude > include > pin
|
||||
:param position_map: the position map to be sorted and filtered
|
||||
:param pin_list: the list of pins to be put at the beginning
|
||||
:return: the sorted position map
|
||||
"""
|
||||
positions = sorted(original_position_map.keys(), key=lambda x: original_position_map[x])
|
||||
|
||||
# Add pins to position map
|
||||
position_map = {name: idx for idx, name in enumerate(pin_list)}
|
||||
|
||||
# Add remaining positions to position map
|
||||
start_idx = len(position_map)
|
||||
for name in positions:
|
||||
if name not in position_map:
|
||||
position_map[name] = start_idx
|
||||
start_idx += 1
|
||||
|
||||
return position_map
|
||||
|
||||
|
||||
def is_filtered(
|
||||
include_set: set[str],
|
||||
exclude_set: set[str],
|
||||
data: Any,
|
||||
name_func: Callable[[Any], str],
|
||||
) -> bool:
|
||||
"""
|
||||
Chcek if the object should be filtered out.
|
||||
Overall logic: exclude > include > pin
|
||||
:param include_set: the set of names to be included
|
||||
:param exclude_set: the set of names to be excluded
|
||||
:param name_func: the function to get the name of the object
|
||||
:param data: the data to be filtered
|
||||
:return: True if the object should be filtered out, False otherwise
|
||||
"""
|
||||
if not data:
|
||||
return False
|
||||
if not include_set and not exclude_set:
|
||||
return False
|
||||
|
||||
name = name_func(data)
|
||||
|
||||
if name in exclude_set: # exclude_set is prioritized
|
||||
return True
|
||||
if include_set and name not in include_set: # filter out only if include_set is not empty
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def sort_by_position_map(
|
||||
position_map: dict[str, int],
|
||||
data: list[Any],
|
||||
|
@ -700,6 +700,7 @@ class IndexingRunner:
|
||||
DatasetDocument.tokens: tokens,
|
||||
DatasetDocument.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
|
||||
DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
|
||||
DatasetDocument.error: None,
|
||||
}
|
||||
)
|
||||
|
||||
|
@ -271,9 +271,8 @@ class ModelInstance:
|
||||
|
||||
:param content_text: text content to be translated
|
||||
:param tenant_id: user tenant id
|
||||
:param user: unique user id
|
||||
:param voice: model timbre
|
||||
:param streaming: output is streaming
|
||||
:param user: unique user id
|
||||
:return: text for given audio file
|
||||
"""
|
||||
if not isinstance(self.model_type_instance, TTSModel):
|
||||
@ -369,6 +368,15 @@ class ModelManager:
|
||||
|
||||
return ModelInstance(provider_model_bundle, model)
|
||||
|
||||
def get_default_provider_model_name(self, tenant_id: str, model_type: ModelType) -> tuple[str, str]:
|
||||
"""
|
||||
Return first provider and the first model in the provider
|
||||
:param tenant_id: tenant id
|
||||
:param model_type: model type
|
||||
:return: provider name, model name
|
||||
"""
|
||||
return self._provider_manager.get_first_provider_first_model(tenant_id, model_type)
|
||||
|
||||
def get_default_model_instance(self, tenant_id: str, model_type: ModelType) -> ModelInstance:
|
||||
"""
|
||||
Get default model instance
|
||||
@ -401,6 +409,10 @@ class LBModelManager:
|
||||
managed_credentials: Optional[dict] = None) -> None:
|
||||
"""
|
||||
Load balancing model manager
|
||||
:param tenant_id: tenant_id
|
||||
:param provider: provider
|
||||
:param model_type: model_type
|
||||
:param model: model name
|
||||
:param load_balancing_configs: all load balancing configurations
|
||||
:param managed_credentials: credentials if load balancing configuration name is __inherit__
|
||||
"""
|
||||
@ -499,7 +511,6 @@ class LBModelManager:
|
||||
config.id
|
||||
)
|
||||
|
||||
|
||||
res = redis_client.exists(cooldown_cache_key)
|
||||
res = cast(bool, res)
|
||||
return res
|
||||
|
@ -1,4 +1,3 @@
|
||||
|
||||
from core.model_runtime.entities.model_entities import DefaultParameterName
|
||||
|
||||
PARAMETER_RULE_TEMPLATE: dict[DefaultParameterName, dict] = {
|
||||
@ -94,5 +93,16 @@ PARAMETER_RULE_TEMPLATE: dict[DefaultParameterName, dict] = {
|
||||
},
|
||||
'required': False,
|
||||
'options': ['JSON', 'XML'],
|
||||
}
|
||||
}
|
||||
},
|
||||
DefaultParameterName.JSON_SCHEMA: {
|
||||
'label': {
|
||||
'en_US': 'JSON Schema',
|
||||
},
|
||||
'type': 'text',
|
||||
'help': {
|
||||
'en_US': 'Set a response json schema will ensure LLM to adhere it.',
|
||||
'zh_Hans': '设置返回的json schema,llm将按照它返回',
|
||||
},
|
||||
'required': False,
|
||||
},
|
||||
}
|
||||
|
@ -95,6 +95,7 @@ class DefaultParameterName(Enum):
|
||||
FREQUENCY_PENALTY = "frequency_penalty"
|
||||
MAX_TOKENS = "max_tokens"
|
||||
RESPONSE_FORMAT = "response_format"
|
||||
JSON_SCHEMA = "json_schema"
|
||||
|
||||
@classmethod
|
||||
def value_of(cls, value: Any) -> 'DefaultParameterName':
|
||||
@ -118,6 +119,7 @@ class ParameterType(Enum):
|
||||
INT = "int"
|
||||
STRING = "string"
|
||||
BOOLEAN = "boolean"
|
||||
TEXT = "text"
|
||||
|
||||
|
||||
class ModelPropertyKey(Enum):
|
||||
|
@ -151,9 +151,9 @@ class AIModel(ABC):
|
||||
os.path.join(provider_model_type_path, model_schema_yaml)
|
||||
for model_schema_yaml in os.listdir(provider_model_type_path)
|
||||
if not model_schema_yaml.startswith('__')
|
||||
and not model_schema_yaml.startswith('_')
|
||||
and os.path.isfile(os.path.join(provider_model_type_path, model_schema_yaml))
|
||||
and model_schema_yaml.endswith('.yaml')
|
||||
and not model_schema_yaml.startswith('_')
|
||||
and os.path.isfile(os.path.join(provider_model_type_path, model_schema_yaml))
|
||||
and model_schema_yaml.endswith('.yaml')
|
||||
]
|
||||
|
||||
# get _position.yaml file path
|
||||
|
@ -185,7 +185,7 @@ if you are not sure about the structure.
|
||||
stream=stream,
|
||||
user=user
|
||||
)
|
||||
|
||||
|
||||
model_parameters.pop("response_format")
|
||||
stop = stop or []
|
||||
stop.extend(["\n```", "```\n"])
|
||||
@ -249,10 +249,10 @@ if you are not sure about the structure.
|
||||
prompt_messages=prompt_messages,
|
||||
input_generator=new_generator()
|
||||
)
|
||||
|
||||
|
||||
return response
|
||||
|
||||
def _code_block_mode_stream_processor(self, model: str, prompt_messages: list[PromptMessage],
|
||||
def _code_block_mode_stream_processor(self, model: str, prompt_messages: list[PromptMessage],
|
||||
input_generator: Generator[LLMResultChunk, None, None]
|
||||
) -> Generator[LLMResultChunk, None, None]:
|
||||
"""
|
||||
@ -310,7 +310,7 @@ if you are not sure about the structure.
|
||||
)
|
||||
)
|
||||
|
||||
def _code_block_mode_stream_processor_with_backtick(self, model: str, prompt_messages: list,
|
||||
def _code_block_mode_stream_processor_with_backtick(self, model: str, prompt_messages: list,
|
||||
input_generator: Generator[LLMResultChunk, None, None]) \
|
||||
-> Generator[LLMResultChunk, None, None]:
|
||||
"""
|
||||
@ -470,7 +470,7 @@ if you are not sure about the structure.
|
||||
:return: full response or stream response chunk generator result
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@abstractmethod
|
||||
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
tools: Optional[list[PromptMessageTool]] = None) -> int:
|
||||
@ -792,6 +792,13 @@ if you are not sure about the structure.
|
||||
if not isinstance(parameter_value, str):
|
||||
raise ValueError(f"Model Parameter {parameter_name} should be string.")
|
||||
|
||||
# validate options
|
||||
if parameter_rule.options and parameter_value not in parameter_rule.options:
|
||||
raise ValueError(f"Model Parameter {parameter_name} should be one of {parameter_rule.options}.")
|
||||
elif parameter_rule.type == ParameterType.TEXT:
|
||||
if not isinstance(parameter_value, str):
|
||||
raise ValueError(f"Model Parameter {parameter_name} should be text.")
|
||||
|
||||
# validate options
|
||||
if parameter_rule.options and parameter_value not in parameter_rule.options:
|
||||
raise ValueError(f"Model Parameter {parameter_name} should be one of {parameter_rule.options}.")
|
||||
|
@ -70,7 +70,7 @@ class AzureOpenAIText2SpeechModel(_CommonAzureOpenAI, TTSModel):
|
||||
# doc: https://platform.openai.com/docs/guides/text-to-speech
|
||||
credentials_kwargs = self._to_credential_kwargs(credentials)
|
||||
client = AzureOpenAI(**credentials_kwargs)
|
||||
# max font is 4096,there is 3500 limit for each request
|
||||
# max length is 4096 characters, there is 3500 limit for each request
|
||||
max_length = 3500
|
||||
if len(content_text) > max_length:
|
||||
sentences = self._split_text_into_sentences(content_text, max_length=max_length)
|
||||
|
@ -6,7 +6,7 @@ from typing import Optional
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
|
||||
from core.helper.module_import_helper import load_single_subclass_from_source
|
||||
from core.helper.position_helper import get_position_map, sort_to_dict_by_position_map
|
||||
from core.helper.position_helper import get_provider_position_map, sort_to_dict_by_position_map
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.entities.provider_entities import ProviderConfig, ProviderEntity, SimpleProviderEntity
|
||||
from core.model_runtime.model_providers.__base.model_provider import ModelProvider
|
||||
@ -234,7 +234,7 @@ class ModelProviderFactory:
|
||||
]
|
||||
|
||||
# get _position.yaml file path
|
||||
position_map = get_position_map(model_providers_path)
|
||||
position_map = get_provider_position_map(model_providers_path)
|
||||
|
||||
# traverse all model_provider_dir_paths
|
||||
model_providers: list[ModelProviderExtension] = []
|
||||
|
@ -84,7 +84,8 @@ class MoonshotLargeLanguageModel(OAIAPICompatLargeLanguageModel):
|
||||
|
||||
def _add_custom_parameters(self, credentials: dict) -> None:
|
||||
credentials['mode'] = 'chat'
|
||||
credentials['endpoint_url'] = 'https://api.moonshot.cn/v1'
|
||||
if 'endpoint_url' not in credentials or credentials['endpoint_url'] == "":
|
||||
credentials['endpoint_url'] = 'https://api.moonshot.cn/v1'
|
||||
|
||||
def _add_function_call(self, model: str, credentials: dict) -> None:
|
||||
model_schema = self.get_model_schema(model, credentials)
|
||||
|
@ -31,6 +31,14 @@ provider_credential_schema:
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的 API Key
|
||||
en_US: Enter your API Key
|
||||
- variable: endpoint_url
|
||||
label:
|
||||
en_US: API Base
|
||||
type: text-input
|
||||
required: false
|
||||
placeholder:
|
||||
zh_Hans: Base URL, 如:https://api.moonshot.cn/v1
|
||||
en_US: Base URL, e.g. https://api.moonshot.cn/v1
|
||||
model_credential_schema:
|
||||
model:
|
||||
label:
|
||||
|
@ -2,6 +2,7 @@
|
||||
- gpt-4o
|
||||
- gpt-4o-2024-05-13
|
||||
- gpt-4o-2024-08-06
|
||||
- chatgpt-4o-latest
|
||||
- gpt-4o-mini
|
||||
- gpt-4o-mini-2024-07-18
|
||||
- gpt-4-turbo
|
||||
|
@ -0,0 +1,44 @@
|
||||
model: chatgpt-4o-latest
|
||||
label:
|
||||
zh_Hans: chatgpt-4o-latest
|
||||
en_US: chatgpt-4o-latest
|
||||
model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
- vision
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 128000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 512
|
||||
min: 1
|
||||
max: 16384
|
||||
- name: response_format
|
||||
label:
|
||||
zh_Hans: 回复格式
|
||||
en_US: response_format
|
||||
type: string
|
||||
help:
|
||||
zh_Hans: 指定模型必须输出的格式
|
||||
en_US: specifying the format that the model must output
|
||||
required: false
|
||||
options:
|
||||
- text
|
||||
- json_object
|
||||
pricing:
|
||||
input: '2.50'
|
||||
output: '10.00'
|
||||
unit: '0.000001'
|
||||
currency: USD
|
@ -37,6 +37,9 @@ parameter_rules:
|
||||
options:
|
||||
- text
|
||||
- json_object
|
||||
- json_schema
|
||||
- name: json_schema
|
||||
use_template: json_schema
|
||||
pricing:
|
||||
input: '2.50'
|
||||
output: '10.00'
|
||||
|
@ -37,6 +37,9 @@ parameter_rules:
|
||||
options:
|
||||
- text
|
||||
- json_object
|
||||
- json_schema
|
||||
- name: json_schema
|
||||
use_template: json_schema
|
||||
pricing:
|
||||
input: '0.15'
|
||||
output: '0.60'
|
||||
|
@ -1,3 +1,4 @@
|
||||
import json
|
||||
import logging
|
||||
from collections.abc import Generator
|
||||
from typing import Optional, Union, cast
|
||||
@ -544,13 +545,18 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
||||
|
||||
response_format = model_parameters.get("response_format")
|
||||
if response_format:
|
||||
if response_format == "json_object":
|
||||
response_format = {"type": "json_object"}
|
||||
if response_format == "json_schema":
|
||||
json_schema = model_parameters.get("json_schema")
|
||||
if not json_schema:
|
||||
raise ValueError("Must define JSON Schema when the response format is json_schema")
|
||||
try:
|
||||
schema = json.loads(json_schema)
|
||||
except:
|
||||
raise ValueError(f"not currect json_schema format: {json_schema}")
|
||||
model_parameters.pop("json_schema")
|
||||
model_parameters["response_format"] = {"type": "json_schema", "json_schema": schema}
|
||||
else:
|
||||
response_format = {"type": "text"}
|
||||
|
||||
model_parameters["response_format"] = response_format
|
||||
|
||||
model_parameters["response_format"] = {"type": response_format}
|
||||
|
||||
extra_model_kwargs = {}
|
||||
|
||||
@ -922,11 +928,14 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
||||
tools: Optional[list[PromptMessageTool]] = None) -> int:
|
||||
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
|
||||
|
||||
Official documentation: https://github.com/openai/openai-cookbook/blob/
|
||||
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
|
||||
Official documentation: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
|
||||
if model.startswith('ft:'):
|
||||
model = model.split(':')[1]
|
||||
|
||||
# Currently, we can use gpt4o to calculate chatgpt-4o-latest's token.
|
||||
if model == "chatgpt-4o-latest":
|
||||
model = "gpt-4o"
|
||||
|
||||
try:
|
||||
encoding = tiktoken.encoding_for_model(model)
|
||||
except KeyError:
|
||||
@ -946,7 +955,7 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
||||
raise NotImplementedError(
|
||||
f"get_num_tokens_from_messages() is not presently implemented "
|
||||
f"for model {model}."
|
||||
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
|
||||
"See https://platform.openai.com/docs/advanced-usage/managing-tokens for "
|
||||
"information on how messages are converted to tokens."
|
||||
)
|
||||
num_tokens = 0
|
||||
|
@ -0,0 +1,44 @@
|
||||
model: gpt-4o-2024-08-06
|
||||
label:
|
||||
zh_Hans: gpt-4o-2024-08-06
|
||||
en_US: gpt-4o-2024-08-06
|
||||
model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
- vision
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 128000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 512
|
||||
min: 1
|
||||
max: 16384
|
||||
- name: response_format
|
||||
label:
|
||||
zh_Hans: 回复格式
|
||||
en_US: response_format
|
||||
type: string
|
||||
help:
|
||||
zh_Hans: 指定模型必须输出的格式
|
||||
en_US: specifying the format that the model must output
|
||||
required: false
|
||||
options:
|
||||
- text
|
||||
- json_object
|
||||
pricing:
|
||||
input: '2.50'
|
||||
output: '10.00'
|
||||
unit: '0.000001'
|
||||
currency: USD
|
@ -0,0 +1,61 @@
|
||||
model: Llama3-Chinese_v2
|
||||
label:
|
||||
en_US: Llama3-Chinese_v2
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 8192
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
type: float
|
||||
default: 0.5
|
||||
min: 0.0
|
||||
max: 2.0
|
||||
help:
|
||||
zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。
|
||||
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
type: int
|
||||
default: 600
|
||||
min: 1
|
||||
max: 1248
|
||||
help:
|
||||
zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。
|
||||
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
type: float
|
||||
default: 0.8
|
||||
min: 0.1
|
||||
max: 0.9
|
||||
help:
|
||||
zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
|
||||
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
|
||||
- name: top_k
|
||||
type: int
|
||||
min: 0
|
||||
max: 99
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
help:
|
||||
zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。
|
||||
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
|
||||
- name: repetition_penalty
|
||||
required: false
|
||||
type: float
|
||||
default: 1.1
|
||||
label:
|
||||
en_US: Repetition penalty
|
||||
help:
|
||||
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
|
||||
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
|
||||
pricing:
|
||||
input: "0.000"
|
||||
output: "0.000"
|
||||
unit: "0.000"
|
||||
currency: RMB
|
@ -0,0 +1,61 @@
|
||||
model: Meta-Llama-3-70B-Instruct-GPTQ-Int4
|
||||
label:
|
||||
en_US: Meta-Llama-3-70B-Instruct-GPTQ-Int4
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 1024
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
type: float
|
||||
default: 0.5
|
||||
min: 0.0
|
||||
max: 2.0
|
||||
help:
|
||||
zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。
|
||||
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
type: int
|
||||
default: 600
|
||||
min: 1
|
||||
max: 1248
|
||||
help:
|
||||
zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。
|
||||
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
type: float
|
||||
default: 0.8
|
||||
min: 0.1
|
||||
max: 0.9
|
||||
help:
|
||||
zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
|
||||
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
|
||||
- name: top_k
|
||||
type: int
|
||||
min: 0
|
||||
max: 99
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
help:
|
||||
zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。
|
||||
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
|
||||
- name: repetition_penalty
|
||||
required: false
|
||||
type: float
|
||||
default: 1.1
|
||||
label:
|
||||
en_US: Repetition penalty
|
||||
help:
|
||||
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
|
||||
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
|
||||
pricing:
|
||||
input: "0.000"
|
||||
output: "0.000"
|
||||
unit: "0.000"
|
||||
currency: RMB
|
@ -0,0 +1,61 @@
|
||||
model: Meta-Llama-3-8B-Instruct
|
||||
label:
|
||||
en_US: Meta-Llama-3-8B-Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 8192
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
type: float
|
||||
default: 0.5
|
||||
min: 0.0
|
||||
max: 2.0
|
||||
help:
|
||||
zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。
|
||||
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
type: int
|
||||
default: 600
|
||||
min: 1
|
||||
max: 1248
|
||||
help:
|
||||
zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。
|
||||
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
type: float
|
||||
default: 0.8
|
||||
min: 0.1
|
||||
max: 0.9
|
||||
help:
|
||||
zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
|
||||
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
|
||||
- name: top_k
|
||||
type: int
|
||||
min: 0
|
||||
max: 99
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
help:
|
||||
zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。
|
||||
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
|
||||
- name: repetition_penalty
|
||||
required: false
|
||||
type: float
|
||||
default: 1.1
|
||||
label:
|
||||
en_US: Repetition penalty
|
||||
help:
|
||||
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
|
||||
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
|
||||
pricing:
|
||||
input: "0.000"
|
||||
output: "0.000"
|
||||
unit: "0.000"
|
||||
currency: RMB
|
@ -0,0 +1,61 @@
|
||||
model: Meta-Llama-3.1-405B-Instruct-AWQ-INT4
|
||||
label:
|
||||
en_US: Meta-Llama-3.1-405B-Instruct-AWQ-INT4
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 410960
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
type: float
|
||||
default: 0.5
|
||||
min: 0.0
|
||||
max: 2.0
|
||||
help:
|
||||
zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。
|
||||
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
type: int
|
||||
default: 600
|
||||
min: 1
|
||||
max: 1248
|
||||
help:
|
||||
zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。
|
||||
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
type: float
|
||||
default: 0.8
|
||||
min: 0.1
|
||||
max: 0.9
|
||||
help:
|
||||
zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
|
||||
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
|
||||
- name: top_k
|
||||
type: int
|
||||
min: 0
|
||||
max: 99
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
help:
|
||||
zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。
|
||||
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
|
||||
- name: repetition_penalty
|
||||
required: false
|
||||
type: float
|
||||
default: 1.1
|
||||
label:
|
||||
en_US: Repetition penalty
|
||||
help:
|
||||
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
|
||||
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
|
||||
pricing:
|
||||
input: "0.000"
|
||||
output: "0.000"
|
||||
unit: "0.000"
|
||||
currency: RMB
|
@ -0,0 +1,61 @@
|
||||
model: Meta-Llama-3.1-8B-Instruct
|
||||
label:
|
||||
en_US: Meta-Llama-3.1-8B-Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 4096
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
type: float
|
||||
default: 0.1
|
||||
min: 0.0
|
||||
max: 2.0
|
||||
help:
|
||||
zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。
|
||||
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
type: int
|
||||
default: 600
|
||||
min: 1
|
||||
max: 1248
|
||||
help:
|
||||
zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。
|
||||
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
type: float
|
||||
default: 0.8
|
||||
min: 0.1
|
||||
max: 0.9
|
||||
help:
|
||||
zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
|
||||
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
|
||||
- name: top_k
|
||||
type: int
|
||||
min: 0
|
||||
max: 99
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
help:
|
||||
zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。
|
||||
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
|
||||
- name: repetition_penalty
|
||||
required: false
|
||||
type: float
|
||||
default: 1.1
|
||||
label:
|
||||
en_US: Repetition penalty
|
||||
help:
|
||||
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
|
||||
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
|
||||
pricing:
|
||||
input: "0.000"
|
||||
output: "0.000"
|
||||
unit: "0.000"
|
||||
currency: RMB
|
@ -55,7 +55,8 @@ parameter_rules:
|
||||
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
|
||||
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
|
||||
pricing:
|
||||
input: '0.000'
|
||||
output: '0.000'
|
||||
unit: '0.000'
|
||||
input: "0.000"
|
||||
output: "0.000"
|
||||
unit: "0.000"
|
||||
currency: RMB
|
||||
deprecated: true
|
||||
|
@ -55,7 +55,8 @@ parameter_rules:
|
||||
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
|
||||
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
|
||||
pricing:
|
||||
input: '0.000'
|
||||
output: '0.000'
|
||||
unit: '0.000'
|
||||
input: "0.000"
|
||||
output: "0.000"
|
||||
unit: "0.000"
|
||||
currency: RMB
|
||||
deprecated: true
|
||||
|
@ -6,7 +6,7 @@ features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 8192
|
||||
context_size: 2048
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
@ -55,7 +55,7 @@ parameter_rules:
|
||||
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
|
||||
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
|
||||
pricing:
|
||||
input: '0.000'
|
||||
output: '0.000'
|
||||
unit: '0.000'
|
||||
input: "0.000"
|
||||
output: "0.000"
|
||||
unit: "0.000"
|
||||
currency: RMB
|
||||
|
@ -6,7 +6,7 @@ features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: completion
|
||||
context_size: 8192
|
||||
context_size: 32768
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
@ -55,7 +55,7 @@ parameter_rules:
|
||||
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
|
||||
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
|
||||
pricing:
|
||||
input: '0.000'
|
||||
output: '0.000'
|
||||
unit: '0.000'
|
||||
input: "0.000"
|
||||
output: "0.000"
|
||||
unit: "0.000"
|
||||
currency: RMB
|
||||
|
@ -8,12 +8,12 @@ features:
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 8192
|
||||
context_size: 2048
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
type: float
|
||||
default: 0.3
|
||||
default: 0.7
|
||||
min: 0.0
|
||||
max: 2.0
|
||||
help:
|
||||
@ -57,7 +57,7 @@ parameter_rules:
|
||||
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
|
||||
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
|
||||
pricing:
|
||||
input: '0.000'
|
||||
output: '0.000'
|
||||
unit: '0.000'
|
||||
input: "0.000"
|
||||
output: "0.000"
|
||||
unit: "0.000"
|
||||
currency: RMB
|
||||
|
@ -0,0 +1,61 @@
|
||||
model: Qwen2-72B-Instruct
|
||||
label:
|
||||
en_US: Qwen2-72B-Instruct
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 131072
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
type: float
|
||||
default: 0.5
|
||||
min: 0.0
|
||||
max: 2.0
|
||||
help:
|
||||
zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。
|
||||
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
type: int
|
||||
default: 600
|
||||
min: 1
|
||||
max: 1248
|
||||
help:
|
||||
zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。
|
||||
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
type: float
|
||||
default: 0.8
|
||||
min: 0.1
|
||||
max: 0.9
|
||||
help:
|
||||
zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
|
||||
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
|
||||
- name: top_k
|
||||
type: int
|
||||
min: 0
|
||||
max: 99
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
help:
|
||||
zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。
|
||||
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
|
||||
- name: repetition_penalty
|
||||
required: false
|
||||
type: float
|
||||
default: 1.1
|
||||
label:
|
||||
en_US: Repetition penalty
|
||||
help:
|
||||
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
|
||||
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
|
||||
pricing:
|
||||
input: "0.000"
|
||||
output: "0.000"
|
||||
unit: "0.000"
|
||||
currency: RMB
|
@ -8,7 +8,7 @@ features:
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: completion
|
||||
context_size: 8192
|
||||
context_size: 32768
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
@ -57,7 +57,7 @@ parameter_rules:
|
||||
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
|
||||
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
|
||||
pricing:
|
||||
input: '0.000'
|
||||
output: '0.000'
|
||||
unit: '0.000'
|
||||
input: "0.000"
|
||||
output: "0.000"
|
||||
unit: "0.000"
|
||||
currency: RMB
|
||||
|
@ -1,6 +1,15 @@
|
||||
- Meta-Llama-3.1-405B-Instruct-AWQ-INT4
|
||||
- Meta-Llama-3.1-8B-Instruct
|
||||
- Meta-Llama-3-70B-Instruct-GPTQ-Int4
|
||||
- Meta-Llama-3-8B-Instruct
|
||||
- Qwen2-72B-Instruct-GPTQ-Int4
|
||||
- Qwen2-72B-Instruct
|
||||
- Qwen2-7B
|
||||
- Qwen1.5-110B-Chat-GPTQ-Int4
|
||||
- Qwen-14B-Chat-Int4
|
||||
- Qwen1.5-72B-Chat-GPTQ-Int4
|
||||
- Qwen1.5-7B
|
||||
- Qwen-14B-Chat-Int4
|
||||
- Qwen1.5-110B-Chat-GPTQ-Int4
|
||||
- deepseek-v2-chat
|
||||
- deepseek-v2-lite-chat
|
||||
- Llama3-Chinese_v2
|
||||
- chatglm3-6b
|
||||
|
@ -0,0 +1,61 @@
|
||||
model: chatglm3-6b
|
||||
label:
|
||||
en_US: chatglm3-6b
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 8192
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
type: float
|
||||
default: 0.5
|
||||
min: 0.0
|
||||
max: 2.0
|
||||
help:
|
||||
zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。
|
||||
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
type: int
|
||||
default: 600
|
||||
min: 1
|
||||
max: 1248
|
||||
help:
|
||||
zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。
|
||||
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
type: float
|
||||
default: 0.8
|
||||
min: 0.1
|
||||
max: 0.9
|
||||
help:
|
||||
zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
|
||||
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
|
||||
- name: top_k
|
||||
type: int
|
||||
min: 0
|
||||
max: 99
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
help:
|
||||
zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。
|
||||
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
|
||||
- name: repetition_penalty
|
||||
required: false
|
||||
type: float
|
||||
default: 1.1
|
||||
label:
|
||||
en_US: Repetition penalty
|
||||
help:
|
||||
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
|
||||
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
|
||||
pricing:
|
||||
input: "0.000"
|
||||
output: "0.000"
|
||||
unit: "0.000"
|
||||
currency: RMB
|
@ -0,0 +1,61 @@
|
||||
model: deepseek-v2-chat
|
||||
label:
|
||||
en_US: deepseek-v2-chat
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 4096
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
type: float
|
||||
default: 0.5
|
||||
min: 0.0
|
||||
max: 2.0
|
||||
help:
|
||||
zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。
|
||||
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
type: int
|
||||
default: 600
|
||||
min: 1
|
||||
max: 1248
|
||||
help:
|
||||
zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。
|
||||
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
type: float
|
||||
default: 0.8
|
||||
min: 0.1
|
||||
max: 0.9
|
||||
help:
|
||||
zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
|
||||
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
|
||||
- name: top_k
|
||||
type: int
|
||||
min: 0
|
||||
max: 99
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
help:
|
||||
zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。
|
||||
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
|
||||
- name: repetition_penalty
|
||||
required: false
|
||||
type: float
|
||||
default: 1.1
|
||||
label:
|
||||
en_US: Repetition penalty
|
||||
help:
|
||||
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
|
||||
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
|
||||
pricing:
|
||||
input: "0.000"
|
||||
output: "0.000"
|
||||
unit: "0.000"
|
||||
currency: RMB
|
@ -0,0 +1,61 @@
|
||||
model: deepseek-v2-lite-chat
|
||||
label:
|
||||
en_US: deepseek-v2-lite-chat
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 2048
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
type: float
|
||||
default: 0.5
|
||||
min: 0.0
|
||||
max: 2.0
|
||||
help:
|
||||
zh_Hans: 用于控制随机性和多样性的程度。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。
|
||||
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
type: int
|
||||
default: 600
|
||||
min: 1
|
||||
max: 1248
|
||||
help:
|
||||
zh_Hans: 用于指定模型在生成内容时token的最大数量,它定义了生成的上限,但不保证每次都会生成到这个数量。
|
||||
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
type: float
|
||||
default: 0.8
|
||||
min: 0.1
|
||||
max: 0.9
|
||||
help:
|
||||
zh_Hans: 生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
|
||||
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
|
||||
- name: top_k
|
||||
type: int
|
||||
min: 0
|
||||
max: 99
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
help:
|
||||
zh_Hans: 生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。
|
||||
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
|
||||
- name: repetition_penalty
|
||||
required: false
|
||||
type: float
|
||||
default: 1.1
|
||||
label:
|
||||
en_US: Repetition penalty
|
||||
help:
|
||||
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
|
||||
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
|
||||
pricing:
|
||||
input: "0.000"
|
||||
output: "0.000"
|
||||
unit: "0.000"
|
||||
currency: RMB
|
@ -0,0 +1,4 @@
|
||||
model: BAAI/bge-large-en-v1.5
|
||||
model_type: text-embedding
|
||||
model_properties:
|
||||
context_size: 32768
|
@ -0,0 +1,4 @@
|
||||
model: BAAI/bge-large-zh-v1.5
|
||||
model_type: text-embedding
|
||||
model_properties:
|
||||
context_size: 32768
|
@ -0,0 +1,4 @@
|
||||
model: netease-youdao/bce-reranker-base_v1
|
||||
model_type: rerank
|
||||
model_properties:
|
||||
context_size: 512
|
@ -0,0 +1,4 @@
|
||||
model: BAAI/bge-reranker-v2-m3
|
||||
model_type: rerank
|
||||
model_properties:
|
||||
context_size: 8192
|
@ -0,0 +1,87 @@
|
||||
from typing import Optional
|
||||
|
||||
import httpx
|
||||
|
||||
from core.model_runtime.entities.rerank_entities import RerankDocument, RerankResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
InvokeAuthorizationError,
|
||||
InvokeBadRequestError,
|
||||
InvokeConnectionError,
|
||||
InvokeError,
|
||||
InvokeRateLimitError,
|
||||
InvokeServerUnavailableError,
|
||||
)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
|
||||
|
||||
|
||||
class SiliconflowRerankModel(RerankModel):
|
||||
|
||||
def _invoke(self, model: str, credentials: dict, query: str, docs: list[str],
|
||||
score_threshold: Optional[float] = None, top_n: Optional[int] = None,
|
||||
user: Optional[str] = None) -> RerankResult:
|
||||
if len(docs) == 0:
|
||||
return RerankResult(model=model, docs=[])
|
||||
|
||||
base_url = credentials.get('base_url', 'https://api.siliconflow.cn/v1')
|
||||
if base_url.endswith('/'):
|
||||
base_url = base_url[:-1]
|
||||
try:
|
||||
response = httpx.post(
|
||||
base_url + '/rerank',
|
||||
json={
|
||||
"model": model,
|
||||
"query": query,
|
||||
"documents": docs,
|
||||
"top_n": top_n,
|
||||
"return_documents": True
|
||||
},
|
||||
headers={"Authorization": f"Bearer {credentials.get('api_key')}"}
|
||||
)
|
||||
response.raise_for_status()
|
||||
results = response.json()
|
||||
|
||||
rerank_documents = []
|
||||
for result in results['results']:
|
||||
rerank_document = RerankDocument(
|
||||
index=result['index'],
|
||||
text=result['document']['text'],
|
||||
score=result['relevance_score'],
|
||||
)
|
||||
if score_threshold is None or result['relevance_score'] >= score_threshold:
|
||||
rerank_documents.append(rerank_document)
|
||||
|
||||
return RerankResult(model=model, docs=rerank_documents)
|
||||
except httpx.HTTPStatusError as e:
|
||||
raise InvokeServerUnavailableError(str(e))
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
try:
|
||||
|
||||
self._invoke(
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
query="What is the capital of the United States?",
|
||||
docs=[
|
||||
"Carson City is the capital city of the American state of Nevada. At the 2010 United States "
|
||||
"Census, Carson City had a population of 55,274.",
|
||||
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean that "
|
||||
"are a political division controlled by the United States. Its capital is Saipan.",
|
||||
],
|
||||
score_threshold=0.8
|
||||
)
|
||||
except Exception as ex:
|
||||
raise CredentialsValidateFailedError(str(ex))
|
||||
|
||||
@property
|
||||
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
|
||||
"""
|
||||
Map model invoke error to unified error
|
||||
"""
|
||||
return {
|
||||
InvokeConnectionError: [httpx.ConnectError],
|
||||
InvokeServerUnavailableError: [httpx.RemoteProtocolError],
|
||||
InvokeRateLimitError: [],
|
||||
InvokeAuthorizationError: [httpx.HTTPStatusError],
|
||||
InvokeBadRequestError: [httpx.RequestError]
|
||||
}
|
@ -12,10 +12,11 @@ help:
|
||||
en_US: Get your API Key from SiliconFlow
|
||||
zh_Hans: 从 SiliconFlow 获取 API Key
|
||||
url:
|
||||
en_US: https://cloud.siliconflow.cn/keys
|
||||
en_US: https://cloud.siliconflow.cn/account/ak
|
||||
supported_model_types:
|
||||
- llm
|
||||
- text-embedding
|
||||
- rerank
|
||||
- speech2text
|
||||
configurate_methods:
|
||||
- predefined-model
|
||||
|
@ -159,6 +159,8 @@ You should also complete the text started with ``` but not tell ``` directly.
|
||||
"""
|
||||
if model in ['qwen-turbo-chat', 'qwen-plus-chat']:
|
||||
model = model.replace('-chat', '')
|
||||
if model == 'farui-plus':
|
||||
model = 'qwen-farui-plus'
|
||||
|
||||
if model in self.tokenizers:
|
||||
tokenizer = self.tokenizers[model]
|
||||
|
@ -35,7 +35,10 @@ from core.model_runtime.model_providers.volcengine_maas.errors import (
|
||||
RateLimitErrors,
|
||||
ServerUnavailableErrors,
|
||||
)
|
||||
from core.model_runtime.model_providers.volcengine_maas.llm.models import ModelConfigs
|
||||
from core.model_runtime.model_providers.volcengine_maas.llm.models import (
|
||||
get_model_config,
|
||||
get_v2_req_params,
|
||||
)
|
||||
from core.model_runtime.model_providers.volcengine_maas.volc_sdk import MaasException
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -95,37 +98,12 @@ class VolcengineMaaSLargeLanguageModel(LargeLanguageModel):
|
||||
-> LLMResult | Generator:
|
||||
|
||||
client = MaaSClient.from_credential(credentials)
|
||||
|
||||
req_params = ModelConfigs.get(
|
||||
credentials['base_model_name'], {}).get('req_params', {}).copy()
|
||||
if credentials.get('context_size'):
|
||||
req_params['max_prompt_tokens'] = credentials.get('context_size')
|
||||
if credentials.get('max_tokens'):
|
||||
req_params['max_new_tokens'] = credentials.get('max_tokens')
|
||||
if model_parameters.get('max_tokens'):
|
||||
req_params['max_new_tokens'] = model_parameters.get('max_tokens')
|
||||
if model_parameters.get('temperature'):
|
||||
req_params['temperature'] = model_parameters.get('temperature')
|
||||
if model_parameters.get('top_p'):
|
||||
req_params['top_p'] = model_parameters.get('top_p')
|
||||
if model_parameters.get('top_k'):
|
||||
req_params['top_k'] = model_parameters.get('top_k')
|
||||
if model_parameters.get('presence_penalty'):
|
||||
req_params['presence_penalty'] = model_parameters.get(
|
||||
'presence_penalty')
|
||||
if model_parameters.get('frequency_penalty'):
|
||||
req_params['frequency_penalty'] = model_parameters.get(
|
||||
'frequency_penalty')
|
||||
if stop:
|
||||
req_params['stop'] = stop
|
||||
|
||||
req_params = get_v2_req_params(credentials, model_parameters, stop)
|
||||
extra_model_kwargs = {}
|
||||
|
||||
if tools:
|
||||
extra_model_kwargs['tools'] = [
|
||||
MaaSClient.transform_tool_prompt_to_maas_config(tool) for tool in tools
|
||||
]
|
||||
|
||||
resp = MaaSClient.wrap_exception(
|
||||
lambda: client.chat(req_params, prompt_messages, stream, **extra_model_kwargs))
|
||||
if not stream:
|
||||
@ -197,10 +175,8 @@ class VolcengineMaaSLargeLanguageModel(LargeLanguageModel):
|
||||
"""
|
||||
used to define customizable model schema
|
||||
"""
|
||||
max_tokens = ModelConfigs.get(
|
||||
credentials['base_model_name'], {}).get('req_params', {}).get('max_new_tokens')
|
||||
if credentials.get('max_tokens'):
|
||||
max_tokens = int(credentials.get('max_tokens'))
|
||||
model_config = get_model_config(credentials)
|
||||
|
||||
rules = [
|
||||
ParameterRule(
|
||||
name='temperature',
|
||||
@ -234,10 +210,10 @@ class VolcengineMaaSLargeLanguageModel(LargeLanguageModel):
|
||||
name='presence_penalty',
|
||||
type=ParameterType.FLOAT,
|
||||
use_template='presence_penalty',
|
||||
label={
|
||||
'en_US': 'Presence Penalty',
|
||||
'zh_Hans': '存在惩罚',
|
||||
},
|
||||
label=I18nObject(
|
||||
en_US='Presence Penalty',
|
||||
zh_Hans= '存在惩罚',
|
||||
),
|
||||
min=-2.0,
|
||||
max=2.0,
|
||||
),
|
||||
@ -245,10 +221,10 @@ class VolcengineMaaSLargeLanguageModel(LargeLanguageModel):
|
||||
name='frequency_penalty',
|
||||
type=ParameterType.FLOAT,
|
||||
use_template='frequency_penalty',
|
||||
label={
|
||||
'en_US': 'Frequency Penalty',
|
||||
'zh_Hans': '频率惩罚',
|
||||
},
|
||||
label=I18nObject(
|
||||
en_US= 'Frequency Penalty',
|
||||
zh_Hans= '频率惩罚',
|
||||
),
|
||||
min=-2.0,
|
||||
max=2.0,
|
||||
),
|
||||
@ -257,7 +233,7 @@ class VolcengineMaaSLargeLanguageModel(LargeLanguageModel):
|
||||
type=ParameterType.INT,
|
||||
use_template='max_tokens',
|
||||
min=1,
|
||||
max=max_tokens,
|
||||
max=model_config.properties.max_tokens,
|
||||
default=512,
|
||||
label=I18nObject(
|
||||
zh_Hans='最大生成长度',
|
||||
@ -266,17 +242,10 @@ class VolcengineMaaSLargeLanguageModel(LargeLanguageModel):
|
||||
),
|
||||
]
|
||||
|
||||
model_properties = ModelConfigs.get(
|
||||
credentials['base_model_name'], {}).get('model_properties', {}).copy()
|
||||
if credentials.get('mode'):
|
||||
model_properties[ModelPropertyKey.MODE] = credentials.get('mode')
|
||||
if credentials.get('context_size'):
|
||||
model_properties[ModelPropertyKey.CONTEXT_SIZE] = int(
|
||||
credentials.get('context_size', 4096))
|
||||
|
||||
model_features = ModelConfigs.get(
|
||||
credentials['base_model_name'], {}).get('features', [])
|
||||
|
||||
model_properties = {}
|
||||
model_properties[ModelPropertyKey.CONTEXT_SIZE] = model_config.properties.context_size
|
||||
model_properties[ModelPropertyKey.MODE] = model_config.properties.mode.value
|
||||
|
||||
entity = AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(
|
||||
@ -286,7 +255,7 @@ class VolcengineMaaSLargeLanguageModel(LargeLanguageModel):
|
||||
model_type=ModelType.LLM,
|
||||
model_properties=model_properties,
|
||||
parameter_rules=rules,
|
||||
features=model_features,
|
||||
features=model_config.features,
|
||||
)
|
||||
|
||||
return entity
|
||||
|
@ -1,181 +1,123 @@
|
||||
from pydantic import BaseModel
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMMode
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
|
||||
ModelConfigs = {
|
||||
'Doubao-pro-4k': {
|
||||
'req_params': {
|
||||
'max_prompt_tokens': 4096,
|
||||
'max_new_tokens': 4096,
|
||||
},
|
||||
'model_properties': {
|
||||
'context_size': 4096,
|
||||
'mode': 'chat',
|
||||
},
|
||||
'features': [
|
||||
ModelFeature.TOOL_CALL
|
||||
],
|
||||
},
|
||||
'Doubao-lite-4k': {
|
||||
'req_params': {
|
||||
'max_prompt_tokens': 4096,
|
||||
'max_new_tokens': 4096,
|
||||
},
|
||||
'model_properties': {
|
||||
'context_size': 4096,
|
||||
'mode': 'chat',
|
||||
},
|
||||
'features': [
|
||||
ModelFeature.TOOL_CALL
|
||||
],
|
||||
},
|
||||
'Doubao-pro-32k': {
|
||||
'req_params': {
|
||||
'max_prompt_tokens': 32768,
|
||||
'max_new_tokens': 32768,
|
||||
},
|
||||
'model_properties': {
|
||||
'context_size': 32768,
|
||||
'mode': 'chat',
|
||||
},
|
||||
'features': [
|
||||
ModelFeature.TOOL_CALL
|
||||
],
|
||||
},
|
||||
'Doubao-lite-32k': {
|
||||
'req_params': {
|
||||
'max_prompt_tokens': 32768,
|
||||
'max_new_tokens': 32768,
|
||||
},
|
||||
'model_properties': {
|
||||
'context_size': 32768,
|
||||
'mode': 'chat',
|
||||
},
|
||||
'features': [
|
||||
ModelFeature.TOOL_CALL
|
||||
],
|
||||
},
|
||||
'Doubao-pro-128k': {
|
||||
'req_params': {
|
||||
'max_prompt_tokens': 131072,
|
||||
'max_new_tokens': 131072,
|
||||
},
|
||||
'model_properties': {
|
||||
'context_size': 131072,
|
||||
'mode': 'chat',
|
||||
},
|
||||
'features': [
|
||||
ModelFeature.TOOL_CALL
|
||||
],
|
||||
},
|
||||
'Doubao-lite-128k': {
|
||||
'req_params': {
|
||||
'max_prompt_tokens': 131072,
|
||||
'max_new_tokens': 131072,
|
||||
},
|
||||
'model_properties': {
|
||||
'context_size': 131072,
|
||||
'mode': 'chat',
|
||||
},
|
||||
'features': [
|
||||
ModelFeature.TOOL_CALL
|
||||
],
|
||||
},
|
||||
'Skylark2-pro-4k': {
|
||||
'req_params': {
|
||||
'max_prompt_tokens': 4096,
|
||||
'max_new_tokens': 4000,
|
||||
},
|
||||
'model_properties': {
|
||||
'context_size': 4096,
|
||||
'mode': 'chat',
|
||||
},
|
||||
'features': [],
|
||||
},
|
||||
'Llama3-8B': {
|
||||
'req_params': {
|
||||
'max_prompt_tokens': 8192,
|
||||
'max_new_tokens': 8192,
|
||||
},
|
||||
'model_properties': {
|
||||
'context_size': 8192,
|
||||
'mode': 'chat',
|
||||
},
|
||||
'features': [],
|
||||
},
|
||||
'Llama3-70B': {
|
||||
'req_params': {
|
||||
'max_prompt_tokens': 8192,
|
||||
'max_new_tokens': 8192,
|
||||
},
|
||||
'model_properties': {
|
||||
'context_size': 8192,
|
||||
'mode': 'chat',
|
||||
},
|
||||
'features': [],
|
||||
},
|
||||
'Moonshot-v1-8k': {
|
||||
'req_params': {
|
||||
'max_prompt_tokens': 8192,
|
||||
'max_new_tokens': 4096,
|
||||
},
|
||||
'model_properties': {
|
||||
'context_size': 8192,
|
||||
'mode': 'chat',
|
||||
},
|
||||
'features': [],
|
||||
},
|
||||
'Moonshot-v1-32k': {
|
||||
'req_params': {
|
||||
'max_prompt_tokens': 32768,
|
||||
'max_new_tokens': 16384,
|
||||
},
|
||||
'model_properties': {
|
||||
'context_size': 32768,
|
||||
'mode': 'chat',
|
||||
},
|
||||
'features': [],
|
||||
},
|
||||
'Moonshot-v1-128k': {
|
||||
'req_params': {
|
||||
'max_prompt_tokens': 131072,
|
||||
'max_new_tokens': 65536,
|
||||
},
|
||||
'model_properties': {
|
||||
'context_size': 131072,
|
||||
'mode': 'chat',
|
||||
},
|
||||
'features': [],
|
||||
},
|
||||
'GLM3-130B': {
|
||||
'req_params': {
|
||||
'max_prompt_tokens': 8192,
|
||||
'max_new_tokens': 4096,
|
||||
},
|
||||
'model_properties': {
|
||||
'context_size': 8192,
|
||||
'mode': 'chat',
|
||||
},
|
||||
'features': [],
|
||||
},
|
||||
'GLM3-130B-Fin': {
|
||||
'req_params': {
|
||||
'max_prompt_tokens': 8192,
|
||||
'max_new_tokens': 4096,
|
||||
},
|
||||
'model_properties': {
|
||||
'context_size': 8192,
|
||||
'mode': 'chat',
|
||||
},
|
||||
'features': [],
|
||||
},
|
||||
'Mistral-7B': {
|
||||
'req_params': {
|
||||
'max_prompt_tokens': 8192,
|
||||
'max_new_tokens': 2048,
|
||||
},
|
||||
'model_properties': {
|
||||
'context_size': 8192,
|
||||
'mode': 'chat',
|
||||
},
|
||||
'features': [],
|
||||
}
|
||||
|
||||
class ModelProperties(BaseModel):
|
||||
context_size: int
|
||||
max_tokens: int
|
||||
mode: LLMMode
|
||||
|
||||
class ModelConfig(BaseModel):
|
||||
properties: ModelProperties
|
||||
features: list[ModelFeature]
|
||||
|
||||
|
||||
configs: dict[str, ModelConfig] = {
|
||||
'Doubao-pro-4k': ModelConfig(
|
||||
properties=ModelProperties(context_size=4096, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.TOOL_CALL]
|
||||
),
|
||||
'Doubao-lite-4k': ModelConfig(
|
||||
properties=ModelProperties(context_size=4096, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.TOOL_CALL]
|
||||
),
|
||||
'Doubao-pro-32k': ModelConfig(
|
||||
properties=ModelProperties(context_size=32768, max_tokens=32768, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.TOOL_CALL]
|
||||
),
|
||||
'Doubao-lite-32k': ModelConfig(
|
||||
properties=ModelProperties(context_size=32768, max_tokens=32768, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.TOOL_CALL]
|
||||
),
|
||||
'Doubao-pro-128k': ModelConfig(
|
||||
properties=ModelProperties(context_size=131072, max_tokens=131072, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.TOOL_CALL]
|
||||
),
|
||||
'Doubao-lite-128k': ModelConfig(
|
||||
properties=ModelProperties(context_size=131072, max_tokens=131072, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.TOOL_CALL]
|
||||
),
|
||||
'Skylark2-pro-4k': ModelConfig(
|
||||
properties=ModelProperties(context_size=4096, max_tokens=4000, mode=LLMMode.CHAT),
|
||||
features=[]
|
||||
),
|
||||
'Llama3-8B': ModelConfig(
|
||||
properties=ModelProperties(context_size=8192, max_tokens=8192, mode=LLMMode.CHAT),
|
||||
features=[]
|
||||
),
|
||||
'Llama3-70B': ModelConfig(
|
||||
properties=ModelProperties(context_size=8192, max_tokens=8192, mode=LLMMode.CHAT),
|
||||
features=[]
|
||||
),
|
||||
'Moonshot-v1-8k': ModelConfig(
|
||||
properties=ModelProperties(context_size=8192, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[]
|
||||
),
|
||||
'Moonshot-v1-32k': ModelConfig(
|
||||
properties=ModelProperties(context_size=32768, max_tokens=16384, mode=LLMMode.CHAT),
|
||||
features=[]
|
||||
),
|
||||
'Moonshot-v1-128k': ModelConfig(
|
||||
properties=ModelProperties(context_size=131072, max_tokens=65536, mode=LLMMode.CHAT),
|
||||
features=[]
|
||||
),
|
||||
'GLM3-130B': ModelConfig(
|
||||
properties=ModelProperties(context_size=8192, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[]
|
||||
),
|
||||
'GLM3-130B-Fin': ModelConfig(
|
||||
properties=ModelProperties(context_size=8192, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[]
|
||||
),
|
||||
'Mistral-7B': ModelConfig(
|
||||
properties=ModelProperties(context_size=8192, max_tokens=2048, mode=LLMMode.CHAT),
|
||||
features=[]
|
||||
)
|
||||
}
|
||||
|
||||
def get_model_config(credentials: dict)->ModelConfig:
|
||||
base_model = credentials.get('base_model_name', '')
|
||||
model_configs = configs.get(base_model)
|
||||
if not model_configs:
|
||||
return ModelConfig(
|
||||
properties=ModelProperties(
|
||||
context_size=int(credentials.get('context_size', 0)),
|
||||
max_tokens=int(credentials.get('max_tokens', 0)),
|
||||
mode= LLMMode.value_of(credentials.get('mode', 'chat')),
|
||||
),
|
||||
features=[]
|
||||
)
|
||||
return model_configs
|
||||
|
||||
|
||||
def get_v2_req_params(credentials: dict, model_parameters: dict,
|
||||
stop: list[str] | None=None):
|
||||
req_params = {}
|
||||
# predefined properties
|
||||
model_configs = get_model_config(credentials)
|
||||
if model_configs:
|
||||
req_params['max_prompt_tokens'] = model_configs.properties.context_size
|
||||
req_params['max_new_tokens'] = model_configs.properties.max_tokens
|
||||
|
||||
# model parameters
|
||||
if model_parameters.get('max_tokens'):
|
||||
req_params['max_new_tokens'] = model_parameters.get('max_tokens')
|
||||
if model_parameters.get('temperature'):
|
||||
req_params['temperature'] = model_parameters.get('temperature')
|
||||
if model_parameters.get('top_p'):
|
||||
req_params['top_p'] = model_parameters.get('top_p')
|
||||
if model_parameters.get('top_k'):
|
||||
req_params['top_k'] = model_parameters.get('top_k')
|
||||
if model_parameters.get('presence_penalty'):
|
||||
req_params['presence_penalty'] = model_parameters.get(
|
||||
'presence_penalty')
|
||||
if model_parameters.get('frequency_penalty'):
|
||||
req_params['frequency_penalty'] = model_parameters.get(
|
||||
'frequency_penalty')
|
||||
|
||||
if stop:
|
||||
req_params['stop'] = stop
|
||||
|
||||
return req_params
|
@ -1,9 +1,27 @@
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ModelProperties(BaseModel):
|
||||
context_size: int
|
||||
max_chunks: int
|
||||
|
||||
class ModelConfig(BaseModel):
|
||||
properties: ModelProperties
|
||||
|
||||
ModelConfigs = {
|
||||
'Doubao-embedding': {
|
||||
'req_params': {},
|
||||
'model_properties': {
|
||||
'context_size': 4096,
|
||||
'max_chunks': 1,
|
||||
}
|
||||
},
|
||||
'Doubao-embedding': ModelConfig(
|
||||
properties=ModelProperties(context_size=4096, max_chunks=1)
|
||||
),
|
||||
}
|
||||
|
||||
def get_model_config(credentials: dict)->ModelConfig:
|
||||
base_model = credentials.get('base_model_name', '')
|
||||
model_configs = ModelConfigs.get(base_model)
|
||||
if not model_configs:
|
||||
return ModelConfig(
|
||||
properties=ModelProperties(
|
||||
context_size=int(credentials.get('context_size', 0)),
|
||||
max_chunks=int(credentials.get('max_chunks', 0)),
|
||||
)
|
||||
)
|
||||
return model_configs
|
@ -30,7 +30,7 @@ from core.model_runtime.model_providers.volcengine_maas.errors import (
|
||||
RateLimitErrors,
|
||||
ServerUnavailableErrors,
|
||||
)
|
||||
from core.model_runtime.model_providers.volcengine_maas.text_embedding.models import ModelConfigs
|
||||
from core.model_runtime.model_providers.volcengine_maas.text_embedding.models import get_model_config
|
||||
from core.model_runtime.model_providers.volcengine_maas.volc_sdk import MaasException
|
||||
|
||||
|
||||
@ -115,14 +115,10 @@ class VolcengineMaaSTextEmbeddingModel(TextEmbeddingModel):
|
||||
"""
|
||||
generate custom model entities from credentials
|
||||
"""
|
||||
model_properties = ModelConfigs.get(
|
||||
credentials['base_model_name'], {}).get('model_properties', {}).copy()
|
||||
if credentials.get('context_size'):
|
||||
model_properties[ModelPropertyKey.CONTEXT_SIZE] = int(
|
||||
credentials.get('context_size', 4096))
|
||||
if credentials.get('max_chunks'):
|
||||
model_properties[ModelPropertyKey.MAX_CHUNKS] = int(
|
||||
credentials.get('max_chunks', 4096))
|
||||
model_config = get_model_config(credentials)
|
||||
model_properties = {}
|
||||
model_properties[ModelPropertyKey.CONTEXT_SIZE] = model_config.properties.context_size
|
||||
model_properties[ModelPropertyKey.MAX_CHUNKS] = model_config.properties.max_chunks
|
||||
entity = AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(en_US=model),
|
||||
|
198
api/core/model_runtime/model_providers/wenxin/_common.py
Normal file
198
api/core/model_runtime/model_providers/wenxin/_common.py
Normal file
@ -0,0 +1,198 @@
|
||||
from datetime import datetime, timedelta
|
||||
from threading import Lock
|
||||
|
||||
from requests import post
|
||||
|
||||
from core.model_runtime.model_providers.wenxin.wenxin_errors import (
|
||||
BadRequestError,
|
||||
InternalServerError,
|
||||
InvalidAPIKeyError,
|
||||
InvalidAuthenticationError,
|
||||
RateLimitReachedError,
|
||||
)
|
||||
|
||||
baidu_access_tokens: dict[str, 'BaiduAccessToken'] = {}
|
||||
baidu_access_tokens_lock = Lock()
|
||||
|
||||
|
||||
class BaiduAccessToken:
|
||||
api_key: str
|
||||
access_token: str
|
||||
expires: datetime
|
||||
|
||||
def __init__(self, api_key: str) -> None:
|
||||
self.api_key = api_key
|
||||
self.access_token = ''
|
||||
self.expires = datetime.now() + timedelta(days=3)
|
||||
|
||||
@staticmethod
|
||||
def _get_access_token(api_key: str, secret_key: str) -> str:
|
||||
"""
|
||||
request access token from Baidu
|
||||
"""
|
||||
try:
|
||||
response = post(
|
||||
url=f'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id={api_key}&client_secret={secret_key}',
|
||||
headers={
|
||||
'Content-Type': 'application/json',
|
||||
'Accept': 'application/json'
|
||||
},
|
||||
)
|
||||
except Exception as e:
|
||||
raise InvalidAuthenticationError(f'Failed to get access token from Baidu: {e}')
|
||||
|
||||
resp = response.json()
|
||||
if 'error' in resp:
|
||||
if resp['error'] == 'invalid_client':
|
||||
raise InvalidAPIKeyError(f'Invalid API key or secret key: {resp["error_description"]}')
|
||||
elif resp['error'] == 'unknown_error':
|
||||
raise InternalServerError(f'Internal server error: {resp["error_description"]}')
|
||||
elif resp['error'] == 'invalid_request':
|
||||
raise BadRequestError(f'Bad request: {resp["error_description"]}')
|
||||
elif resp['error'] == 'rate_limit_exceeded':
|
||||
raise RateLimitReachedError(f'Rate limit reached: {resp["error_description"]}')
|
||||
else:
|
||||
raise Exception(f'Unknown error: {resp["error_description"]}')
|
||||
|
||||
return resp['access_token']
|
||||
|
||||
@staticmethod
|
||||
def get_access_token(api_key: str, secret_key: str) -> 'BaiduAccessToken':
|
||||
"""
|
||||
LLM from Baidu requires access token to invoke the API.
|
||||
however, we have api_key and secret_key, and access token is valid for 30 days.
|
||||
so we can cache the access token for 3 days. (avoid memory leak)
|
||||
|
||||
it may be more efficient to use a ticker to refresh access token, but it will cause
|
||||
more complexity, so we just refresh access tokens when get_access_token is called.
|
||||
"""
|
||||
|
||||
# loop up cache, remove expired access token
|
||||
baidu_access_tokens_lock.acquire()
|
||||
now = datetime.now()
|
||||
for key in list(baidu_access_tokens.keys()):
|
||||
token = baidu_access_tokens[key]
|
||||
if token.expires < now:
|
||||
baidu_access_tokens.pop(key)
|
||||
|
||||
if api_key not in baidu_access_tokens:
|
||||
# if access token not in cache, request it
|
||||
token = BaiduAccessToken(api_key)
|
||||
baidu_access_tokens[api_key] = token
|
||||
# release it to enhance performance
|
||||
# btw, _get_access_token will raise exception if failed, release lock here to avoid deadlock
|
||||
baidu_access_tokens_lock.release()
|
||||
# try to get access token
|
||||
token_str = BaiduAccessToken._get_access_token(api_key, secret_key)
|
||||
token.access_token = token_str
|
||||
token.expires = now + timedelta(days=3)
|
||||
return token
|
||||
else:
|
||||
# if access token in cache, return it
|
||||
token = baidu_access_tokens[api_key]
|
||||
baidu_access_tokens_lock.release()
|
||||
return token
|
||||
|
||||
|
||||
class _CommonWenxin:
|
||||
api_bases = {
|
||||
'ernie-bot': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-3.5-4k-0205',
|
||||
'ernie-bot-4': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions_pro',
|
||||
'ernie-bot-8k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions',
|
||||
'ernie-bot-turbo': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant',
|
||||
'ernie-3.5-8k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions',
|
||||
'ernie-3.5-8k-0205': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-3.5-8k-0205',
|
||||
'ernie-3.5-8k-1222': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-3.5-8k-1222',
|
||||
'ernie-3.5-4k-0205': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-3.5-4k-0205',
|
||||
'ernie-3.5-128k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-3.5-128k',
|
||||
'ernie-4.0-8k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions_pro',
|
||||
'ernie-4.0-8k-latest': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions_pro',
|
||||
'ernie-speed-8k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie_speed',
|
||||
'ernie-speed-128k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-speed-128k',
|
||||
'ernie-speed-appbuilder': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ai_apaas',
|
||||
'ernie-lite-8k-0922': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant',
|
||||
'ernie-lite-8k-0308': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-lite-8k',
|
||||
'ernie-character-8k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-char-8k',
|
||||
'ernie-character-8k-0321': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-char-8k',
|
||||
'ernie-4.0-turbo-8k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-4.0-turbo-8k',
|
||||
'ernie-4.0-turbo-8k-preview': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-4.0-turbo-8k-preview',
|
||||
'yi_34b_chat': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/yi_34b_chat',
|
||||
'embedding-v1': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/embedding-v1',
|
||||
'bge-large-en': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/bge_large_en',
|
||||
'bge-large-zh': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/bge_large_zh',
|
||||
'tao-8k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/tao_8k',
|
||||
}
|
||||
|
||||
function_calling_supports = [
|
||||
'ernie-bot',
|
||||
'ernie-bot-8k',
|
||||
'ernie-3.5-8k',
|
||||
'ernie-3.5-8k-0205',
|
||||
'ernie-3.5-8k-1222',
|
||||
'ernie-3.5-4k-0205',
|
||||
'ernie-3.5-128k',
|
||||
'ernie-4.0-8k',
|
||||
'ernie-4.0-turbo-8k',
|
||||
'ernie-4.0-turbo-8k-preview',
|
||||
'yi_34b_chat'
|
||||
]
|
||||
|
||||
api_key: str = ''
|
||||
secret_key: str = ''
|
||||
|
||||
def __init__(self, api_key: str, secret_key: str):
|
||||
self.api_key = api_key
|
||||
self.secret_key = secret_key
|
||||
|
||||
@staticmethod
|
||||
def _to_credential_kwargs(credentials: dict) -> dict:
|
||||
credentials_kwargs = {
|
||||
"api_key": credentials['api_key'],
|
||||
"secret_key": credentials['secret_key']
|
||||
}
|
||||
return credentials_kwargs
|
||||
|
||||
def _handle_error(self, code: int, msg: str):
|
||||
error_map = {
|
||||
1: InternalServerError,
|
||||
2: InternalServerError,
|
||||
3: BadRequestError,
|
||||
4: RateLimitReachedError,
|
||||
6: InvalidAuthenticationError,
|
||||
13: InvalidAPIKeyError,
|
||||
14: InvalidAPIKeyError,
|
||||
15: InvalidAPIKeyError,
|
||||
17: RateLimitReachedError,
|
||||
18: RateLimitReachedError,
|
||||
19: RateLimitReachedError,
|
||||
100: InvalidAPIKeyError,
|
||||
111: InvalidAPIKeyError,
|
||||
200: InternalServerError,
|
||||
336000: InternalServerError,
|
||||
336001: BadRequestError,
|
||||
336002: BadRequestError,
|
||||
336003: BadRequestError,
|
||||
336004: InvalidAuthenticationError,
|
||||
336005: InvalidAPIKeyError,
|
||||
336006: BadRequestError,
|
||||
336007: BadRequestError,
|
||||
336008: BadRequestError,
|
||||
336100: InternalServerError,
|
||||
336101: BadRequestError,
|
||||
336102: BadRequestError,
|
||||
336103: BadRequestError,
|
||||
336104: BadRequestError,
|
||||
336105: BadRequestError,
|
||||
336200: InternalServerError,
|
||||
336303: BadRequestError,
|
||||
337006: BadRequestError
|
||||
}
|
||||
|
||||
if code in error_map:
|
||||
raise error_map[code](msg)
|
||||
else:
|
||||
raise InternalServerError(f'Unknown error: {msg}')
|
||||
|
||||
def _get_access_token(self) -> str:
|
||||
token = BaiduAccessToken.get_access_token(self.api_key, self.secret_key)
|
||||
return token.access_token
|
@ -1,102 +1,17 @@
|
||||
from collections.abc import Generator
|
||||
from datetime import datetime, timedelta
|
||||
from enum import Enum
|
||||
from json import dumps, loads
|
||||
from threading import Lock
|
||||
from typing import Any, Union
|
||||
|
||||
from requests import Response, post
|
||||
|
||||
from core.model_runtime.entities.message_entities import PromptMessageTool
|
||||
from core.model_runtime.model_providers.wenxin.llm.ernie_bot_errors import (
|
||||
from core.model_runtime.model_providers.wenxin._common import _CommonWenxin
|
||||
from core.model_runtime.model_providers.wenxin.wenxin_errors import (
|
||||
BadRequestError,
|
||||
InternalServerError,
|
||||
InvalidAPIKeyError,
|
||||
InvalidAuthenticationError,
|
||||
RateLimitReachedError,
|
||||
)
|
||||
|
||||
# map api_key to access_token
|
||||
baidu_access_tokens: dict[str, 'BaiduAccessToken'] = {}
|
||||
baidu_access_tokens_lock = Lock()
|
||||
|
||||
class BaiduAccessToken:
|
||||
api_key: str
|
||||
access_token: str
|
||||
expires: datetime
|
||||
|
||||
def __init__(self, api_key: str) -> None:
|
||||
self.api_key = api_key
|
||||
self.access_token = ''
|
||||
self.expires = datetime.now() + timedelta(days=3)
|
||||
|
||||
def _get_access_token(api_key: str, secret_key: str) -> str:
|
||||
"""
|
||||
request access token from Baidu
|
||||
"""
|
||||
try:
|
||||
response = post(
|
||||
url=f'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id={api_key}&client_secret={secret_key}',
|
||||
headers={
|
||||
'Content-Type': 'application/json',
|
||||
'Accept': 'application/json'
|
||||
},
|
||||
)
|
||||
except Exception as e:
|
||||
raise InvalidAuthenticationError(f'Failed to get access token from Baidu: {e}')
|
||||
|
||||
resp = response.json()
|
||||
if 'error' in resp:
|
||||
if resp['error'] == 'invalid_client':
|
||||
raise InvalidAPIKeyError(f'Invalid API key or secret key: {resp["error_description"]}')
|
||||
elif resp['error'] == 'unknown_error':
|
||||
raise InternalServerError(f'Internal server error: {resp["error_description"]}')
|
||||
elif resp['error'] == 'invalid_request':
|
||||
raise BadRequestError(f'Bad request: {resp["error_description"]}')
|
||||
elif resp['error'] == 'rate_limit_exceeded':
|
||||
raise RateLimitReachedError(f'Rate limit reached: {resp["error_description"]}')
|
||||
else:
|
||||
raise Exception(f'Unknown error: {resp["error_description"]}')
|
||||
|
||||
return resp['access_token']
|
||||
|
||||
@staticmethod
|
||||
def get_access_token(api_key: str, secret_key: str) -> 'BaiduAccessToken':
|
||||
"""
|
||||
LLM from Baidu requires access token to invoke the API.
|
||||
however, we have api_key and secret_key, and access token is valid for 30 days.
|
||||
so we can cache the access token for 3 days. (avoid memory leak)
|
||||
|
||||
it may be more efficient to use a ticker to refresh access token, but it will cause
|
||||
more complexity, so we just refresh access tokens when get_access_token is called.
|
||||
"""
|
||||
|
||||
# loop up cache, remove expired access token
|
||||
baidu_access_tokens_lock.acquire()
|
||||
now = datetime.now()
|
||||
for key in list(baidu_access_tokens.keys()):
|
||||
token = baidu_access_tokens[key]
|
||||
if token.expires < now:
|
||||
baidu_access_tokens.pop(key)
|
||||
|
||||
if api_key not in baidu_access_tokens:
|
||||
# if access token not in cache, request it
|
||||
token = BaiduAccessToken(api_key)
|
||||
baidu_access_tokens[api_key] = token
|
||||
# release it to enhance performance
|
||||
# btw, _get_access_token will raise exception if failed, release lock here to avoid deadlock
|
||||
baidu_access_tokens_lock.release()
|
||||
# try to get access token
|
||||
token_str = BaiduAccessToken._get_access_token(api_key, secret_key)
|
||||
token.access_token = token_str
|
||||
token.expires = now + timedelta(days=3)
|
||||
return token
|
||||
else:
|
||||
# if access token in cache, return it
|
||||
token = baidu_access_tokens[api_key]
|
||||
baidu_access_tokens_lock.release()
|
||||
return token
|
||||
|
||||
|
||||
class ErnieMessage:
|
||||
class Role(Enum):
|
||||
@ -120,51 +35,7 @@ class ErnieMessage:
|
||||
self.content = content
|
||||
self.role = role
|
||||
|
||||
class ErnieBotModel:
|
||||
api_bases = {
|
||||
'ernie-bot': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-3.5-4k-0205',
|
||||
'ernie-bot-4': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions_pro',
|
||||
'ernie-bot-8k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions',
|
||||
'ernie-bot-turbo': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant',
|
||||
'ernie-3.5-8k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions',
|
||||
'ernie-3.5-8k-0205': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-3.5-8k-0205',
|
||||
'ernie-3.5-8k-1222': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-3.5-8k-1222',
|
||||
'ernie-3.5-4k-0205': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-3.5-4k-0205',
|
||||
'ernie-3.5-128k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-3.5-128k',
|
||||
'ernie-4.0-8k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions_pro',
|
||||
'ernie-4.0-8k-latest': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions_pro',
|
||||
'ernie-speed-8k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie_speed',
|
||||
'ernie-speed-128k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-speed-128k',
|
||||
'ernie-speed-appbuilder': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ai_apaas',
|
||||
'ernie-lite-8k-0922': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant',
|
||||
'ernie-lite-8k-0308': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-lite-8k',
|
||||
'ernie-character-8k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-char-8k',
|
||||
'ernie-character-8k-0321': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-char-8k',
|
||||
'ernie-4.0-turbo-8k': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-4.0-turbo-8k',
|
||||
'ernie-4.0-turbo-8k-preview': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-4.0-turbo-8k-preview',
|
||||
'yi_34b_chat': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/yi_34b_chat',
|
||||
}
|
||||
|
||||
function_calling_supports = [
|
||||
'ernie-bot',
|
||||
'ernie-bot-8k',
|
||||
'ernie-3.5-8k',
|
||||
'ernie-3.5-8k-0205',
|
||||
'ernie-3.5-8k-1222',
|
||||
'ernie-3.5-4k-0205',
|
||||
'ernie-3.5-128k',
|
||||
'ernie-4.0-8k',
|
||||
'ernie-4.0-turbo-8k',
|
||||
'ernie-4.0-turbo-8k-preview',
|
||||
'yi_34b_chat'
|
||||
]
|
||||
|
||||
api_key: str = ''
|
||||
secret_key: str = ''
|
||||
|
||||
def __init__(self, api_key: str, secret_key: str):
|
||||
self.api_key = api_key
|
||||
self.secret_key = secret_key
|
||||
class ErnieBotModel(_CommonWenxin):
|
||||
|
||||
def generate(self, model: str, stream: bool, messages: list[ErnieMessage],
|
||||
parameters: dict[str, Any], timeout: int, tools: list[PromptMessageTool], \
|
||||
@ -199,51 +70,6 @@ class ErnieBotModel:
|
||||
return self._handle_chat_stream_generate_response(resp)
|
||||
return self._handle_chat_generate_response(resp)
|
||||
|
||||
def _handle_error(self, code: int, msg: str):
|
||||
error_map = {
|
||||
1: InternalServerError,
|
||||
2: InternalServerError,
|
||||
3: BadRequestError,
|
||||
4: RateLimitReachedError,
|
||||
6: InvalidAuthenticationError,
|
||||
13: InvalidAPIKeyError,
|
||||
14: InvalidAPIKeyError,
|
||||
15: InvalidAPIKeyError,
|
||||
17: RateLimitReachedError,
|
||||
18: RateLimitReachedError,
|
||||
19: RateLimitReachedError,
|
||||
100: InvalidAPIKeyError,
|
||||
111: InvalidAPIKeyError,
|
||||
200: InternalServerError,
|
||||
336000: InternalServerError,
|
||||
336001: BadRequestError,
|
||||
336002: BadRequestError,
|
||||
336003: BadRequestError,
|
||||
336004: InvalidAuthenticationError,
|
||||
336005: InvalidAPIKeyError,
|
||||
336006: BadRequestError,
|
||||
336007: BadRequestError,
|
||||
336008: BadRequestError,
|
||||
336100: InternalServerError,
|
||||
336101: BadRequestError,
|
||||
336102: BadRequestError,
|
||||
336103: BadRequestError,
|
||||
336104: BadRequestError,
|
||||
336105: BadRequestError,
|
||||
336200: InternalServerError,
|
||||
336303: BadRequestError,
|
||||
337006: BadRequestError
|
||||
}
|
||||
|
||||
if code in error_map:
|
||||
raise error_map[code](msg)
|
||||
else:
|
||||
raise InternalServerError(f'Unknown error: {msg}')
|
||||
|
||||
def _get_access_token(self) -> str:
|
||||
token = BaiduAccessToken.get_access_token(self.api_key, self.secret_key)
|
||||
return token.access_token
|
||||
|
||||
def _copy_messages(self, messages: list[ErnieMessage]) -> list[ErnieMessage]:
|
||||
return [ErnieMessage(message.content, message.role) for message in messages]
|
||||
|
||||
|
@ -1,17 +0,0 @@
|
||||
class InvalidAuthenticationError(Exception):
|
||||
pass
|
||||
|
||||
class InvalidAPIKeyError(Exception):
|
||||
pass
|
||||
|
||||
class RateLimitReachedError(Exception):
|
||||
pass
|
||||
|
||||
class InsufficientAccountBalance(Exception):
|
||||
pass
|
||||
|
||||
class InternalServerError(Exception):
|
||||
pass
|
||||
|
||||
class BadRequestError(Exception):
|
||||
pass
|
@ -11,24 +11,13 @@ from core.model_runtime.entities.message_entities import (
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.errors.invoke import (
|
||||
InvokeAuthorizationError,
|
||||
InvokeBadRequestError,
|
||||
InvokeConnectionError,
|
||||
InvokeError,
|
||||
InvokeRateLimitError,
|
||||
InvokeServerUnavailableError,
|
||||
)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.model_runtime.model_providers.wenxin.llm.ernie_bot import BaiduAccessToken, ErnieBotModel, ErnieMessage
|
||||
from core.model_runtime.model_providers.wenxin.llm.ernie_bot_errors import (
|
||||
BadRequestError,
|
||||
InsufficientAccountBalance,
|
||||
InternalServerError,
|
||||
InvalidAPIKeyError,
|
||||
InvalidAuthenticationError,
|
||||
RateLimitReachedError,
|
||||
)
|
||||
from core.model_runtime.model_providers.wenxin._common import BaiduAccessToken
|
||||
from core.model_runtime.model_providers.wenxin.llm.ernie_bot import ErnieBotModel, ErnieMessage
|
||||
from core.model_runtime.model_providers.wenxin.wenxin_errors import invoke_error_mapping
|
||||
|
||||
ERNIE_BOT_BLOCK_MODE_PROMPT = """You should always follow the instructions and output a valid {{block}} object.
|
||||
The structure of the {{block}} object you can found in the instructions, use {"answer": "$your_answer"} as the default structure
|
||||
@ -140,7 +129,7 @@ class ErnieBotLargeLanguageModel(LargeLanguageModel):
|
||||
api_key = credentials['api_key']
|
||||
secret_key = credentials['secret_key']
|
||||
try:
|
||||
BaiduAccessToken._get_access_token(api_key, secret_key)
|
||||
BaiduAccessToken.get_access_token(api_key, secret_key)
|
||||
except Exception as e:
|
||||
raise CredentialsValidateFailedError(f'Credentials validation failed: {e}')
|
||||
|
||||
@ -254,22 +243,4 @@ class ErnieBotLargeLanguageModel(LargeLanguageModel):
|
||||
|
||||
:return: Invoke error mapping
|
||||
"""
|
||||
return {
|
||||
InvokeConnectionError: [
|
||||
],
|
||||
InvokeServerUnavailableError: [
|
||||
InternalServerError
|
||||
],
|
||||
InvokeRateLimitError: [
|
||||
RateLimitReachedError
|
||||
],
|
||||
InvokeAuthorizationError: [
|
||||
InvalidAuthenticationError,
|
||||
InsufficientAccountBalance,
|
||||
InvalidAPIKeyError,
|
||||
],
|
||||
InvokeBadRequestError: [
|
||||
BadRequestError,
|
||||
KeyError
|
||||
]
|
||||
}
|
||||
return invoke_error_mapping()
|
||||
|
@ -0,0 +1,9 @@
|
||||
model: bge-large-en
|
||||
model_type: text-embedding
|
||||
model_properties:
|
||||
context_size: 512
|
||||
max_chunks: 16
|
||||
pricing:
|
||||
input: '0.0005'
|
||||
unit: '0.001'
|
||||
currency: RMB
|
@ -0,0 +1,9 @@
|
||||
model: bge-large-zh
|
||||
model_type: text-embedding
|
||||
model_properties:
|
||||
context_size: 512
|
||||
max_chunks: 16
|
||||
pricing:
|
||||
input: '0.0005'
|
||||
unit: '0.001'
|
||||
currency: RMB
|
@ -0,0 +1,9 @@
|
||||
model: embedding-v1
|
||||
model_type: text-embedding
|
||||
model_properties:
|
||||
context_size: 384
|
||||
max_chunks: 16
|
||||
pricing:
|
||||
input: '0.0005'
|
||||
unit: '0.001'
|
||||
currency: RMB
|
@ -0,0 +1,9 @@
|
||||
model: tao-8k
|
||||
model_type: text-embedding
|
||||
model_properties:
|
||||
context_size: 8192
|
||||
max_chunks: 1
|
||||
pricing:
|
||||
input: '0.0005'
|
||||
unit: '0.001'
|
||||
currency: RMB
|
@ -0,0 +1,184 @@
|
||||
import time
|
||||
from abc import abstractmethod
|
||||
from collections.abc import Mapping
|
||||
from json import dumps
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
from requests import Response, post
|
||||
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
from core.model_runtime.model_providers.wenxin._common import BaiduAccessToken, _CommonWenxin
|
||||
from core.model_runtime.model_providers.wenxin.wenxin_errors import (
|
||||
BadRequestError,
|
||||
InternalServerError,
|
||||
invoke_error_mapping,
|
||||
)
|
||||
|
||||
|
||||
class TextEmbedding:
|
||||
@abstractmethod
|
||||
def embed_documents(self, model: str, texts: list[str], user: str) -> (list[list[float]], int, int):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class WenxinTextEmbedding(_CommonWenxin, TextEmbedding):
|
||||
def embed_documents(self, model: str, texts: list[str], user: str) -> (list[list[float]], int, int):
|
||||
access_token = self._get_access_token()
|
||||
url = f'{self.api_bases[model]}?access_token={access_token}'
|
||||
body = self._build_embed_request_body(model, texts, user)
|
||||
headers = {
|
||||
'Content-Type': 'application/json',
|
||||
}
|
||||
|
||||
resp = post(url, data=dumps(body), headers=headers)
|
||||
if resp.status_code != 200:
|
||||
raise InternalServerError(f'Failed to invoke ernie bot: {resp.text}')
|
||||
return self._handle_embed_response(model, resp)
|
||||
|
||||
def _build_embed_request_body(self, model: str, texts: list[str], user: str) -> dict[str, Any]:
|
||||
if len(texts) == 0:
|
||||
raise BadRequestError('The number of texts should not be zero.')
|
||||
body = {
|
||||
'input': texts,
|
||||
'user_id': user,
|
||||
}
|
||||
return body
|
||||
|
||||
def _handle_embed_response(self, model: str, response: Response) -> (list[list[float]], int, int):
|
||||
data = response.json()
|
||||
if 'error_code' in data:
|
||||
code = data['error_code']
|
||||
msg = data['error_msg']
|
||||
# raise error
|
||||
self._handle_error(code, msg)
|
||||
|
||||
embeddings = [v['embedding'] for v in data['data']]
|
||||
_usage = data['usage']
|
||||
tokens = _usage['prompt_tokens']
|
||||
total_tokens = _usage['total_tokens']
|
||||
|
||||
return embeddings, tokens, total_tokens
|
||||
|
||||
|
||||
class WenxinTextEmbeddingModel(TextEmbeddingModel):
|
||||
def _create_text_embedding(self, api_key: str, secret_key: str) -> TextEmbedding:
|
||||
return WenxinTextEmbedding(api_key, secret_key)
|
||||
|
||||
def _invoke(self, model: str, credentials: dict, texts: list[str],
|
||||
user: Optional[str] = None) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke text embedding model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param user: unique user id
|
||||
:return: embeddings result
|
||||
"""
|
||||
|
||||
api_key = credentials['api_key']
|
||||
secret_key = credentials['secret_key']
|
||||
embedding: TextEmbedding = self._create_text_embedding(api_key, secret_key)
|
||||
user = user if user else 'ErnieBotDefault'
|
||||
|
||||
context_size = self._get_context_size(model, credentials)
|
||||
max_chunks = self._get_max_chunks(model, credentials)
|
||||
inputs = []
|
||||
indices = []
|
||||
used_tokens = 0
|
||||
used_total_tokens = 0
|
||||
|
||||
for i, text in enumerate(texts):
|
||||
|
||||
# Here token count is only an approximation based on the GPT2 tokenizer
|
||||
num_tokens = self._get_num_tokens_by_gpt2(text)
|
||||
|
||||
if num_tokens >= context_size:
|
||||
cutoff = int(np.floor(len(text) * (context_size / num_tokens)))
|
||||
# if num tokens is larger than context length, only use the start
|
||||
inputs.append(text[0:cutoff])
|
||||
else:
|
||||
inputs.append(text)
|
||||
indices += [i]
|
||||
|
||||
batched_embeddings = []
|
||||
_iter = range(0, len(inputs), max_chunks)
|
||||
for i in _iter:
|
||||
embeddings_batch, _used_tokens, _total_used_tokens = embedding.embed_documents(
|
||||
model,
|
||||
inputs[i: i + max_chunks],
|
||||
user)
|
||||
used_tokens += _used_tokens
|
||||
used_total_tokens += _total_used_tokens
|
||||
batched_embeddings += embeddings_batch
|
||||
|
||||
usage = self._calc_response_usage(model, credentials, used_tokens, used_total_tokens)
|
||||
return TextEmbeddingResult(
|
||||
model=model,
|
||||
embeddings=batched_embeddings,
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
def get_num_tokens(self, model: str, credentials: dict, texts: list[str]) -> int:
|
||||
"""
|
||||
Get number of tokens for given prompt messages
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:return:
|
||||
"""
|
||||
if len(texts) == 0:
|
||||
return 0
|
||||
total_num_tokens = 0
|
||||
for text in texts:
|
||||
total_num_tokens += self._get_num_tokens_by_gpt2(text)
|
||||
|
||||
return total_num_tokens
|
||||
|
||||
def validate_credentials(self, model: str, credentials: Mapping) -> None:
|
||||
api_key = credentials['api_key']
|
||||
secret_key = credentials['secret_key']
|
||||
try:
|
||||
BaiduAccessToken.get_access_token(api_key, secret_key)
|
||||
except Exception as e:
|
||||
raise CredentialsValidateFailedError(f'Credentials validation failed: {e}')
|
||||
|
||||
@property
|
||||
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
|
||||
return invoke_error_mapping()
|
||||
|
||||
def _calc_response_usage(self, model: str, credentials: dict, tokens: int, total_tokens: int) -> EmbeddingUsage:
|
||||
"""
|
||||
Calculate response usage
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param tokens: input tokens
|
||||
:return: usage
|
||||
"""
|
||||
# get input price info
|
||||
input_price_info = self.get_price(
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
price_type=PriceType.INPUT,
|
||||
tokens=tokens
|
||||
)
|
||||
|
||||
# transform usage
|
||||
usage = EmbeddingUsage(
|
||||
tokens=tokens,
|
||||
total_tokens=total_tokens,
|
||||
unit_price=input_price_info.unit_price,
|
||||
price_unit=input_price_info.unit,
|
||||
total_price=input_price_info.total_amount,
|
||||
currency=input_price_info.currency,
|
||||
latency=time.perf_counter() - self.started_at
|
||||
)
|
||||
|
||||
return usage
|
@ -17,6 +17,7 @@ help:
|
||||
en_US: https://cloud.baidu.com/wenxin.html
|
||||
supported_model_types:
|
||||
- llm
|
||||
- text-embedding
|
||||
configurate_methods:
|
||||
- predefined-model
|
||||
provider_credential_schema:
|
||||
|
@ -0,0 +1,57 @@
|
||||
from core.model_runtime.errors.invoke import (
|
||||
InvokeAuthorizationError,
|
||||
InvokeBadRequestError,
|
||||
InvokeConnectionError,
|
||||
InvokeError,
|
||||
InvokeRateLimitError,
|
||||
InvokeServerUnavailableError,
|
||||
)
|
||||
|
||||
|
||||
def invoke_error_mapping() -> dict[type[InvokeError], list[type[Exception]]]:
|
||||
"""
|
||||
Map model invoke error to unified error
|
||||
The key is the error type thrown to the caller
|
||||
The value is the error type thrown by the model,
|
||||
which needs to be converted into a unified error type for the caller.
|
||||
|
||||
:return: Invoke error mapping
|
||||
"""
|
||||
return {
|
||||
InvokeConnectionError: [
|
||||
],
|
||||
InvokeServerUnavailableError: [
|
||||
InternalServerError
|
||||
],
|
||||
InvokeRateLimitError: [
|
||||
RateLimitReachedError
|
||||
],
|
||||
InvokeAuthorizationError: [
|
||||
InvalidAuthenticationError,
|
||||
InsufficientAccountBalance,
|
||||
InvalidAPIKeyError,
|
||||
],
|
||||
InvokeBadRequestError: [
|
||||
BadRequestError,
|
||||
KeyError
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
class InvalidAuthenticationError(Exception):
|
||||
pass
|
||||
|
||||
class InvalidAPIKeyError(Exception):
|
||||
pass
|
||||
|
||||
class RateLimitReachedError(Exception):
|
||||
pass
|
||||
|
||||
class InsufficientAccountBalance(Exception):
|
||||
pass
|
||||
|
||||
class InternalServerError(Exception):
|
||||
pass
|
||||
|
||||
class BadRequestError(Exception):
|
||||
pass
|
@ -85,7 +85,8 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
tools=tools, stop=stop, stream=stream, user=user,
|
||||
extra_model_kwargs=XinferenceHelper.get_xinference_extra_parameter(
|
||||
server_url=credentials['server_url'],
|
||||
model_uid=credentials['model_uid']
|
||||
model_uid=credentials['model_uid'],
|
||||
api_key=credentials.get('api_key'),
|
||||
)
|
||||
)
|
||||
|
||||
@ -106,7 +107,8 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
|
||||
extra_param = XinferenceHelper.get_xinference_extra_parameter(
|
||||
server_url=credentials['server_url'],
|
||||
model_uid=credentials['model_uid']
|
||||
model_uid=credentials['model_uid'],
|
||||
api_key=credentials.get('api_key')
|
||||
)
|
||||
if 'completion_type' not in credentials:
|
||||
if 'chat' in extra_param.model_ability:
|
||||
@ -396,7 +398,8 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
else:
|
||||
extra_args = XinferenceHelper.get_xinference_extra_parameter(
|
||||
server_url=credentials['server_url'],
|
||||
model_uid=credentials['model_uid']
|
||||
model_uid=credentials['model_uid'],
|
||||
api_key=credentials.get('api_key')
|
||||
)
|
||||
|
||||
if 'chat' in extra_args.model_ability:
|
||||
@ -464,6 +467,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
|
||||
xinference_client = Client(
|
||||
base_url=credentials['server_url'],
|
||||
api_key=credentials.get('api_key'),
|
||||
)
|
||||
|
||||
xinference_model = xinference_client.get_model(credentials['model_uid'])
|
||||
|
@ -108,7 +108,8 @@ class XinferenceRerankModel(RerankModel):
|
||||
|
||||
# initialize client
|
||||
client = Client(
|
||||
base_url=credentials['server_url']
|
||||
base_url=credentials['server_url'],
|
||||
api_key=credentials.get('api_key'),
|
||||
)
|
||||
|
||||
xinference_client = client.get_model(model_uid=credentials['model_uid'])
|
||||
|
@ -52,7 +52,8 @@ class XinferenceSpeech2TextModel(Speech2TextModel):
|
||||
|
||||
# initialize client
|
||||
client = Client(
|
||||
base_url=credentials['server_url']
|
||||
base_url=credentials['server_url'],
|
||||
api_key=credentials.get('api_key'),
|
||||
)
|
||||
|
||||
xinference_client = client.get_model(model_uid=credentials['model_uid'])
|
||||
|
@ -110,14 +110,22 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
|
||||
|
||||
server_url = credentials['server_url']
|
||||
model_uid = credentials['model_uid']
|
||||
extra_args = XinferenceHelper.get_xinference_extra_parameter(server_url=server_url, model_uid=model_uid)
|
||||
api_key = credentials.get('api_key')
|
||||
extra_args = XinferenceHelper.get_xinference_extra_parameter(
|
||||
server_url=server_url,
|
||||
model_uid=model_uid,
|
||||
api_key=api_key,
|
||||
)
|
||||
|
||||
if extra_args.max_tokens:
|
||||
credentials['max_tokens'] = extra_args.max_tokens
|
||||
if server_url.endswith('/'):
|
||||
server_url = server_url[:-1]
|
||||
|
||||
client = Client(base_url=server_url)
|
||||
client = Client(
|
||||
base_url=server_url,
|
||||
api_key=api_key,
|
||||
)
|
||||
|
||||
try:
|
||||
handle = client.get_model(model_uid=model_uid)
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user