from core.model_runtime.entities.llm_entities import LLMResult from core.model_runtime.entities.message_entities import PromptMessage, SystemPromptMessage, UserPromptMessage from core.tools.__base.tool import Tool from core.tools.__base.tool_runtime import ToolRuntime from core.tools.entities.tool_entities import ToolProviderType from core.tools.utils.model_invocation_utils import ModelInvocationUtils _SUMMARY_PROMPT = """You are a professional language researcher, you are interested in the language and you can quickly aimed at the main point of an webpage and reproduce it in your own words but retain the original meaning and keep the key points. however, the text you got is too long, what you got is possible a part of the text. Please summarize the text you got. """ class BuiltinTool(Tool): """ Builtin tool :param meta: the meta data of a tool call processing """ provider: str def __init__(self, provider: str, **kwargs): super().__init__(**kwargs) self.provider = provider def fork_tool_runtime(self, runtime: ToolRuntime) -> "BuiltinTool": """ fork a new tool with meta data :param meta: the meta data of a tool call processing, tenant_id is required :return: the new tool """ return self.__class__( entity=self.entity.model_copy(), runtime=runtime, provider=self.provider, ) def invoke_model(self, user_id: str, prompt_messages: list[PromptMessage], stop: list[str]) -> LLMResult: """ invoke model :param model_config: the model config :param prompt_messages: the prompt messages :param stop: the stop words :return: the model result """ # invoke model return ModelInvocationUtils.invoke( user_id=user_id, tenant_id=self.runtime.tenant_id or "", tool_type="builtin", tool_name=self.entity.identity.name, prompt_messages=prompt_messages, ) def tool_provider_type(self) -> ToolProviderType: return ToolProviderType.BUILT_IN def get_max_tokens(self) -> int: """ get max tokens :param model_config: the model config :return: the max tokens """ if self.runtime is None: raise ValueError("runtime is required") return ModelInvocationUtils.get_max_llm_context_tokens( tenant_id=self.runtime.tenant_id or "", ) def get_prompt_tokens(self, prompt_messages: list[PromptMessage]) -> int: """ get prompt tokens :param prompt_messages: the prompt messages :return: the tokens """ if self.runtime is None: raise ValueError("runtime is required") return ModelInvocationUtils.calculate_tokens( tenant_id=self.runtime.tenant_id or "", prompt_messages=prompt_messages ) def summary(self, user_id: str, content: str) -> str: max_tokens = self.get_max_tokens() if self.get_prompt_tokens(prompt_messages=[UserPromptMessage(content=content)]) < max_tokens * 0.6: return content def get_prompt_tokens(content: str) -> int: return self.get_prompt_tokens( prompt_messages=[SystemPromptMessage(content=_SUMMARY_PROMPT), UserPromptMessage(content=content)] ) def summarize(content: str) -> str: summary = self.invoke_model( user_id=user_id, prompt_messages=[SystemPromptMessage(content=_SUMMARY_PROMPT), UserPromptMessage(content=content)], stop=[], ) assert isinstance(summary.message.content, str) return summary.message.content lines = content.split("\n") new_lines = [] # split long line into multiple lines for i in range(len(lines)): line = lines[i] if not line.strip(): continue if len(line) < max_tokens * 0.5: new_lines.append(line) elif get_prompt_tokens(line) > max_tokens * 0.7: while get_prompt_tokens(line) > max_tokens * 0.7: new_lines.append(line[: int(max_tokens * 0.5)]) line = line[int(max_tokens * 0.5) :] new_lines.append(line) else: new_lines.append(line) # merge lines into messages with max tokens messages: list[str] = [] for j in new_lines: if len(messages) == 0: messages.append(j) else: if len(messages[-1]) + len(j) < max_tokens * 0.5: messages[-1] += j if get_prompt_tokens(messages[-1] + j) > max_tokens * 0.7: messages.append(j) else: messages[-1] += j summaries = [] for i in range(len(messages)): message = messages[i] summary = summarize(message) summaries.append(summary) result = "\n".join(summaries) if self.get_prompt_tokens(prompt_messages=[UserPromptMessage(content=result)]) > max_tokens * 0.7: return self.summary(user_id=user_id, content=result) return result